Skip to main content
Log in

Abstract

Selected examples of cyclodextrin-based rotaxanes are described in the aspect of their syntheses and possible applications, especially in the design of molecular devices and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19

Similar content being viewed by others

References

  1. Lau, J.T.F., Lo, P.-C., Fong, W.-P., Ng, D.K.P.: Preparation and photodynamic activities of silicon (IV) phthalocyanines substituted with permethylated β-cyclodextrins. Chem. Eur. J. 17, 7569–7577 (2011)

    Article  CAS  Google Scholar 

  2. Tamesue, S., Takashima, Y., Yamaguchi, H., Shinkai, S., Harada, A.: Photochemically controlled supramolecular curdlan/single-walled carbon nanotube composite gel: preparation of molecular distaff by cyclodextrin modified curdlan and phase transition. Eur. J. Org. Chem. 2801–2806 (2011)

  3. Terao, J.: π-conjugated molecules covered by permethylated cyclodextrins. Chem. Rec. 11(5), 269–283 (2011)

    Article  CAS  Google Scholar 

  4. Mallard-Favier, I., Baudelet, D., Fourmentin, S.: VOC trapping by new crosslinked cyclodextrin polymers. J. Incl. Phenom. Macrocycl. Chem. 69, 433–437 (2011)

    Article  CAS  Google Scholar 

  5. Brinker, U.H., Walla, P., Krois, D., Arion, V.B.: Study of the structure and photochemical decomposition of azidoadamantanes entrapped in α-and β-cyclodextrin. Eur. J. Org. Chem. 1249–1255 (2011)

  6. Venancio, M., Nascimento, C.S., Anconi, C.P.A., Lopes, J.F., Rocha, W.R., Dos, S.H.F., De Almeida, W.B.: Theoretical study of spectroscopic properties of insulated molecular wires formed by substituted oligothiophenes and cross-linked α-cyclodextrin. J. Polym. Sci. B Polym. Phys. 49(15), 1101–1111 (2011)

    Article  CAS  Google Scholar 

  7. Fernandez, L., Machin, R., Zornoza, A., Velaz, I., Martin, C., Martinez-Oharriz, M.C.: Mechanism of sorption and release of a weak acid from β-cyclodextrin polymers. J. Incl. Phenom. Macrocycl. Chem. 69, 411–415 (2011)

    Article  CAS  Google Scholar 

  8. Carvalho, R.A., Correia, H.A., Valente, A.J.M., Soederman, O., Nilsson, M.: The effect of the head-group spacer length of 12-s-12 gemini surfactants in the host–guest association with β-cyclodextrin. J. Colloid Interface Sci. 354(2), 725–732 (2011)

    Article  CAS  Google Scholar 

  9. Gao, Y., Ma, R., Xiong, D., Wang, X., An, Y., Shi, L.: Hollow spheres with α-cyclodextrin nanotube assembled shells. Carbohydr. Polym. 83(4), 1611–1616 (2011)

    Article  CAS  Google Scholar 

  10. Fenger, T.H., Marinescu, L.G., Bols, M.: Cyclodextrin ketones with the catalytic group at the secondary rim and their effectiveness in enzyme-like epoxidation of stilbenes. Eur. J. Org. Chem. 2339–2345 (2011)

  11. Li, H., Fahrenbach, A.C., Coskun, A., Zhu, Z., Barin, G., Zhao, Y.-L., Botros, Y.Y., Sauvage, J.-P., Stoddart, J.F.: A light-stimulated molecular switch driven by radical–radical interactions in water. Angew. Chem. Int. Ed. 50, 6782–6788 (2011)

    Article  CAS  Google Scholar 

  12. Lahlali, H., Jobe, K., Watkinson, M., Goldup, S.M.: Macrocycle size matters: “small” functionalized rotaxanes in excellent yield using the CuAAC active template approach. Angew. Chem. Int. Ed. 50, 4151–4155 (2011)

    Article  CAS  Google Scholar 

  13. Mercer, D.J., Vella, S.J., Guertin, L., Suhan, N.D., Tiburcio, J., Vukotic, V.N., Wisner, J.A., Loeb, S.J.: Rotaxanes based on the 1,2-bis(pyridinio)ethane-24-crown-8 templating motif. Eur. J. Org. Chem. 1763–1770 (2011)

  14. Sauvage, J-P., Trolez, Y., Canevet, D., Salle, M.: Intercalation of tetrathiafulvalene between the two plates of a copper (i)-complexed [4]rotaxane. Eur. J. Org. Chem. 2413–2416 (2011)

  15. Kohsaka, Y., Nakazano, K., Koyama, Y., Asai, S., Takata, T.: Size-complementary rotaxane cross-linking for the stabilization and degradation of a supramolecular network. Angew. Chem. Int. Ed. 50, 4872–4875 (2011)

    Article  CAS  Google Scholar 

  16. Hsueh, S.-Y., Ko, J.-L., Lai, Ch.-Ch., Liu, Y.-H., Peng, S.-M., Chiu, S.-H.: A metal-free “threading-followed-by-shrinking” protocol for rotaxane synthesis. Angew. Chem. Int. Ed. 50, 6643–6646 (2011)

    Article  CAS  Google Scholar 

  17. Gao, Ch., Ma, X., Zhang, Q., Wang, Q., Qu, D., Tian, H.: A light-powered stretch-contraction supramolecular system based on cobalt coordinated[1]rotaxane. Org. Biomol. Chem. 9(4), 1126–1132 (2011)

    Article  CAS  Google Scholar 

  18. Sakamoto, K., Takashima, Y., Hamada, N., Ichida, H., Yamaguchi, H., Yamamoto, H., Harada, A.: Selective photoinduced energy transfer from a thiophene rotaxane to acceptor. Org. Lett. 13(4), 672–675 (2011)

    Article  CAS  Google Scholar 

  19. Dam, H.H., Caruso, F.: Construction and degradation of polyrotaxane multilayers. Adv. Mater. 23(27), 3026–3029 (2011)

    Article  CAS  Google Scholar 

  20. Farcas, A., Ghosh, I., Grigoras, V.C., Stoica, L., Peptu, C., Nau, W.M.: Effect of rotaxane formation on the photophysical, morphological and adhesion properties of poly[2,7-(9,9-dioctylfluorene)-alt-(5,5′-bithiophene)]main-chain polyrotaxanes. Macromol. Chem. Phys. 212(10), 1022–1031 (2011)

    Article  CAS  Google Scholar 

  21. Endo, H., Mayumi, K., Osaka, N., Ito, K., Shibayama, M.: The static structure of polyrotaxane in solution investigated by contrast variation small-angle neutron scattering. Polym. J. 43(2), 155–163 (2011)

    Article  CAS  Google Scholar 

  22. Hu, T., Xie, H., Chen, L., Chen, S., Zhang, H.: Intriguing liquid crystalline behavior of liquid crystalline polyrotaxane containing azobenzene mesogens. Polym. Bull. 67(6), 937–950 (2011)

    Article  CAS  Google Scholar 

  23. Brovelli, S., Caciali, F.: Optical and electroluminescent properties of conjugated polyrotaxanes. Small 6(24), 2796–2820 (2010)

    Article  CAS  Google Scholar 

  24. Travelet, C., Hebraud, P., Perry, C., Brochon, C., Hadzioannou, G., Lapp, A., Schlatter, G.: Temperature-dependent structure of α-CD/PEO-based polyrotaxanes in concentrated solution in DMSO: kinetics and multiblock copolymer behavior. Macromolecules 43(4), 1915–1921 (2010)

    Article  CAS  Google Scholar 

  25. Farcas, A., Fifere, A., Stoica, I., Farcas, F., Resmerita, A.-M.: Thermal analysis and theoretical study of α-cyclodextrin azomethine [2]-rotaxane formation by semi-empirical method PM3. Chem. Phys. Lett. 514(1–3), 74–78 (2011)

    Article  CAS  Google Scholar 

  26. Wang, Z.-B., Takashima, Y., Yamaguchi, H., Harada, A.: Photo-responsive formation of pseudo[2]rotaxane with cyclodextrin derivatives. Org. Lett. 13(16), 4356–4359 (2011)

    Article  CAS  Google Scholar 

  27. Li, S., Taura, D., Hashidzume, A., Harada, A.: Light-switchable Janus [2]rotaxanes based on a-cyclodextrin derivatives bearing two recognition sites linked with oligo(ethylene glycol). Chem. Asian J. 5(10), 2281–2289 (2010)

    Article  CAS  Google Scholar 

  28. Chen, G., Xia, J., Li, Z., Yu, G.-A., Jin, S., Liu, S.H.: A novel conjugated [2]rotaxane with an Ru-containing axle constructed from a carboxy-functionalized bisterpyridyl ruthenium complex and b-cyclodextrin: synthesis characterization, and properties. J. Organomet. Chem. 695(3), 323–326 (2010)

    Article  CAS  Google Scholar 

  29. Hu, J., Hashidzume, A., Harada, A.: Photoregulated switching of the recognition site of α-cyclodextrin in a side chain polyrotaxane bearing two recognition sites linked with oligo(ethylene glycol). Macromol. Chem. Phys. 212(10), 1032–1038 (2011)

    Article  CAS  Google Scholar 

  30. Araki, J.: Effect of preparation conditions for poly(ethylene glycol)/cyclodextrin polyrotaxane on modes of end-capping reactions and decomposition of the yielded polyrotaxane. J. Polym. Sci. A Polym. Chem. 49(5), 1298 (2011)

    Article  CAS  Google Scholar 

  31. Kato, K., Komatsu, H., Ito, K.: Versatile synthesis of diverse polyrotaxanes with a dual role of cyclodextrin as both the cyclic and capping components. Macromolecules 43(21), 8799–8804 (2010)

    Article  CAS  Google Scholar 

  32. Wu, J., He, H., Gao, C.: b-Cyclodextrin-capped polyrotaxanes: one-pot facile synthesis via click chemistry and use as templates for platinum nanowires. Macromolecules 43(5), 2252–2260 (2010)

    Article  CAS  Google Scholar 

  33. Harada, A., Takashima, Y., Yamaguchi, H.: Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev. 38, 875–882 (2009)

    Article  CAS  Google Scholar 

  34. Frampton, M.J., Anderson, H.L.: Insulated molecular wires. Angew. Chem. Int. Ed. 46, 1028–1064 (2007)

    Article  CAS  Google Scholar 

  35. Wenz, G., Han, B.-H., Müller, A.: Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev. 106, 782–817 (2006)

    Article  CAS  Google Scholar 

  36. Katoono, R., Kobayashi, Y., Yamaguchi, M., Yui, N.: Heat-induced supramolecular crosslinking of dumbbell-shaped PEG with β-CD dimer based on reversible loose-fit rotaxanation. Macromol. Chem. Phys. 212, 211–215 (2011)

    Article  CAS  Google Scholar 

  37. Imran, A.B., Seki, T., Ito, K., Takeoka, Y.: Poly(N-isopropylacrylamide) gel prepared using a hydrophilic polyrotaxane-based movable cross-linker. Macromolecules 43, 1975–1980 (2010)

    Article  Google Scholar 

  38. Nakazano, K., Takashima, T., Arai, T., Koyama, Y., Takata, T.: High-yield one-pot synthesis of permethylated α-cyclodextrin-based polyrotaxane in hydrocarbon solvent through an efficient heterogeneous reaction. Macromolecules 43, 691–696 (2010)

    Article  Google Scholar 

  39. Wu, J., He, H., Gao, C.: β-Cyclodextrin-capped polyrotaxanes: one-pot facile synthesis via click chemistry and use as templates for platinum nanowires. Macromolecules 43, 2252–2260 (2010)

    Article  CAS  Google Scholar 

  40. Inomata, A., Sakai, Y., Zhao, C., Ruslim, C., Shinohara, Y., Yokoyama, H., Amemiya, Y., Ito, K.: Crystallinity and cooperative motions of cyclic molecules in partially threaded solid-state polyrotaxanes. Macromolecules 43, 4660–4666 (2010)

    Article  CAS  Google Scholar 

  41. Abu Hashim, I.I., Higashi, T., Anno, T., Motoyama, K., Abd-ElGawad, A.-E.H., El-Shabouri, M.H., Borg, T.M., Arima, H.: Potential use of γ-cyclodextrin polypseudorotaxane hydrogels as an injectable sustained release system for insulin. Int. J. Pharm. 392, 83–91 (2010)

    Article  CAS  Google Scholar 

  42. Osaki, M., Takashima, Y., Yamaguchi, H., Harada, A.: Nanospheres with polymerization ability coated by polyrotaxane. J. Org. Chem. 74, 1858–1863 (2009)

    Article  CAS  Google Scholar 

  43. Tsuda, S., Terao, J., Tanaka, Y., Maekawa, T., Kambe, N.: Synthesis of linked symmetrical [3] and [5]rotaxanes having an oligomeric phenylene ethynylene (OPE) core skeleton as a π-conjugated guest via double intramolecular self-inclusion. Tetrahedron Lett. 50, 1146–1150 (2009)

    Article  CAS  Google Scholar 

  44. Terao, J., Tsuda, S., Tanaka, Y., Okoshi, K., Fujihara, T., Tsuji, Y., Kambe, N.: Synthesis of organic-soluble conjugated polyrotaxanes by polymerization of linked rotaxanes. J. Am. Chem. Soc. 131, 16004–16005 (2009)

    Article  CAS  Google Scholar 

  45. Latini, G., Parrott, L.-J., Brovelli, S., Frampton, M.J., Anderson, H.L., Cacialli, F.: Cyclodextrin-threaded conjugated polyrotaxanes for organic electronics: the influence of the counter cations. Adv. Funct. Mater. 18, 2419–2427 (2008)

    Article  CAS  Google Scholar 

  46. Frampton, M.J., Sforazzini, G., Brovelli, S., Latini, G., Townsend, E., Williams, C.C., Charas, A., Zalewski, L., Kaka, N.S., Sirish, M., Parrott, L.J., Wilson, J.S., Cacialli, F., Anderson, H.L.: Synthesis and optoelectronic properties of nonpolar polyrotaxane insulated molecular wires with high solubility in organic solvents. Adv. Func. Mater. 18, 3367–3376 (2008)

    Article  CAS  Google Scholar 

  47. Miyawaki, A., Miyauchi, M., Takashima, Y., Yamaguchi, H., Harada, A.: Formation of supramolecular isomers; poly[2]rotaxane and supramolecular assembly. Chem. Commun. 456–458 (2008)

  48. Ciesielski, W., Girek, T.: Study of thermal stability of β-cyclodextrin/metal complexes in the aspect of their future applications. J. Incl. Phenom. Macrocycl. Chem. 69(3–4), 461–467 (2011)

    Article  CAS  Google Scholar 

  49. Girek, T., Ciesielski, W.: Polymerization of β-cyclodextrin with maleic anhydride along with thermogravimetric study of polymers. J. Incl. Phenom. Macrocycl. Chem. 69(3–4), 445–451 (2011)

    Article  CAS  Google Scholar 

  50. Kozlowski, C.A., Walkowiak, W., Girek, T.: Modified cyclodextrin polymers as selective ion carriers for Pb(II) separation across plasticized membranes. J. Membr. Sci. 310(1+2), 312–320 (2008)

    Article  CAS  Google Scholar 

  51. Musiol, R., Girek, T.: Inclusion-dependent mechanism of modification of cyclodextrins with heterocycles. Central Eur. J. Chem. 3(4), 742–746 (2005)

    Article  CAS  Google Scholar 

  52. Sliwa, W., Girek, T., Koziol, J.J.: Cyclodextrin oligomers. Curr. Org. Chem. 8, 1445–1462 (2004)

    Article  CAS  Google Scholar 

  53. Sliwa, W., Girek, T.: Metallocyclodextrins and related species. Heterocycles 60, 2147–2183 (2003)

    Article  CAS  Google Scholar 

  54. Choi, J.-K., Girek, T., Shin, D.-H., Lim, S.-T.: Structural and physical characterization of octenylsuccinyl β-cyclodextrin. Carbohydr. Polym. 49, 286–296 (2002)

    Article  Google Scholar 

  55. Saha, S., Stoddart, J.F.: Photo-driven molecular devices. Chem. Soc. Rev. 36, 77–92 (2007)

    Article  CAS  Google Scholar 

  56. Pollard, M.M., Lubomska, M., Rudolf, P., Feringa, L.: Controlled rotary motion in a monolayer of molecular motors. Angew. Chem. Int. Ed. 46, 1278–1280 (2007)

    Article  CAS  Google Scholar 

  57. Nishimura, D., Oshikiri, T., Takashima, Y., Hashidzume, A., Yamaguchi, H., Harada, A.: Relative rotational motion between α-cyclodextrin derivatives and a stiff axle molecule. J. Org. Chem. 73, 2496–2502 (2008)

    Article  CAS  Google Scholar 

  58. Nishimura, D., Takashima, Y., Aoki, H., Takahashi, T., Yamaguchi, H., Ito, S., Harada, A.: Single-molecule imaging of rotaxanes immobilized on glass substrates: observation of rotary movement. Angew. Chem. Int. 47, 6077–6079 (2008)

    Article  CAS  Google Scholar 

  59. Wan, P.B., Jiang, Y.G., Wang, Y.P., Wang, Z.Q., Zhang, X.: Tuning surface wettability through photocontrolled reversible molecular shuttle. Chem. Commun. 5710–5712 (2008)

  60. Ma, X., Cao, J., Wang, Q., Tian, H.: Photocontrolled reversible room temperature phosphorescence (RTP) encoding β-cyclodextrin pseudorotaxane. Chem. Commun. 47, 3559–3561 (2011)

    Article  CAS  Google Scholar 

  61. Liu, Y., Yang, Z.-X., Chen, Y.: Syntheses and self-assembly behaviors of the azobenzenyl modified β-cyclodextrins isomers. J. Org. Chem. 73, 5298–5304 (2008)

    Article  CAS  Google Scholar 

  62. Yau, C.M.S., Pascu, S.I., Odom, S.A., Warren, J.E., Klotz, E.J.F., Frampton, M.J., Williams C.C., Coropceanu, V., Kuimova, M.K., Philips, D., Barlow, S., Bredas, J.-L., Marder, S.R., Millar, V., Anderson, H.L.: Stabilisation of a heptamethine cyanine dye by rotaxane encapsulation. Chem. Commun. 2897–2899 (2008)

  63. Johnson, J.R., Fu, N., Arunkumar, E., Leevy, W.M., Gammon, S.T., Piwnica-Worms, D., Smith, B.D.: Squaraine rotaxanes: superior substitutes for Cy-5 in molecular probes for near-infrared fluorescence cell imaging. Angew. Chem. Int. Ed. 46, 5528–5531 (2007)

    Article  CAS  Google Scholar 

  64. Arunkumar, E., Sudeep, P.K., Kamat, P.V., Noll, B.C., Smith, B.D.: Singlet oxygen generation using iodinated squaraine and squaraine-rotaxane dyes. New J. Chem. 31, 677–683 (2007)

    Article  CAS  Google Scholar 

  65. Petrozza, A., Brovelli, S., Michels, J.J., Anderson, H.L., Friend, R.H., Silva, C., Cacialli, F.: Control of rapid formation of interchain excited states in sugar-threaded supramolecular wires. Adv. Mater. 20, 3218–3223 (2008)

    Article  CAS  Google Scholar 

  66. Oddy, F.E., Brovelli, S., Stone, M.T., Klotz, E.J.F., Cacialli, F., Anderson, H.L.: Influence of cyclodextrin size on fluorescence quenching in conjugated polyrotaxanes by methyl viologen in aqueous solution. J. Mater. Chem. 19, 2846–2852 (2009)

    Article  CAS  Google Scholar 

  67. Klotz, E.J.F., Claridge, T.D.W., Anderson, H.L.: Homo-and hetero-[3]rotaxanes with two π-systems clasped in a single macrocycle. J. Am. Chem. Soc. 128, 15374–15375 (2006)

    Article  CAS  Google Scholar 

  68. Mohanty, J., Pal, H., Ray, A.K., Kumar, S., Nau, W.M.: Supramolecular dye laser with cucurbit [7] uril in water. Chem. Phys. Chem. 8, 54–56 (2007)

    Article  CAS  Google Scholar 

  69. Stone, M.T., Anderson, H.L.: A cyclodextrin-insulated anthracene rotaxane with enhanced fluorescence and photostability. Chem. Commun. 2387–2389 (2007)

  70. Zalewski, L., Wykes, M., Brovelli, S., Bonini, M., Breiner, T., Kastler, M., Dötz, F., Beljonne, D., Anderson, H.L., Cacialli, F., Samori, P.: A conugated thiophene-based rotaxane: synthesis, spectroscopy, and modeling. Chem. Eur. J. 16, 3933–3941 (2010)

    Article  CAS  Google Scholar 

  71. Perepichka, I.F., Perepichka, D.F.: Handbook of thiophene-based materials 2V set: applications in organic electronics and photonics. Wiley-Blackwell, New York (2009)

    Google Scholar 

  72. Cooper, R.J., Camp, P.J., Gordon, R.J., Henderson, D.K., Henry, D.C.R., McNab, H., De Silva, S.S., Tackley, D., Tasker, P.A., Wight, P.: The assembly of rotaxane-like dye/cyclodextrin/surface complexes on aluminium trihydroxide or goethite. Dalton Trans. 2785–2793 (2006)

  73. Wang, Q.-C., Ma, X., Qu, D.-H., Tian, H.: Unidirectional threading synthesis of isomer-free [2]rotaxanes. Chem. Eur. J. 12, 1088–1096 (2006)

    Article  CAS  Google Scholar 

  74. Qu, D.-H., Wang, Q.-C., Ma, X., Tian, H.: A [3]rotaxane with three stable states that responds to multiple-inputs and displays dual fluorescence addresses. Chem. Eur. J. 11, 5929–5937 (2005)

    Article  CAS  Google Scholar 

  75. Dawson, R.E., Maniam, S., Lincoln, S.F., Easton, C.J.: Synthesis of α-cyclodextrin [2]-rotaxanes using chlorotriazine capping reagents. Org. Biomol. Chem. 6, 1814–1821 (2008)

    Article  CAS  Google Scholar 

  76. Tsukagoshi, S., Miyawaki, A., Takashima, Y., Yamaguhi, H., Harada, A.: Contraction of supramolecular double-threaded dimer formed by α-cyclodextrin with a long alkyl chain. Org. Lett. 9, 1053–1055 (2007)

    Article  CAS  Google Scholar 

  77. Dawson, R.E., Lincoln, S.F., Easton, C.J.: The foundation of a light driven molecular muscle based on stilbene and α-cyclodextrin. Chem. Commun. 3980–3982 (2008)

  78. Tsuda, S., Aso, Y., Kaneda, T.: Linear oligomers composed of a photochromically contractible and extendable Janus [2]rotaxane. Chem. Commun. 3072–3074 (2006)

  79. Cheetham, A.G., Hutchings, M.G., Claridge, T.D.W., Anderson, H.L.: Enzymatic synthesis and photoswitchable enzymatic cleavage of a peptide-linked rotaxane. Angew. Chem. Int. Ed. 45, 1596–1599 (2006)

    Article  CAS  Google Scholar 

  80. Yui, N., Ooya, T.: Molecular mobility of interlocked structures exploiting new functions of advanced biomaterials. Chem. Eur. J. 12, 6730–6737 (2006)

    Article  CAS  Google Scholar 

  81. Ooya, T., Utsunomiya, H., Eguchi, M., Yui, N.: Rapid binding of concanavalin A and maltose–polyrotaxane conjugates due to mobile motion of α-cyclodextrins threaded onto a poly(ethylene glycol). Bioconjug. Chem. 16, 62–69 (2005)

    Article  CAS  Google Scholar 

  82. Gondran, C., Dubois, M.-P., Fort, S., Cosnier, S., Szunerits, S.: Detection of carbohydrate-binding proteins by oligosaccharide-modified polypyrrole interfaces using electrochemical surface plasmon resonance. Analyst 133, 206–212 (2008)

    Article  CAS  Google Scholar 

  83. Chwalek, M., Auzely, R., Fort, S.: Synthesis and biological evaluation of multivalent carbohydrate ligands obtained by click assembly of pseudo-rotaxanes. Org. Biomol. Chem. 7, 1680–1688 (2009)

    Article  CAS  Google Scholar 

  84. Ou, Y., Chen, G., Yin, J., Yu, G.-A., Liu, S.H.: Rotaxane based on terpyridyl bimetal ruthenium complexes and β-cyclodextrin as organic sensitizer for dye-sensitized solar cells. J. Coord. Chem. 64(17), 3062–3067 (2011)

    Article  CAS  Google Scholar 

  85. Omori, K., Takashima, Y., Yamaguchi, H., Harada, A.: pH responsive [2]rotaxanes with 6-modified-α-cyclodextrins. Chem. Lett. 40(7), 758–759 (2011)

    Article  CAS  Google Scholar 

  86. Przybylski, C., Blin, F., Jarroux, N.: Toward a more accurate structural determination of high molecular weight polyrotaxanes based on cyclodextrins by MALDI-TOF MS. Macromolecules 44(7), 1821–1830 (2011)

    Article  CAS  Google Scholar 

  87. Hyun, H., Yui, N.: Mono-, di-, or triazidated cyclodextrin- based polyrotaxanes for facile and efficient functionalization via click chemistry. Macromol. Rapid Commun. 32(3), 326–331 (2011)

    Article  CAS  Google Scholar 

  88. Kuo, W.-Y., Lai, H.-M.: Morphological, structural and rheological properties of beta-cyclodextrin based polypseudorotaxane gels. Polymer 52(15), 3389–3395 (2011)

    Article  CAS  Google Scholar 

  89. Zhu, L., Lu, M., Zhang, Q., Qu, D., Tian, H.: Construction of polypseudorotaxane from low-molecular weight monomers via dual noncovalent interaction. Macromolecules 44(11), 4092–4097 (2011)

    Article  CAS  Google Scholar 

  90. Bilkova, E., Sedlak, M., Imramovsky, A., Charova, P., Knotek, P., Benes, L.: Prednisolone-α-cyclodextrin-star poly(ethylene glycol) polypseudorotaxane with delayed pH-sensitivity as a targeted drug delivery system. Int. J. Pharm. 414(1–2), 42–47 (2011)

    Article  CAS  Google Scholar 

  91. Ding, Z.-J., Zhang, H.-Y., Wang, L.-H., Ding, F., Liu, Y.: A hetero-wheel [3]pseudo-rotaxane by integrating β-cyclodextrin and cucurbituril[8]uril inclusion complexes. Org. Lett. 13(5), 856–859 (2011)

    Article  CAS  Google Scholar 

  92. Jazkewitsch, O., Ritter, H.: Formation and characterization of inclusion complexes of alkyne functionalized poly(ε-caprolactone) with β-cyclodextrin. Pseudo-polyrotaxane-based supramolecular organogels. Macromolecules 44(2), 375–382 (2011)

    Article  CAS  Google Scholar 

  93. Katoono, R., Kobayashi, Y., Yui, N.: Preparation of loose-fit polyrotaxane composed of β-cyclodextrin and poly(ethylene glycol) derivatives through the slipping-expanding protocol. Chem. Lett. 39(8), 892–893 (2010)

    Article  CAS  Google Scholar 

  94. Fragoso, A., Ortiz, M., Sanroma, B., O’Sullivan, C.K.: Multilayered catalytic biosensor self-assembled on cyclodextrin-modified surfaces. J. Incl. Phenom. Macrocycl. Chem. 69, 355–360 (2011)

    Article  CAS  Google Scholar 

  95. Martinelli, J., Fekete, M., Tei, L., Botta, M.: Cleavable β-cyclodextrin nanocapsules incorporating GdIII-chelates as bioresponsive MRI probes. Chem. Commun. 47, 3144–3146 (2011)

    Article  CAS  Google Scholar 

  96. Kang, Y., Li, X., Yuan, J.: β-Cyclodextrin-modified hybrid magnetic nanoparticles for catalysis and adsorption. J. Mater. Chem. 21, 3704–3710 (2011)

    Article  CAS  Google Scholar 

  97. Mele, A., Castiglione, F., Malpezzi, L., Ganazzoli, F., Raffaini, G., Trotta, F., Rossi, B., Fontana, A., Giunchi, G.: HR MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in βCD nanosponges. J. Incl. Phenom. Macrocycl. Chem. 69, 403–409 (2011)

    Article  CAS  Google Scholar 

  98. Evans, N.H., Serpell, Ch.J., Beer, P.D.: A meta-xylenediamide macrocycle containing rotaxane anion host system constructed by a new synthetic clipping methodology. New J. Chem. 35, 2047–2053 (2011)

    Article  CAS  Google Scholar 

  99. Pikulska, A., Kauch, M.: Theoretical prediction of the spin–spin coupling constants between an axis and macrocycle of a rotaxane. J. Phys. Chem. A 115A, 10795–10800 (2011)

    Article  Google Scholar 

  100. Collin, J.-P., Durot, S., Sauvage, J.-P., Trolez, Y.: Synthesis of [2]-, [3]-, and [4]rotaxanes whose axis contains two bidentate and two tridentate chelates. New J. Chem. 35, 2009–2012 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Girek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girek, T. Cyclodextrin-based rotaxanes. J Incl Phenom Macrocycl Chem 74, 1–21 (2012). https://doi.org/10.1007/s10847-012-0112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0112-1

Keywords

Navigation