Skip to main content

Advertisement

Log in

Comparison of cyclodextrins and urea as hosts for inclusion of drugs

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Cyclodextrins have been extensively used for inclusion of various drugs for improvement of pharmaceutical characteristics of diverse nature. Numerous derivatives of cyclodextrins are currently available and are being subjected to continuous investigations. On the other hand, urea was previously being used as host for inclusion of straight chain linear compounds. However, development of a modified technique has opened flood gates for inclusion of non-linear drugs containing cyclic moieties. Cis-retinoic acid, nicorandil, vitamin E, amiloride, glipizide, enalapril maleate, simvastatin, lafutidine and ezetimbe are some of the drugs which have already been investigated for improvement of pharmaceutical characteristics. These characteristics include improvement of stability, content uniformity, dissolution profile and rheological behavior. Recently, pesticide-fertilizer combination has also been reported to serve the dual purpose of pesticide cum fertilizer and for improvement in safe handling and formulation characteristics. All FDA approved cyclodextrins are safe chemicals for human use within permissible limits. Urea is a component of normal physiological processes of body in human beings and other mammals. Urea is far cheaper when compared to cyclodextrins. Studies reveal that despite unique characteristics of urea like high solubility, non-toxicity, stability, inexpensiveness, biodegradability and easy availability, the use of urea as a host for inclusion of drugs has been grossly overlooked by researchers. Immense potential of urea as a host for inclusion of drugs need to be explored for improvement of pharmaceutical characteristics. The relative use of both cyclodextrins and urea as hosts for inclusion of drugs has been briefly reviewed in the present article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lehn, J.M.: Towards complex matter: Supramolecular chemistry and self-organization. Proc. Natl. Acad. Sci. USA 99, 4763–4768 (2002)

    Article  CAS  Google Scholar 

  2. Findlay, R.A.: Adductive crystallization. In: Schoen, H.M., Mcketta, J.J. (eds.) Interscience Library of Chemical Engineering and Processing. New Chemical Engineering Separation Techniques, vol. 1, 257–318. Interscience Publishers, New York (1962)

    Google Scholar 

  3. Bhatnagar, V.M.: Clathrate compounds of urea and thiourea. J. Struc. Chem. 8(3), 513–529 (1968)

    Article  Google Scholar 

  4. Frank, S.G.: Inclusion compounds. J. Pharm. Sci. 64, 1585–1604 (1975)

    Article  CAS  Google Scholar 

  5. Sinko, P.J. (ed.): Martin’s Physical Pharmacy and Pharmaceutical Sciences. 6th edn, pp. 197–222. Wolters Kluwer, New Delhi (2005)

    Google Scholar 

  6. Dyadin, Y.A., Terekhova, I.S.: Classical description of inclusion compounds. In: Atwood, J.L., Steed, J.W. (eds.) Encyclopedia of Supramolecular Chemistry, vol. 2, pp. 253–260. Marcel Dekker, New York (2004)

    Chapter  Google Scholar 

  7. Powell, H.M.: The structure of molecular compounds. Part IV. Clathrate compounds. J. Chem. Soc. 61–72 (1948). doi:10.1039/JR9480000061

  8. Schlenk, W.: Urea addition of aliphatic compounds. Ann. Chem. 565, 204–240 (1949)

    Article  CAS  Google Scholar 

  9. Weber, E.: Clathrate chemistry today-some problems and reflections. Topics Curr. Chem. 140, 3–20 (1989)

    Google Scholar 

  10. Madan, A.K., Thakral, S.: Urea as an adductor for branched drug molecules. In: Fitzpatrick, D.W., Ulrich, H.J. (eds.) Macrocyclic Chemistry: New Research Developments. Chapter 18, pp. 469–498. Nova Science Publishers Inc., New York (2010)

    Google Scholar 

  11. Bishop, R., Dance, I.G.: New type of helical inclusion compounds. Topics Curr. Chem. 149, 139–188 (1988)

    Google Scholar 

  12. Weber, E., Josel, H.P.: A proposal for the classification and nomenclature of host-guest type compounds. J. Incl. Phenom. 1, 79–85 (1983)

    Article  CAS  Google Scholar 

  13. Cram, D.J.: Host-guest complex. In: Boschke, E.L. (ed.) Topics in Current Chemistry, vol. I-III, pp. 1982–1984. Springer Verlag, Berlin (1986)

    Google Scholar 

  14. Steed, J.W., Atwood, J.L. (eds.): Supramolecular Chemistry, pp. 1–6. Wiley, Chichester (2000)

    Google Scholar 

  15. Powell, H.M.: Introduction. In: Atwood, J.W., Davis, J.E.D., MacNicol, D.D. (eds.) Inclusion compounds, vol. 1, pp. 1–28. Academic Press, London (1984)

    Google Scholar 

  16. Harris, K.D.M.: Meldola Lecture: understanding properties of urea and thiourea inclusion compounds. Chem. Soc. Rev. 76, 279–289 (1997)

    Article  Google Scholar 

  17. George, A.R., Harris, K.D.M.: Representing and understanding geometric features of one-dimensional tunnel structures in solid inclusion compounds. J. Mol. Graphics. 13, 138–141 (1995)

    Article  CAS  Google Scholar 

  18. Hagan, M.M. (ed.): Clathrate inclusion compounds, pp. 30–75. Reinhold Publishing Corporation, California (1962)

    Google Scholar 

  19. Rapson, W.S., Saunder, D.H., Stewart, E.T.: Molecular compound formation in the polyphenyl series; some compounds formed by 4:4′-dinitrodiphenyl. J. Chem. Soc. (1946). doi:10.1039/JR9460001110

    Google Scholar 

  20. Rundle, R.E., Baldwin, R.R.: The configuration of starch and the starch-iodine complex: The dichroism of flow of starch-iodine solutions. J. Am. Chem. Soc. 65, 554–558 (1943)

    Article  CAS  Google Scholar 

  21. Lahr, P.H., Williams, H.L.: Properties of some rare gas clathrate compounds. J. Phys. Chem. 63, 1432–1434 (1959)

    Article  CAS  Google Scholar 

  22. Williams, D.J., Lawton, D.: Deviations from C3 symmetry of the tri-o-thymodite molecule in different crystalline environments: X-ray determinations of the unsolvated form and of typical cavity and channel inclusion compounds. Tetrahedron Lett. 16, 111–114 (1975)

    Article  CAS  Google Scholar 

  23. Flippen, J.L., Karle, J.: Heptanol as a guest molecule in Dianin’s compound. J. Phys. Chem. 75, 3566–3567 (1971)

    Article  CAS  Google Scholar 

  24. D’Souza, V.T., Lipkowitz, K.B.: Cyclodextrins: introduction. Chem. Rev. 98, 1741–1742 (1998)

    Article  Google Scholar 

  25. Nicolini, C., Ramoa, F., Ribeiro, E.J., Duckstein, L. (eds.): Zeolites: Science and Technology. Springer, Netherland (1987)

    Google Scholar 

  26. Makha, M., Raston, C.L., Sobolev, A.N., Barbour, L.J., Turner, P.: Endo- versus exo-cavity interplay of p-benzylcalix[4]arene with spheroidal molecules. Cryst. Eng. Comm. 8, 306–308 (2006). doi: 10.1039/B600550K

    Article  CAS  Google Scholar 

  27. Lin, R.L., Fang, G.S., Sun, W.Q., Liu, J.X.: Aniline-containing guests recognized by α,α’,δ,δ’-tetramethyl-cucurbit[6]uril host. Sci.Rep. 6, 39057–39060 (2016). doi:10.1038/srep39057

    Article  CAS  Google Scholar 

  28. Hardie, M.J., Johnson, J.A., Raston, C.L., Webb, H.R.: Cooperative hydrogen bonding and yttrium (III) complexation in the assembly of molecular capsules. Chem. Commun. 10, 849–850 (2000). doi:10.1039/A910256F

    Article  Google Scholar 

  29. Tarantula, O., Hill, P.H., Khan, N.S., Carroll, P.J., Dmochowski, I.J.: Crystallographic observation of ‘induced fit’ in a cryptophane host–guest model system. Nat. Commun. 1, 148–149 (2010). doi:10.1038/ncomms1151

    Article  CAS  Google Scholar 

  30. Vaijayanthimala, G., Krishan, V., Mandal, S.K.: Cyclic porphyrin dimers as hosts for coordinating ligands. J.Chem. Sci. 120(1), 115–129 (2008)

    Article  CAS  Google Scholar 

  31. Hu, x.B., Chen, Z., Chen, L., Zhang, L., Hou, J.L., Li, Z.T.: Pillar[n]arenes (n = 8–10) with two cavities: synthesis, structures and complexing properties. Chem. Commun. 48, 10999–11001 (2012). doi:10.1039/C2CC36027F

    Article  CAS  Google Scholar 

  32. Allen, L.V., Popovich, N.G., Ansel, H.C. (eds.): Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems. 8th edn, pp. 93–140. Lippincott Williams and Wilkins, Philadelphia (2005)

    Google Scholar 

  33. Huang, Y., Dai, W.G.: Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharmaceutica Sinica B. 4(1), 18–25 (2014)

    Article  Google Scholar 

  34. Dhirendra, K.S., Lewis, S., Udupa, N., Atin, K.: Solid dispersions: a review. Pak. J. Pharm. Sci. 22(2), 234–246 (2009)

    CAS  Google Scholar 

  35. Ingle, U.S., Gaikwad, P.D., Bankar, V.H., Pawar, S.P.: A review on solid dispersion: a dissolution enhancement technique. IJRAP 2(3), 751–757 (2011)

    CAS  Google Scholar 

  36. Baghel, S., Cathcart, H., O’Reilly, N.J.: Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J. Pharm. Sci. 105, 2527–2544 (2016)

    Article  CAS  Google Scholar 

  37. Szejtli, J.: Utilization of cyclodextrins in industrial products and processes. J. Mater. Chem. 7, 575–587 (1997)

    Article  CAS  Google Scholar 

  38. Huh, K.M., Lee, S.C., Ooya, J., Park, K.: Polymeric delivery system for poorly soluble drugs. In: Swarbrick, J. (ed.) Encyclopedia Pharmaceutical Technology, vol. 5, 3rd edn, pp. 2912–2917. Informa HealthCare, New York (2007)

    Google Scholar 

  39. Yoshioka, S., Stella, V.J. (eds.): Stability of Drugs and Dosage Forms. pp. 106–107. Springer, Netherlands (2006)

    Google Scholar 

  40. Marangoci, N., Mares, M., Silion, M., Fifere, A., Varganici, C., Nicolescu, A., Deleanu, C., Coroaba, A., Pinteala, M., Simionescu, B.: Inclusion complex of a new propiconazole derivative with β-cyclodextrin: NMR, ESI–MS and preliminary pharmacological studies. Results Pharma. Sci. 1(1), 27–37 (2011). doi:10.1016/j.rinphs.2011.07.001

    Article  CAS  Google Scholar 

  41. Gidwani, B., Vyas, A.: A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res. Int. 2015 (2015). doi:10.1155/2015/198268

    Google Scholar 

  42. Szejtli, J., Osa, T. (eds.): Cyclodextrins. In: Comprehensive Supramolecular Chemistry, vol. 3, Pergamon, Oxford (1996)

    Google Scholar 

  43. Loftsson, T., Brewster, M.E., Masson, M.: Role of cyclodextrins in improving oral drug delivery. Am. J. Drug Deliv. 2(4), 1–15 (2004)

    Article  Google Scholar 

  44. Loftsson, T., Masson, M., Brewster, M.E.: Self association of cyclodextrins and cyclodextrin complexes. J. Pharm. Sci. 93, 1091–1099 (2004)

    Article  CAS  Google Scholar 

  45. Das, S., Rajabalaya, R., David, S., Gani, N., Khanam, J., Nanda, A.: Cyclodextrins-the molecular structure. RJPBCS 4(2), pp. 1694–1720 (2013)

    CAS  Google Scholar 

  46. Katageri, A.R., Sheikh, M.A.: Cyclodextrin: a gift to pharmaceutical world review. IRJP 3(1), 52–56 (2012)

    CAS  Google Scholar 

  47. Anjana, M., Nair, S.C., Joseph, J.: An updated review of cyclodextrins–An enabling technology for challenging pharmaceutical formulations. Int. J. Pharm. Pharm. Sci. 5(3), 54–58 (2013)

    CAS  Google Scholar 

  48. Shimpi, S., Chauhan, B., Shimpi, P.: Cyclodextrins: application in different routes of drug administration. Acta Pharm. 55, 139–156 (2005)

    CAS  Google Scholar 

  49. Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3, 1023–1035 (2004)

    Article  CAS  Google Scholar 

  50. Valle, E.M.: Cyclodextrins and their uses: A review. Process Biochem. 39(9), 1033–1046 (2004). doi:10.1016/S0032-9592(03)00258-9

    Article  CAS  Google Scholar 

  51. Crini, G.: Review: a history of cyclodextrins. Chem. Rev. 114(21), 10940–10975 (2014). doi:10.1021/cr500081p

    Article  CAS  Google Scholar 

  52. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85(10), 1017–1025 (1996)

    Article  CAS  Google Scholar 

  53. Carrier, R.L., Miller, L.A., Ahmed, I.: The utility of cyclodextrins for enhancing oral bioavailability. J. Control. Rel. 123, 78–99 (2007)

    Article  CAS  Google Scholar 

  54. Uekema, K., Fujinaga, T., Hirayama, F.: Improvement of the oral bioavailability of digitalis glycosides by cyclodextrin complexation. J. Pharm. Sci. 72, 1338–1341 (1983)

    Article  Google Scholar 

  55. Cui, L., Zhang, Z., Sun, E., Jia, X., Qian, Q.: Effect of β-cyclodextrin complexation on solubility and enzymatic hydrolysis rate of icariin. J. Nat. Sci. Biol. Med. 4(1), 201–206 (2013). doi:10.4103/0976-9668.107291

    Article  CAS  Google Scholar 

  56. Singhla, A.K., Garg, A., Aggarwal, D.: Paclitaxel and its formulations. Int. J. Pharm. 235, 179–192 (2002)

    Article  Google Scholar 

  57. Garbow, J.R., Likos, J.J., Schroeder, S.A.: Structure, dynamics, and stability of beta-cyclodextrin inclusion complexes of aspartame and neotame. J. Agric. Food Chem. 49(4), 2053–2060 (2001)

    Article  CAS  Google Scholar 

  58. Teixeria, L.R., Sinisterra, R.D., Vieria, R.P., Scarlatelli-Lima, A., Moraes, M.F.D., Doretto, M.C., Denadai, A.M., Beraldo, H.: An inclusion compound of anticonvulsant sodium valproate into α-cyclodextrin: physic-chemical characterization. J. Incl. Phenom. Macrocycl. Chem. 54, 133–138 (2006)

    Article  CAS  Google Scholar 

  59. Loftsson, T., Peterson, D.S.: Cyclodextrin solubilization of ETH-615, a zwitterionic drug. Drug Dev. Ind. Pharm. 24, 365–370 (1998)

    Article  CAS  Google Scholar 

  60. Ioele, G., De Luca, M., Ragno, G.: Photostability of barnidipine in combined cyclodextrin-in-liposome matrices. Future Med. Chem. 6(1), 35–43 (2014). doi:10.4155/fmc.13.187

    Article  CAS  Google Scholar 

  61. Rivas-Granizo, P.E., Giorgretti, L., Ferraz, H.G.: Photostability of loratadine inclusion complexes with natural cyclodextrins. Int. J. Photoenergy (2015). doi:10.1155/2015/583052

    Google Scholar 

  62. Pomponio, R., Gotti, R., Fiori, J., Cavrini, V., Mura, P., Cirri, M., Maestrelli, F.: Photostability studies on nicardipine-cyclodextrin complexes by capillary electrophoresis. J. Pharm. Biomed. Anal. 35(2), 267–275 (2004)

    Article  CAS  Google Scholar 

  63. Cwiertnia, B., Hladon, T., Stobiecki, M.: Stability of diclofenac sodium in the inclusion complex in the beta cyclodextrin in the solid state. J. Pharm. Pharmacol. 51, 1213–1218 (1999)

    Article  CAS  Google Scholar 

  64. Ndlebe, V.J., Brown, M.E., Glass, B.D.: The thermal stability of triprolidine hydrochloride and its mixture with cyclodextrin and glucose. J. Therm. Analy. Calori. 77(2), 445–457 (2004)

    Article  CAS  Google Scholar 

  65. Popescu, C., Manda, P., Juluri, A., Janga, K.Y., Cidda, M., Murthy, S.N.: Enhanced dissolution efficiency of zalephon solid dispersions via modified β-cyclodextrins molecular inclusion complexes. J. Pharm. Pharm. Sci. 1(1), 1–10 (2015)

    Article  Google Scholar 

  66. Yoganada, R., Chowdary, K.P.R.: Enhancement of solubility, dissolution rate and bioavailability of efavirenz by cyclodextrins and solutol HS15—A factorial study. Int. J. Drug. Dev. Res. 5(1), 135–142 (2013)

    Google Scholar 

  67. Chowdary, K.P.R., Reddy, M.V.: Formulation development studies on enhancement of solubility and dissolution rate of etoricoxib by cyclodextrin complexation. Asian J. Chem. 23(4), 1445–1448 (2011)

    CAS  Google Scholar 

  68. Uekama, K., Ikegami, K., Wang, Z.: Inhibitory effect of 2-hydroxypropyl-β-cyclodextrin on crystal growth of nifedipine during storage: superior dissolution and oral bioavailability compared with polyvinylpyrrolidone K-30. J. Pharm. Pharmacol. 44, 73–78 (1992)

    Article  CAS  Google Scholar 

  69. Aggarwal, S., Singh, P.N., Mishra, B.: Studies on solubility and hypoglycemic activity of gliclazide β-cyclodextrin-hydroxypropylmethylcellulose complexes. Pharmazie. 57, 191–193 (2002)

    CAS  Google Scholar 

  70. Latrofa, A., Trapani, G., Franco, M.: Complexation of phenytoin with some hydrophilic cyclodextrins: effect on aqueous solubility, dissolution rate and anti-convulsant activity in mice. Eur. J. Pharm. Biopharm. 52, 65–73 (2001)

    Article  CAS  Google Scholar 

  71. Ahn, H.J., Kim, K.M., Choi, S.J., Kim, C.K.: Effects of cyclodextrin derivatives on bioavailability of ketoprofen. Drug Dev. Ind. Pharm. 23, 397–401 (1997)

    Article  CAS  Google Scholar 

  72. Londhe, V., Nagarsenker, M.: Comparison between hydroxypropyl-β-cyclodextrin and polyvinylpyrrolidine as carriers for carbamazepine solid dispersions. Indian J. Pharm. Sci. 61, 237–240 (1999)

    CAS  Google Scholar 

  73. Jayachandra Babu, R., Pandit, J.K.: Effect of aging on the dissolution stability of glibenclamide/ β-cyclodextrin complex. Drug Dev. Ind. Pharm. 25(11), 1215–1219 (1995). doi:10.1081/DDC-100102291

    Article  Google Scholar 

  74. Cavallari, C., Abertini, B., Rodriguez, M.L.G., Rodriguez, L.: Improved dissolution behavior of steam granulated piroxicam. Eur. J. Pharm. Biopharm. 54, 65–73 (2002)

    Article  CAS  Google Scholar 

  75. Sanghavi, N.M., Choudhari, K.B., Matharu, R.S., Viswanathan, L.: Inclusion complexation of lorazepam with β-cyclodextrin. Drug Dev. Ind. Pharm. 19, 701–712 (1993)

    Article  CAS  Google Scholar 

  76. Dhanraju, M.D., Santil, K., Baskaran, T., Moorthy, M.S.R.: Enhancement of bioavailability of griseofulvin by its complexation with beta-cyclodextrin. Drug. Dev. Ind. Pharm. 24, 583–587 (1998)

    Article  Google Scholar 

  77. Bettinetti, G., Gazzaniga, A., Mura, P., Giordano, F., Setti, M.: Thermal behavior and dissolution properties of naproxen in combinations with chemically modified beta-cyclodextrins. Drug Dev. Ind. Pharm. 18, 39–53 (1992)

    Article  CAS  Google Scholar 

  78. Meilcarek, J., Czernielewaska, A., Czarczynska, B.: Inclusion complexes of felodipine and amlodipine with methyl-β-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 54, 17–21 (2006)

    Article  CAS  Google Scholar 

  79. Kaukonen, A.M., Lennernas, H., Mannermaa, J.P.: Water soluble β-cyclodextrin in paediatric oral solutions of spiranolactone: preclinical evaluation of spiranolactone bioavailability from solutions of β-cyclodextrin derivatives in rats. J Pharm. Pharmacol. 50, 611–619 (1998)

    Article  CAS  Google Scholar 

  80. Jain, A.C., Adeyeye, M.C.: Hygroscopicity, phase solubility and dissolution of various substituted sulfobutylether beta-cyclodextrins (SBE) and danzol-SBE inclusion complexes. Int. J. Pharm. 212, 177–186 (2001)

    Article  CAS  Google Scholar 

  81. Arias, M.J., Moyano, J.R., Munoz, P., Gines, J.M., Justo, A., Giordano, F.: Study of omeprazole-gamma-cyclodextrin complexation in the solid state. Drug Dev. Ind. Pharm. 26, 253–259 (2000)

    Article  CAS  Google Scholar 

  82. Medlicott, N.J., Foster, K.A., Audis, K.L., Gupta, S., Stella, V.J.: Comparison of effects of potential parenteral vehicles for poorly water soluble anticancer drugs on cultured endothelial cells. J. Pharm. Sci. 87, 1138–1143 (1998)

    Article  CAS  Google Scholar 

  83. Funasaki, N., Kawaguchi, R., Hada, S., Neya, S.: Ultraviolet spectroscopic estimation of microenvironments and bitter tastes of oxyphenonium bromide in cyclodextrin solutions. J. Pharm. Sci. 88(8), 759–762 (1999)

    Article  CAS  Google Scholar 

  84. Jagdale, S.C., Gawali, V.U., Kuchekar, B.S., Chabukswar, A.R.: Formulation and in vitro evaluation of taste-masked oro-dispersible dosage form of diltiazem hydrochloride. Braz. J. Pharm. Sci. 47(4), 907–916 (2011)

    Article  CAS  Google Scholar 

  85. Patel, A.R., Vavia, P.R.: Preparation and evaluation of taste masked famotidine formulation using drug/ β-cyclodextrin/ polymer ternary complexation approach. AAPS Pharm. Sci. Tech. 9(2), 544–550 (2008)

    Article  CAS  Google Scholar 

  86. Serni, U.: Rheumatic diseases-clinical experience with piroxicam beta-cyclodextrin. Eur. J. Rheumatol. Inflamm. 12, 47–54 (1993)

    CAS  Google Scholar 

  87. Blanchard, J., Ugwu, S.O., Bhardwaj, R., Dorr, R.T.: Development and testing of improved phenytoin using 2-hydroxypropyl-betacyclodextrin. Pharm. Dev. Technol. 5, 333–338 (2000)

    Article  CAS  Google Scholar 

  88. Vafaei, S.Y., Dinarvand, R., Esmaeili, M., Mahjub, R., Toliyat, T.: Controlled-release drug delivery system based on fluocinolone acetonide-cyclodextrin inclusion complex incorporated in multivesicular liposomes. Pharm. Dev. Technol. 26, 1–7 (2014)

    Google Scholar 

  89. Nicolazzi, C., Venard, V., Le Faou, A., Finance, C.: In vitro antiviral activity of the ganciclovir complexed with beta-cyclodextrin on human cytomegalovirus strains. Antiviral Res. 54, 121–127 (2002)

    Article  CAS  Google Scholar 

  90. Bhardwaj, R., Dorr, R.T., Blanchard, J.: Approaches to reducing toxicity of parenteral anticancer drug formulations using cyclodextrins. PDA J. Pharm. Sci. Technol. 54(3), 233–239 (2000)

    CAS  Google Scholar 

  91. Li, J., Guo, Y., Zografi, G.: The solid state stability of amorphous quinapril in the presence of beta-cyclodextrins. J. Pharm. Sci. 91, 229–243 (2002)

    Article  CAS  Google Scholar 

  92. Zong, Z., Desai, S.D., Kaushal, A.M., Barich, D.H., Huang, H.S., Munson, E.J., Suryanarayanan, R., Kirsch, L.E.: The stabilizing effect of moisture on the solid-state degradation of gabapentin. AAPS Pharm. Sci. Tech. 12(3), 924–931 (2011). doi:10.1208/s12249-011-9652-8

    Article  CAS  Google Scholar 

  93. Szente, L., Szejtli, J. (eds.): Flavor Encapsulation. ACS Symposium Series. vol. 370, pp. 148–157. American Chemical Society, Hungary (1988). doi:10.1021/bk-1988-0370.ch016

    Google Scholar 

  94. Del Valle, M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)

    Article  CAS  Google Scholar 

  95. Chittiteeranon, P., Soontarus, S., Pongsawasdi, P.: Preparation and characterization of inclusion complexes containing fixolide, a synthetic musk fragrance and cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 57, 69–73 (2007)

    Article  CAS  Google Scholar 

  96. Jarho, P., Van der Velde, D., Stella, V.J.: Cyclodextrin-catalyzed deacetylation of spiranolactone is pH and cyclodextrin dependent. J. Pharm. Sci. 89, 241–249 (2000)

    Article  CAS  Google Scholar 

  97. Babu, J.R., Pandit, J.K.: Enhancement of dissolution rate and hypoglycemic activity of glibenclamide with β-cyclodextrin. STP Pharma. Sci. 5, 196–201 (1995)

    Google Scholar 

  98. Narisawa, S., Stella, V.J.: Increased shelf-life of fosphenytoin: Solubilization of a degradant, phenytoin, through complexation with (SBE) 7 m-beta-CD. J. Pharm. Sci. 87(8), 926–930 (1998)

    Article  CAS  Google Scholar 

  99. Yano, H., Hirayama, F., Kamada, M., Arima, H., Uekama, K.: Colon specific delivery of prednisolone-appended alpha-cyclodextrin conjugate: alleviation of systemic side effect after oral administration. J. Control Release. 79, 103–112 (2002)

    Article  CAS  Google Scholar 

  100. Minami, K., Hirayama, F., Uekama, K.: Colon-specific drug delivery based on a cyclodextrin prodrug : release behavior of biphenyl acetic acid from its cyclodextrin conjugates in rat intestinal tracts after oral administration. J. Pharm. Sci. 87(6), 715–720 (1998)

    Article  CAS  Google Scholar 

  101. Zou, M.J., Cheng, G., Okamoto, H., Hao, X.H., An, F., Cui, F.D., Danjo, K.: Colon-specific drug delivery systems based on cyclodextrin prodrugs: In vivo evaluation of 5-aminosalicylic acid from its cyclodextrin conjugates. World J. Gastroenterol. 11(47), 7457–7460 (2005). doi:10.3748/wjg.v11.i47.7457

    Article  CAS  Google Scholar 

  102. Jarvinen, T., Jarvinen, K., Urtti, A., Thompson, D., Stella, V.J.: Sulfobutyl ether β-cyclodextrin (SBE-β-CD) in eye drops improves the tolerability of a topically applied pilocarpine prodrug in rabbits. J. Ocular Pharmacol. Ther. 11, 95–106 (1995)

    Article  CAS  Google Scholar 

  103. Jarho, P., Jarvinen, K., Urtti, A., Stella, V.J., Jarvinen, T.: Modified β-cyclodextrin (SBE7-β-CD) with viscous vehicle improves the ocular delivery and tolerability of pilocarpine prodrug in rabbits. J. Pharm. Pharmacol. 48, 263–269 (1996)

    Article  CAS  Google Scholar 

  104. Davies, N.M., Wang, G., Tucker, I.G.: Evaluation of a hydrocortisone/hydroxypropyl-β-cyclodextrin solution for ocular drug delivery. Int. J. Pharm. 156, 201–209 (1997)

    Article  CAS  Google Scholar 

  105. Tirucherai, G.S., Mitra, A.K.: Effect of hydroxypropyl beta-cyclodextrin complexion on aqueous solubility, stability and corneal permeation of acyl ester prodrugs of ganciclovir. AAPS PharmSciTech. 4(3), 124–135 (2003)

    Article  Google Scholar 

  106. Hermens, W.A.J.J., Deurloo, M.J.M., Romeijn, S.G., Verhoef, J.C., Merkus, F.W.H.M.: Nasal absorption enhancement of 17-β-oestradiol by dimethyl-β-cyclodextrin in rabbits and rats. Pharm. Res. 7, 500–503 (1990)

    Article  CAS  Google Scholar 

  107. Loftsson, T., Guomundsdottir, H., Sigurjonsdottir, J.F.., Sigurosson, H.H., Sigfusson, S.D., Masson, M., Stefannsson, E.: Cyclodextrin solubilization of benzodiazepines: formulation of midazolam nasal spray. Int. J. Pharm. 212, 29–40 (2001)

    Article  CAS  Google Scholar 

  108. Matsubara, K., Abe, K., Irie, T., Uekama, K.: Improvement of nasal bioavailability of luteinizing hormone-releasing hormone agonist, buserelin, by cyclodextrin derivatives in rats. J. Pharm. Sci. 84, 1295–1300 (1995)

    Article  CAS  Google Scholar 

  109. Lin, S.Z., Wouessidjewe, D., Poelman, M.C., Duchene, D.: In-vivo evaluation of indomethacin/ cyclodextrin complexes gastrointestinal tolerance and dermal anti-inflammatory activity. Int. J. Pharm. 106, 63–67 (1994)

    Article  CAS  Google Scholar 

  110. Loftsson, T., Sigurardottir, A.M.: The effect of polyvinyl pyrrolidone and hydroxypropyl methyl cellulose on hydroxypropyl-β-cyclodextrin complexation of hydrocortisone and its permeability through hairless mouse skin. Eur. J. Pharm. Sci. 2, 297–301 (1994)

    Article  CAS  Google Scholar 

  111. Loftsson, T., Fririksdottir, H., Thorisdottir, S., Stefansson, E.: The effect of hydroxypropyl methyl cellulose on the release of dexamethasone from aqueous 2-hydroxypropyl-β-cyclodextrin formulations. Int. J. Pharm. 104, 181–184 (1994)

    Article  CAS  Google Scholar 

  112. Tiwari, G., Tiwari, R., Rai, A.K.: Cyclodextrins in delivery systems: applications. J. Pharm. Bioallied Sci. 2(2), 72–79 (2010). doi:10.4103/0975-7406.67003

    Article  CAS  Google Scholar 

  113. Agrawal, R., Gupta, V.: Cyclodextrins-a review on pharmaceutical application for drug delivery. IJPER 2(1), 95–112 (2012)

    CAS  Google Scholar 

  114. Kang, K., Huang, W., Fu, Y., Chen, L., hu, J., Ren, Y.: Pyridine-incorporated cyclo[6]aramide for recognition of urea and its derivatives with two different binding modes. Supramol. Chem. (2011). doi:10.1080/10610278.2017.1282614

    Google Scholar 

  115. Lascaux, A., Leener, G.D., Fusaro, L., Topic, F., Rissanen, K., Luhmer, M., Jabin, I.: Selective recognition of neutral guests in an aqueous medium by a biomimetic calix[6]cryptamide receptor. Org. Biomol. Chem. 14, 738–746 (2016). doi:10.1039/C5OB02067K

    Article  CAS  Google Scholar 

  116. Leener, G.D., Moerkerke, S., Lavendomme, R., Reinaud, O., Jab, I.: Calix[6]azacryptand-based receptors. In: Neri, P., Sessler, J.L., Wang, M.X. (eds.) Calixarenes and Beyond, pp. 113–140. Springer International Publishing, Switzerland (2016). doi:10.1007/978-3-319-31867-7_6

    Chapter  Google Scholar 

  117. Maria, D.S., Farran, M.A., Garcia, M.A., Pinilla, E., Torres, M.R., Elguero, J., Claramunt, R.M.: Synthetic hosts for molecular recognition of ureas. J. Org. Chem. 76(16), 6780–6788 (2011). doi:10.1021/jo201191x

    Article  CAS  Google Scholar 

  118. Bengen, M.F.: Urea channel inclusion compounds. German Patent Application OZ123438 Mar 18 (1940)

  119. Abu-Nasr, A.M., Potts, W.M., Holman, R.T.: Highly unsaturated fatty acids. II. Fractionation by urea inclusion compounds. J. Am. Oil Chemists Soc. 31, 16–20 (1954)

    Article  CAS  Google Scholar 

  120. Hayes, D.: Urea inclusion compound formation. Inform. 13, 781–801 (2002)

    Google Scholar 

  121. Schlenk, H., Holman, R.H.: Separation and stabilization of fatty acids by urea complexes. J. Am. Chem. Soc. 72, 5001–5004 (1950)

    Article  CAS  Google Scholar 

  122. Karr, C. Jr.: Separation process utilizing urea paraffin chromatography. United States Patent. 2,912,426 (1955)

  123. Karr, C., Comberiati, J.R.: The analysis of straight-chain aliphatics by urea partition chromatography and gas-solid chromatography. J. Chromatog. 18, 394–397 (1965)

    Article  CAS  Google Scholar 

  124. Oswald, A.A., Chen, F.J., Espino, R.L., Peng, K.L.: Multistep process for the manufacture of novel polyolefin lubricants. United States Patent 5017279 (1991)

  125. Gupta, A. A., Swamy, K. K., Prakash, S., Rai, M. M., Bhatnagar, A. K.: Process for recovery of solid and reusable urea from the urea adduction process. United States Patent 5847209 (1998)

  126. Hollingsworth, M.D., Harris, K.D.M.: Urea inclusion compounds. In: Atwood, J.L. (ed.) Comprehensive Supramolecular Chemistry, Chapter 4, pp. 192–234. Interscience Pub., New York (1996)

    Google Scholar 

  127. Madan, A.K., Grover, P.D.: A process for preparation of urea based inclusion compounds of vitamin A esters. Indian Patent 180627 dated 20/01/1993 (1993)

  128. Madan, A.K., Bajaj, V.: A process for preparation of urea based inclusion compounds of vitamin E and its esters. Indian Patent 182620 dated 24/10/ 1994 (1994)

  129. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59(7), 645–666 (2007). doi:10.1016/j.addr.2007.05.012

    Article  CAS  Google Scholar 

  130. Ueda, H., Wakamiya, T., Endo, H., Nagase, H., Tomono, K., Nagai, T.: Interaction of cyclomaltononaose (delta-CD) with several drugs. Drug Dev. Ind. Pharm. 25, 951–955 (1999)

    Article  CAS  Google Scholar 

  131. Szaniszlo, N., Fenyvesi, E., Balla, J.: Structure-stability study of cyclodextrin complexes with selected volatile hydrocarbon contaminants of soils J. Incl. Phenom. Macrocycl. Chem. 53(3–4), 241–248 (2005). doi:10.1007/s10847-005-0245-6

    Article  CAS  Google Scholar 

  132. Szente, L., Fenyvesi, E.: Cyclodextrin-lipid complexes: cavity size matters. Struct. Chem. 28(2), 479–492 (2017)

    Article  CAS  Google Scholar 

  133. Sortino, S., Guiffrida, S., De Guldi, G.: The photochemistry of flutamide and its inclusion complex with beta-cyclodextrin: dramatic effect of microenvironment on the nature and on the efficiency of the photodegradation pathways. Photochem. Photobiol. 73, 6–13 (2001)

    Article  CAS  Google Scholar 

  134. Yonezawa, Y., Maruyama, S., Takagi, K.: Stability of inclusion complexes of cyclodextrins with Guaiazulene. Agri. Biol. Chem. 45(2), 505–506 (1981)

    CAS  Google Scholar 

  135. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97(5), 1325–1358 (1997). doi:10.1021/cr960371r

    Article  CAS  Google Scholar 

  136. Thakral, S., Madan, A.K..: Reduction in moisture sensitivity/ uptake of moisture sensitive drugs through adduction in urea. J. Pharm. Innov. 3(4), 249–257 (2008). doi:10.1007/s12247-008-9045-z

    Article  Google Scholar 

  137. Thakral, S., Madan, A.K.: Urea co-inclusion compounds of 13 cis-retinoic acid for simultaneous improvement of dissolution profile, photostability and safe handling characteristics. J. Pharm. Pharmacol. 60(7), 823–832 (2008)

    Article  CAS  Google Scholar 

  138. Budhwaar, V., Nanda, A.: Simultaneous improvement of dissolution rate and stability of ramipril by formation of urea inclusion complexes. Int. J. App. Pharm. 5(3), 19–25 (2013)

    CAS  Google Scholar 

  139. Mosher, G.: Complexation: cyclodextrins. In: Swarbrick, J. (ed.) Encyclopedia of Pharmaceutical Technology, vol. 2, pp. 671–696. Informa Health Care, New York (2007)

    Google Scholar 

  140. Stella, V.J., He, Q.: Cyclodextrins. Toxicol. Pathol. 36(1), 30–42 (2008)

    Article  CAS  Google Scholar 

  141. Reeder, R.F., Harbaugh, R.E.: Administration of intravenous urea and normal saline for the treatment of hyponatremia in neurosurgical patients. J. Neurosurg. 70(2), 201–206 (1989)

    Article  CAS  Google Scholar 

  142. Nelson, D.L., Cox, M.M. (eds.): Lehinger Principles of Biochemistry, 4th edn., pp. 656–688. WH Freeman and Company, New York (2005)

    Google Scholar 

  143. Clanton, D.C.: Non-protein nitrogen in range supplements. J. Anim. Sci. 47, 765–779 (1978)

    Article  CAS  Google Scholar 

  144. Woods, B.C.: Effect of inclusion of urea and supplement frequency on intake, digestion and performance of cattle consuming low quality, tallgrassprairie forage. MS Thesis, Manhattan: Kansas State University, (1997)

  145. Dhall, M., Madan, A.K.: Conversion of viscous liquid malathion into free flowing solids through co-inclusion in urea for multiple benefits. J. Incl. Phenom. Macrocycl. Chem. 86(1–2), 135–151 (2016). doi:10.1007/s10847-016-0648-6

    Article  CAS  Google Scholar 

  146. Flaherty, R.J., Nshime, B., Delamarre, M., Dejong, S., Scott, P., Lantz, A.W.: Cyclodextrins as complexation and extraction agents for pesticides from contaminated soil. Chemosphere. 91(7), 912–920 (2013). doi:10.1016/j.chemosphere.2013.02.005

    Article  CAS  Google Scholar 

  147. Dodziuk, H., Hashimoto, H., Morillo, E., Bilewicz, R., Chmursky, K.: Applications other than pharmaceutical industry. In: H. Dodziuk (eds.) Cyclodextrins and their Complexes: Chemistry, Analytical Methods, Applications, pp. 459–465. Wiley, Weinheim (2006)

    Chapter  Google Scholar 

  148. Kanani-Al, T., Mackenzie, A.F., Barhakur, N.N.: Soil water and ammonia volatilization relationships with surface-applied nitrogen fertilizer solutions. Soil Sci. Soc. Am. J. 55, 1761–1766 (1991)

    Article  Google Scholar 

  149. Marsh, K.L., Sims, G.K., Mulvaney, R.L.: Availability of urea to autotrophic ammonia-oxidizing bacteria as related to the fate of 14C- and 15N-labeled urea added to soil. Biol. Fert. Soil. 42, 137–145 (2005)

    Article  CAS  Google Scholar 

  150. Zhou, J., Ritter, H.: Cyclodextrin functionalized polymers as drug delivery systems. Polym. Chem. 1, 1552–1559 (2010). doi:10.1039/C0PY00219D

    Article  CAS  Google Scholar 

  151. Hollingsworth, M.D., Zwanziger, U.W., Brown, M.E., Chaney, J.D., Huffman, J.C., Harris, K.D.M., Smart, S.P.: Spring-loading at the molecular level: relaxation of guest-induced strain in channel inclusion compounds. J. Am. Chem. Soc. 121(41), 9732–9733 (1999). doi:10.1021/ja9919534

    Article  CAS  Google Scholar 

  152. Shahgaldian, P., Pieles, U.: Cyclodextrin derivatives as chiral supramolecular receptors for enantioselective sensing. Sensors (Basel) 6(6), 593–615 (2006)

    Article  CAS  Google Scholar 

  153. Harris, K.D.M.: Aperiodicity in organic materials. In: Harris, K.D.M., Edwards, P.P. (eds.) Turning point in Solid State Materials and Surface Science, Chapter 19, pp. 315–317. .RSC Publishing, Great Britain (2008)

    Google Scholar 

  154. Schlenk, W.: Asymmetric urea inclusion lattice. III Unstable configurational lattice coordination of guest molecules. Justus Liebigs Ann. Chem. 7, 1179–1194 (1973)

    Article  Google Scholar 

  155. Fernandes, C.M., Ramos, P., Falcao, A.C., Veiga, F.J.: Hydrophilic and hydrophobic cyclodextrins in a new sustained release oral formulation of nicardipine: in vitro evaluation and bioavailability studies in rabbits. J. Control. Release. 88(1), 127–134 (2003)

    Article  CAS  Google Scholar 

  156. Sinha, V.R., Nanda, A., Kumaria, R.: Cyclodextrins as sustained-release carriers. Pharm. Technol. 44, 36–46 (2002)

    Google Scholar 

  157. Costa, M.M.E., Cabral-Albuquerque, E.C.M., Alves, T.L.M., Pinto, J.C., Fialho, R.L.: Use of polyhydroxybutyrate and ethyl cellulose for coating of urea granules. Agric. Food Chem. 61(42), 9984–9991 (2013). doi:10.1021/jf401185y

    Article  CAS  Google Scholar 

  158. Otey, F.H., Trimnell, D., Westhoff, R.P., Shasha, B.S.: Starch matrix for controlled release of urea fertilizer. J. Agric. Food Chem. 32(5), 1095–1098 (1984). doi:10.1021/jf00125a041

    Article  CAS  Google Scholar 

  159. Rouelle, H.: Observations on human urine and on that of the cow and horse, compared to each other. J. de Medecine, de Chirurgie et de Pharmacie. 40, 451–468 (1773)

    Google Scholar 

  160. Wohler, F.: Ueber einige Verbindungen aus der Chinonreihe (About some compounds from quinine series). Justus Liebigs Ann. Chem. 69(3), 294–300 (1849)

    Article  Google Scholar 

  161. Brusilow, S.W., Horwich, A.L.: Urea cycle enzymes. In: Scriver, C.R., Beaudet, A.C., Sly, W.S., Childs, B., Kinzler, K., Vogelstein, B. (eds.) The Metabolic Bases of Inherited Disease, 8th edn, pp. 1900–1963. McGraw-Hill Companies Inc., New York (2001)

    Google Scholar 

  162. INCHEM, International Chemical Safety Cards. ICSC: 0595. Urea. OECD Screening Information dataset. By International Program on Chemical safety (1997)

  163. FAO/WHO. Evaluation of certain food additives and contaminants. Thirty-third report of the joint FAO/WHO expert committee on food additives (JECFA). World Health Organ Tech. Rep. Ser. No. 776. (1989)

  164. Sekiguchi, K., Noboru, O.: Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem. Pharm. Bull. 9(11), 866–872 (1961)

    Article  CAS  Google Scholar 

  165. Habib, F.S., Attia, M.A.: Effect of particle size on the dissolution rate of monophenylbutazone solid dispersion in presence of certain additives. Drug Dev. Ind. Pharm. 11(11), 2009–2019 (1985)

    Article  CAS  Google Scholar 

  166. Modi, A., Tayade, P.: Enhancement of dissolution profile by solid dispersion (kneading) technique. AAPS Pharm. Sci. Tech. 7(3), (2006). doi:10.1208/pt070368

  167. Okonogi, S., Yonemochi, E., Oguchi, T., Puttipipatkhachorn, S., Samamoto, K.: Enhanced dissolution of ursodeoxycholic acid from the solid dispersion. Drug Dev. Ind. Pharm. 23, 1115–1121 (1997)

    Article  CAS  Google Scholar 

  168. Zavodnik, V., Stash, A., Tsirelson, V., Vries, R., Feil, D.: Electron density study of urea using TDS-corrected X-ray diffraction data: quantitative comparison of experimental and theoretical results. Acta Cryst B. 55, 45–54 (1999)

    Article  CAS  Google Scholar 

  169. Smith, A.E.: The crystal structure of urea-hydrocarbon complexes. Acta Crystallogr. 5, 224–235 (1952)

    Article  CAS  Google Scholar 

  170. Thakral, S., Madan, A.K.: Topological models for prediction of adductability of branched aliphatic compounds in urea. J. Incl. Phenom. Macrocycl. Chem. 56, 405–412 (2006). doi:10.1007/s10847-006-9123-0

    Article  CAS  Google Scholar 

  171. Thakral, S., Madan, A.K.: Topological models for prediction of adductability of substituted cyclic organic compounds in urea. J. Incl. Phenom. Macrocycl. Chem. 58(3), 321–326 (2007). doi:10.1007/s10847-006-9160-8

    Article  CAS  Google Scholar 

  172. Fetterly, L.C.: Organic adducts. In: Mandelcorn, L. (ed.) Non-Stoichiometric Compounds, pp. 491–567. Academic Press, New York (1964)

    Google Scholar 

  173. Swern, D.: Urea and thiourea complexes in separating organic compounds. Ind. Eng. Chem. 47, 216–221 (1955)

    Article  CAS  Google Scholar 

  174. McAdie, H.D.: Thermal decomposition of molecular complexes. III Urea inclusion compounds of monosubstituted aliphatic series. Can. J. Chem. 41, 2144–2153 (1963)

    Article  CAS  Google Scholar 

  175. Zimmerschied, W.J., Dinerstein, R.A., Wietkamp, A.W., Marschner, R.F.: Crystalline adducts of urea with linear aliphatic compounds. Ind. Eng. Chem. 42, 1300–1306 (1950)

    Article  CAS  Google Scholar 

  176. Thakral, S., Madan, A.K.: Urea inclusion compounds of enalapril maleate for the improvement of pharmaceutical characteristics. J. Pharm. Pharmacol. 59(11), 1501–1507 (2007)

    Article  CAS  Google Scholar 

  177. Thakral, S., Madan, A.K.: Urea co-inclusion compounds of glipizide for the improvement of dissolution profile. J. Incl. Phenom. Macrocycl. Chem. 60(3), 203–209 (2008). doi:10.1007/s10847-007-9368-2

    Article  CAS  Google Scholar 

  178. Thakral, S., Madan, A.K.: Adduction of amiloride hydrochloride in urea through a modified technique for the dissolution enhancement. J. Pharm. Sci. 97(3), 1191–1201 (2008)

    Article  CAS  Google Scholar 

  179. Dhall, M., Madan, A.K.: Studies on urea co-inclusion complexes of simvastatin for improvement of pharmaceutical characteristics. J. Incl. Phenom. Macrocycl. Chem. 81(1–2), 105–120 (2015). doi:10.1007/s10847-014-0439-x

    Article  CAS  Google Scholar 

  180. Dhall, M., Madan, A.K..: Simultaneous improvement in dissolution profile and content uniformity of lafutidine through co-inclusion in urea. J. Incl. Phenom. Macrocycl. Chem. 82(3–4), 335–350 (2015). doi:10.1007/s10847-015-0493-z

    Article  CAS  Google Scholar 

  181. Dhall, M., Madan, A.K.: Steep improvement in dissolution profile of ezetimbe through co-inclusion in urea. J. Pharm. Invest. 46(1), 1–19 (2016). doi:10.1007/s40005-016-0236-1

    Article  CAS  Google Scholar 

  182. Vinod Budhwaar V., Nanda, A.: Preparation and evaluation of urea co-inclusion complexes of Co-Q10 for the simultaneous enhancement of dissolution profile and its stability. Int. J. Chem.Pharm. Sci. 3(6), 1787–1794 (2015)

    Google Scholar 

  183. Thakral, S., Madan, A.K..: Topological models for prediction of heat of decomposition of urea inclusion compounds containing aliphatic endocytes. J. Incl. Phenom. Macrocycl. Chem. 60(1), 187–192 (2008). doi:10.1007/s10847-007-9345-9

    Article  CAS  Google Scholar 

  184. Thakral, S., Madan, A.K..: Topological models for the prediction of host: guest ratio of urea inclusion compounds. J. Incl. Phenom. Macro. Chem. 65(3–4), 411–417 (2009). doi:10.1007/s10847-009-9583-0

    Article  CAS  Google Scholar 

  185. Dhall, M., Madan, A.K.: Thermal and other analytical studies on bifenthrin urea co-inclusion complex—A human guarded insecticide formulation. J. Therm. Anal. Calorim. doi:10.1007/s10973-016-6072-8 (2017)

    Google Scholar 

  186. Dhall, M., Madan, A.K.: Preparation, characterization and evaluation of human guarded chlorpyrifos urea co-inclusion complexes. Indian J. Pharm. Sci. 79(1), 91–104 (2017)

    Google Scholar 

  187. Dhall, M., Madan, A.K.: Urea complexes of chlorpyrifos, malathion, bifenthrin and cypermethrin for improving safe handling and other characteristics. Indian Patent No. 201611002986 filed on 28 Jan (2016)

  188. Bajaj, V., Madan, A.K.: Highly distorted urea based channel complexes as an alternative to solid dispersions for improving content uniformity and dissolution rate. Proceedings of the First Regional Conference of IEEE Engineering in Medicine & Biology Society and 14th Conference of the Biomedical Engineering Society of India—An International Meet, New Delhi, 4.67–4.68 (1995)

  189. Thakral, S., Madan, A.K.: Improvement of dissolution profile of gliclazide through co-inclusion in urea. British Pharmaceutical Conference, Manchester, UK, 7–9th Sept (2008)

  190. Dhall, M., Madan, A.K.: Studies on urea co-inclusion complexes of ebastine for steep improvement in dissolution profile. Indian Drugs. 54(8), 42–53 (2017) (In-press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Madan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhall, M., Madan, A.K. Comparison of cyclodextrins and urea as hosts for inclusion of drugs. J Incl Phenom Macrocycl Chem 89, 207–227 (2017). https://doi.org/10.1007/s10847-017-0748-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0748-y

Keywords

Navigation