Skip to main content
Log in

The direct synthesis of a substituted naphthopentathiepin for selective Co2+ ion recognition in aqueous solution

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A new pentahiepin based on 1-naphthol unit was synthesized by direct condensation method, which on crystallization yielded triclinic crystals in the P-1 space group. The crystal structure was analyzed computationally through Gaussian and CrystalExplorer software. An unusually high degree of short contacts originating from sulfur were observed. The intermolecular interaction investigations revealed that the sulfur atoms take a chair form suitable for metal coordination. Investigation of the affinity of the naphthopentathiepin towards metal ions revealed that the receptor forms a complex with Co2+ ions in 50% aqueous acetonitrile. By virtue of the cage type cavity offered by the pentathiepin derivative, it can form a complex with Co2+ ions in a sandwich fashion. The Job’s plot confirmed 2:1 binding stoichiometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Anzenbacher, J.P., Lubal, P., Bucek, P., Palacios, M.A., Kozelkova, M.E.: A practical approach to optical cross-reactive sensor arrays. Chem. Soc. Rev. 39(10), 3954–3979 (2010). https://doi.org/10.1039/B926220M

    Article  CAS  PubMed  Google Scholar 

  2. Wang, B., Anslyn, E.V. (eds.): Chemosensors: Principles, Strategies, and Applications. Wiley, Hoboken (2011)

    Google Scholar 

  3. Park, G.J., Na, Y.J., Jo, H.Y., Lee, S.A., Kim, C.: A colorimetric organic chemo-sensor for Co2+ in a fully aqueous environment. Dalton Trans. 43(18), 6618–6622 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. Zhen, S.J., Guo, F.L., Chen, L.Q., Li, Y.F., Zhang, Q., Huang, C.Z.: Visual detection of cobalt(ii) ion in vitro and tissue with a new type of leaf-like molecular microcrystal. Chem. Commun. 47(9), 2562–2564 (2011). https://doi.org/10.1039/C0CC03205K

    Article  CAS  Google Scholar 

  5. Simonsen, L.O., Harbak, H., Bennekou, P.: Cobalt metabolism and toxicology—a brief update. Sci. Total Environ. 432, 210–215 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. Gupta, V., Jain, A.K., Al Khayat, M., Bhargava, S., Raisoni, J.: Electroanalytical studies on cobalt (II) selective potentiometric sensor based on bridge modified calixarene in poly (vinyl chloride). Electrochim. Acta 53(16), 5409–5414 (2008)

    Article  CAS  Google Scholar 

  7. Bian, W., Ma, J., Liu, Q., Wei, Y., Li, Y., Dong, C., Shuang, S.: A novel phosphorescence sensor for Co2+ ion based on Mn-doped ZnS quantum dots. Luminescence 29(2), 151–157 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. Maity, D., Kumar, V., Govindaraju, T.: Reactive probes for ratiometric detection of Co2+ and Cu+ based on excited-state intramolecular proton transfer mechanism. Org. Lett. 14(23), 6008–6011 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. Abebe, F.A., Eribal, C.S., Ramakrishna, G., Sinn, E.: A ‘turn-on’fluorescent sensor for the selective detection of cobalt and nickel ions in aqueous media. Tetrahedron Lett. 52(43), 5554–5558 (2011)

    Article  CAS  Google Scholar 

  10. Ghaedi, M., Shokrollahi, A., Ahmadi, F., Rajabi, H., Soylak, M.: Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry. J. Hazard. Mater. 150(3), 533–540 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. Rajabi Khorrami, A., Fakhari, A.R., Shamsipur, M., Naeimi, H.: Pre-concentration of ultra trace amounts of copper, zinc, cobalt and nickel in environmental water samples using modified C18 extraction disks and determination by inductively coupled plasma–optical emission spectrometry. Int. J. Environ. Anal. Chem. 89(5), 319–329 (2009)

    Article  CAS  Google Scholar 

  12. Shi, J., Lu, C., Yan, D., Ma, L.: High selectivity sensing of cobalt in HepG2 cells based on necklace model microenvironment-modulated carbon dot-improved chemiluminescence in Fenton-like system. Biosens. Bioelectron. 45, 58–64 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. Yousefi, S.R., Ahmadi, S.J.: Development a robust ionic liquid-based dispersive liquid-liquid microextraction against high concentration of salt combined with flame atomic absorption spectrometry using microsample introduction system for preconcentration and determination of cobalt in water and saline samples. Microchim. Acta 172(1–2), 75–82 (2011)

    Article  CAS  Google Scholar 

  14. Liu, Z., Jia, X., Bian, P., Ma, Z.: A simple and novel system for colorimetric detection of cobalt ions. Analyst 139(3), 585–588 (2013)

    Article  Google Scholar 

  15. Wang, X., Zheng, W., Lin, H., Liu, G., Chen, Y., Fang, J.: A new selective phenanthroline-based fluorescent chemosensor for Co2+. Tetrahedron Lett. 50(14), 1536–1538 (2009)

    Article  CAS  Google Scholar 

  16. Singh, A.K., Mehtab, S., Saxena, P.: A novel potentiometric membrane sensor for determination of Co2+ based on 5-amino-3-methylisothiazole. Sens. Actuator B 120(2), 455–461 (2007)

    Article  CAS  Google Scholar 

  17. Mashhadizadeh, M.H., Sheikhshoaie, I.: Co2+-selective membrane electrode based on the Schiff base NADS. Anal. Bioanal. Chem. 375(5), 708–712 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. Saleem, M., Khang, C.H., Lee, K.H.: Chromo/fluorogenic detection of Co2+, Hg2+ and Cu2+ by the simple Schiff base sensor. J. Fluoresc. 26(1), 11–22 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. Bu, J., Duan, H., Wang, X., Xu, T., Meng, X., Qin, D.: New turn-on fluorescence sensors for Co2+ based on conjugated carbazole Schiff base. Res. Chem. Intermed. 41(5), 2767–2774 (2015)

    Article  CAS  Google Scholar 

  20. Wang, P., Li, Z., Lv, G.-C., Zhou, H.-P., Hou, C., Sun, W.-Y., Tian, Y.-P.: Zinc (II) complex with teirpyridine derivative ligand as “on–off” type fluorescent probe for cobalt (II) and nickel (II) ions. Inorg. Chem. Commun. 18, 87–91 (2012)

    Article  CAS  Google Scholar 

  21. Kajiwara, T., Iki, N., Yamashita, M.: Transition metal and lanthanide cluster complexes constructed with thiacalix [n] arene and its derivatives. Coord. Chem. Rev. 251(13–14), 1734–1746 (2007)

    Article  CAS  Google Scholar 

  22. Zintl, F., Persson, I.: Interactions of d10 metal ions and organic sulfur ligands in non-aqueous solvents. A thermodynamic study on the complex formation between mercury(II) and thiolates in pyridine, and between silver(I) and various sulfides in pyridine and dimethylsulfoxide. Inorg. Chim. Acta 131(1), 21–26 (1987). https://doi.org/10.1016/S0020-1693(00)87901-3

    Article  CAS  Google Scholar 

  23. Worthington, M.J.H., Kucera, R.L., Chalker, J.M.: Green chemistry and polymers made from sulfur. Green Chem. 19(12), 2748–2761 (2017). https://doi.org/10.1039/C7GC00014F

    Article  CAS  Google Scholar 

  24. Wang, K., Groom, M., Sheridan, R., Zhang, S., Block, E.: Liquid sulfur as a reagent: synthesis of polysulfanes with 20 or more sulfur atoms with characterization by UPLC-(Ag+)-coordination ion spray-MS. J. Sulfur Chem. 34(1–2), 55–66 (2013). https://doi.org/10.1080/17415993.2012.721368

    Article  CAS  Google Scholar 

  25. Nolan, E.M., Lippard, S.J.: A “turn-on” fluorescent sensor for the selective detection of mercuric ion in aqueous media. J. Am. Chem. Soc. 125(47), 14270–14271 (2003). https://doi.org/10.1021/ja037995g

    Article  CAS  PubMed  Google Scholar 

  26. Michel, S.L.J., Barrett, A.G.M., Hoffman, B.M.: Peripheral metal-ion binding to tris(thia–oxo crown) porphyrazines. Inorg. Chem. 42(3), 814–820 (2003). https://doi.org/10.1021/ic025639d

    Article  CAS  PubMed  Google Scholar 

  27. Heinrich, V.: Sulfur atoms as ligands in metal complexes. Angew. Chem. Int. Ed. Engl. 14(5), 322–329 (1975). https://doi.org/10.1002/anie.197503221

    Article  Google Scholar 

  28. Konstantinova, L.S., Rakitin, O.A., Rees, C.W.: Pentathiepins. Chem. Rev. 104(5), 2617–2630 (2004). https://doi.org/10.1021/cr0200926

    Article  CAS  PubMed  Google Scholar 

  29. Sheldrick, G.M.: SHELXT–Integrated space-group and crystal-structure determination. Acta Cryst. A 71(1), 3–8 (2015)

    Article  CAS  Google Scholar 

  30. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42(2), 339–341 (2009). https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  31. Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., Streek, J.V., Wood, P.A.: Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. J. Appl. Cryst. 41(2), 466–470 (2008). https://doi.org/10.1107/S0021889807067908

    Article  CAS  Google Scholar 

  32. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.02. Gaussian Inc, Wallingford CT (2009)

    Google Scholar 

  33. Wolff, S.K., Grimwood, D.J., McKinnon, J.J., Turner, M.J., Jayatilaka, D., Spackman, M.A.: CrystalExplorer (Version 3.1)

  34. Wolff, S., Grimwood, D., McKinnon, J., Jayatilaka, D., Spackman, M.: Crystalexplorer (Version 17.5)

  35. McKinnon, J.J., Jayatilaka, D., Spackman, M.A.: Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 37, 3814–3816 (2007). https://doi.org/10.1039/B704980C

    Article  Google Scholar 

  36. Ganguly, T., Das, A., Jana, M., Majumdar, A.: Cobalt(II)-mediated desulfurization of thiophenes, sulfides, and thiols. Inorg. Chem. 57(18), 11306–11309 (2018). https://doi.org/10.1021/acs.inorgchem.8b01588

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors sincerely thank SERB, New Delhi, India (No. EMR/2016/005022) and DRDO (ERIP/ER/DG-NSM/990116702/M/01/1645) for financial support. Authors are also thankful to KP for certain help. Authors are thankful to the Director, USIC University of Delhi for instrumental facilities. The authors are also thankful to the Principal, St. Stephen’s College for providing the necessary infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1555 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, H., Sahoo, P.R., Kumar, A. et al. The direct synthesis of a substituted naphthopentathiepin for selective Co2+ ion recognition in aqueous solution. J Incl Phenom Macrocycl Chem 95, 135–145 (2019). https://doi.org/10.1007/s10847-019-00932-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-019-00932-8

Keywords

Navigation