Skip to main content
Log in

Crystallographic structure- and texture-dependent fracture behavior of polycrystalline lead zirconate titanate ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The effect of crystallographic structure and texture on the fracture behavior of lead zirconate titanate (PZT) ceramics was investigated. PZT ceramics with Zr/Ti ratio of 45/55 (tetragonal, T), 52/48 (morphotropic phase boundary, MPB), and 60/40 (rhombohedral, R) were fabricated, and then textured using electric field and/or mechanical stress. Vickers indentation method was employed to characterize their fracture behavior. Results show that the unpoled specimen exhibits fracture toughness isotropy, with values of 1.24 MPa·m1/2, 1.07 MPa·m1/2, 1.17 MPa·m1/2 for T, MPB, and R, respectively. The textured specimen reveals fracture toughness anisotropy (FTA). The largest FTA was observed for the mechanically (M) poled specimens. Additionally, FTA for the MPB composition was larger than the T and R specimens. The crystallographic structure and texture dependent domain switching behavior, and the parameters of coercive stress and Young’s modulus measured by mechanical compression are used to explain the observed phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

Code availability

No software applications or custom code are used for this work.

References

  1. E.A. Neppiras, J Sound Vib. 20, 562 (1972)

    Article  Google Scholar 

  2. K. Uchino, Piezoelectric Actuators and Ultrasonic Motors 1, 6221 (1996)

    Google Scholar 

  3. C.A. Randall, A. Kelnberger, G.Y. Yang, R.E. Eitel, T.R. Shrout, J. Electroceramics. 14, 177 (2005)

    Article  Google Scholar 

  4. G.A. Schneider, Annu. Rev. Mater. Res. 37, 491 (2007)

    Article  CAS  Google Scholar 

  5. M. Kuna, Eng. Fract. Mech. 77, 309 (2010)

    Article  Google Scholar 

  6. K.G. Webber, M. Vögler, N.H. Khansur, B. Kaeswurm, J.E. Daniels, F.H. Schader, Smart. Mater. Struct. 26, (2017)

  7. F. Meschke, A. Kolleck, G.A. Schneider, J. Eur. Ceram. Soc. 17, 1143 (1997)

    Article  CAS  Google Scholar 

  8. T. Fett, A. Glazounov, M.J. Hoffmann, D. Munz, G. Thun, Eng. Fract. Mech. 68, 1207 (2001)

    Article  Google Scholar 

  9. S.L. Dos Santos E Lucato, D.C. Lupascu, J. Rödel, J. Am. Ceram. Soc. 83, 424 (2000)

  10. A.B. Kounga Njiwa, T. Fett, D.C. Lupascu, J. Rödel, Eng. Fract. Mech. 73, 309 (2006)

  11. Y.H. Seo, M. Vögler, D. Isaia, E. Aulbach, J. Rödel, K.G. Webber, Acta. Mater. 61, 6418 (2013)

    Article  CAS  Google Scholar 

  12. K.G. Webber, Y.H. Seo, H.Y. Lee, E. Aulbach, W. Jo, J. Rödel, J. Am. Ceram. Soc. 94, 2728 (2011)

    Article  CAS  Google Scholar 

  13. Y.H. Seo, A. Benčan, J. Koruza, B. Malič, M. Kosec, K.G. Webber, J. Am. Ceram. Soc. 94, 4419 (2011)

    Article  CAS  Google Scholar 

  14. Y. Chen, J. Xu, Q. Xu, S. Xie, Q. Wang, J. Zhu, J. Am. Ceram. Soc. 103, 1067 (2020)

    Article  CAS  Google Scholar 

  15. C.M. Landis, Int. J. Fract. 126, 1 (2004)

    Article  Google Scholar 

  16. T. Yamamoto, H. Igarashi, K. Okazaki, Ferroelectrics 50, 273 (1983)

    Article  Google Scholar 

  17. G.G. Pisarenko, S.P. Kovalev, V.M. Chushko, Strength. Mater. 12, 1492 (1980)

    Article  Google Scholar 

  18. K. Mehta, A.V. Virkar, J. Am. Ceram. Soc. 74, 567 (1990)

    Article  Google Scholar 

  19. F. Guiu, B.S. Hahn, H.L. Lee, M.J. Reece, J. Eur. Ceram. Soc. 17, 505 (1997)

    Article  CAS  Google Scholar 

  20. J.M. Calderon-Moreno, M. Popa, Mater. Sci. Eng. A 319–321, 692 (2001)

    Article  Google Scholar 

  21. F. Fang, W. Yang, Mater. Lett. 57, 198 (2002)

    Article  CAS  Google Scholar 

  22. Y.W. Li, F.X. Li, Scr. Mater. 62, 313 (2010)

    Article  CAS  Google Scholar 

  23. Y. Li, Y. Sun, F. Li, Ceram. Int. 39, 8605 (2013)

    Article  CAS  Google Scholar 

  24. X. Wang, L.K. Venkataraman, C. Tan, and Y. Li, Scr. Mater. 194, 113647 (2021)

  25. Y. Chen, S. Wang, H. Zhou, Q. Xu, Q. Wang, J. Zhu, J. Adv. Ceram. 9, 380 (2020)

    Article  CAS  Google Scholar 

  26. M. Okayasu, T. Ogawa, J. Adv. Ceram. 8, 509 (2019)

    Article  CAS  Google Scholar 

  27. S.W. Freiman, L. Chuck, J.J. Mecholsky, D.L. Shelleman, L.J. Storz, Fract. Mech. Ceram. 175 (1986)

  28. M.J. Hoffmann, M. Hammer, A. Endriss, D.C. Lupascu, Acta Mater. 49, 1301 (2001)

    Article  CAS  Google Scholar 

  29. P. Chantikul, S.J. Bennison, B.R. Lawn, J. Am. Ceram. Soc. 73, 2419 (1990)

    Article  CAS  Google Scholar 

  30. Y. W. Li, X. L. Zhou, H.C. Miao. H.R. Cai, F.X. Li, J. Appl. Phys. 113 (2013)

  31. L.B. Mccusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, J. Appl. Cryst. 32, 36 (1999)

    Article  CAS  Google Scholar 

  32. Y.W. Li, X.L. Zhou, H.C. Miao, H.R. Cai, F.X. Li, J. Appl. Phys. 113 (2013)

  33. A.B. Schäufele, K.H. Härdtl, J. Am. Ceram. Soc. 79, 2637 (1996)

    Article  Google Scholar 

  34. D. Zhou, M. Kamlah, D. Munz, J. Am. Ceram. Soc. 88, 867 (2005)

    Article  CAS  Google Scholar 

  35. G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981)

    Article  CAS  Google Scholar 

  36. R.W. Hertzberg, F.E. Hauser, Eng. Struct. 19, 283 (1994)

    Google Scholar 

  37. F.X. Li, R.K.N.D. Rajapakse, J. Appl. Phys. 101 (2007)

  38. M. Vögler, T. Fett, J. Rödel, J. Am. Ceram. Soc. 101, 5304 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Y.W. Li gratefully thanks Dr. Lalitha Kodumudi Venkataraman (Technical University of Darmstadt, Germany) for her review of the manuscript and suggested revisions. This work was supported by the National Natural Science Foundation of China (grant number 11972262).

Funding

This work was supported by the National Natural Science Foundation of China (grant number 11972262).

Author information

Authors and Affiliations

Authors

Contributions

Y. W. Li. designed and supervised the project. Y. W. Li., X. Y. Wang., G. Duan., and Z. J. Chen. characterized the constitutive behavior of the materials and measured the fracture toughness. J. F. Jin. fabricated and characterized the materials. Y. W. Li. wrote the first draft of the manuscript. All authors contributed to the discussion of the results and the revision of the manuscript.

Corresponding author

Correspondence to Yingwei Li.

Ethics declarations

Research involving human and animal participants

No animals were involved in this research. The human participants in this study gave informed consent to this manuscript submission.

Employments

There is no recent (at the time of the research project), current or anticipated work in any organization that may gain or lose money by publishing this manuscript.

Research involving human and animal participants Employments Financial interests and non-financial interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, X., Duan, G. et al. Crystallographic structure- and texture-dependent fracture behavior of polycrystalline lead zirconate titanate ceramics. J Electroceram 47, 124–133 (2021). https://doi.org/10.1007/s10832-021-00270-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00270-7

Keywords

Navigation