Skip to main content
Log in

Enhanced electric field induced strain in complex-ion Ga3+ and Ta5+-doped 0.93BNT-0.07BT piezoceramic

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The 0.93(Bi0.5Na0.5)TiO3-0.07BaTiO3 doped with different amount of (Ga0.5Ta0.5)4+ complex-ion from 0 to 4 mol% (abbreviated as BNBT-100xGT) ceramics were prepared. Phase analysis revealed that up to x = 0.035, Ga3+ and Ta5+ completely dissolve in BNBT perovskite structure and substitute in B-site. Increase in x more than 0.02 resulted in formation of pinched P-E loops accompanied by sharp decrease in Pr. This observation can be attributed to the phase transition from ferroelectric (FE) to a non-polar ergodic relaxor (ER) which could be transformed reversibly to a FE phase by applying an electric field. According to temperature-dependence dielectric constant results, transition temperature from FE to ER phase decreased and for ceramic with x = 0.03 shifted to lower than room temperature with increasing GT content. As a result, enhanced unipolar electric field-induced strain (0.4% under 60 kV/cm) corresponding to d33* of 667 pm/V was obtained in this ceramic. The large electrostrain is accompanied with relatively large hysteresis, which should be lowered for actuator applications. However (Ga0.5Ta0.5)4+ complex-ion doping of BNT-based ceramics, could be considered as an efficient approach to enhance electrical properties, especially electrostrain characteristic of these ceramics, as competitive alternatives to lead-based ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [M.R. Bafandeh], upon reasonable request.

References

  1. H. Nagata, T. Takenaka, Advanced Piezoelectric Materials, Chap.4, Bi-Based Lead-Free Piezoelectric Ceramics, Tokyo University of Science, Chiba, Japan, (2017)

  2. B. Jaffe, Piezoelectric Ceramics. Elsevier (2012)

  3. T. Takenaka, H. Nagata, Y. Hiruma, Current developments and prospective of lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 47, 3787–3801 (2008)

    Article  CAS  Google Scholar 

  4. J. Rodel, W. Jo, K.T.P. Seifert, E. Anton, T. Granzow, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)

    Article  Google Scholar 

  5. P.K. Panda, B. Sahoo, PZT to lead free piezoceramics: a review. Ferroelectrics 474, 128–143 (2015)

    Article  CAS  Google Scholar 

  6. K. Takenaka, T. Maruyama, K. Sakata, (Bi1/2Na1/2) TiO3-BaTiO3 System for Lead-Free Piezoelectric Ceramics. Jpn. J. Appl. Phys. 30, 2236–2239 (1991)

    Article  CAS  Google Scholar 

  7. G. Picht, J. Topfer, E. Hennig, Structural properties of (Bi0.5Na0.5)1-xBaxTiO3 lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 30, 3445–3453 (2010)

  8. B. Wylie-van Eerd, D. Damjanovic, N. Klein, N. Setter, J. Trodahl, Structural complexity of (Na0.5Bi0.5) TiO3-BaTiO3 as revealed by Raman spectroscopy. Phys. Rev. B. 82 104112 (2010)

  9. C.H. Hong, B.Y. Choi, H.P. Kim, H.S. Han, Y. Hwang, W. Jo, K. Wang, J.F. Li, J.S. Lee, I.W. Kim, A Brief Review on Relaxor Ferroelectrics and Selected Issues in Lead-Free Relaxors. J. Korean Phys. Soc. 68(12), 1481–1494 (2016)

    Article  Google Scholar 

  10. S. Zhang, B. Malic, J.F. Li, J. Rodel, Lead-free ferroelectric materials: Prospective applications. J. Mater. Res 36, 985–995 (2021)

    Article  CAS  Google Scholar 

  11. J. Wu, Perovskite lead-free piezoelectric ceramics. J. Appl. Phys. 127 190901 (2020)

  12. A. Pramanick, S. Nayak, Perspective on emerging views on microscopic origin of relaxor behavior. J. Mater. Res 36, 1015–1036 (2021)

    Article  CAS  Google Scholar 

  13. A.R. Paterson, H. Nagata, X. Tan, J.E. Daniels, M. Hinterstein, R. Ranjan, P.B. Groszewicz, W. Jo, J. Jones, Relaxor-ferroelectric transitions: Sodium bismuth titanate derivatives. MRS Bull. 43, 600–606 (2018)

    Article  CAS  Google Scholar 

  14. C.H. Hong, H.P. Kim, B.Y. Choi, H.S. Han, J.S. Son, C.W. Ahn, W. Jo, Lead-Free Piezoceramics-Where to Move on? J. Materiomics 2(1), 1–24 (2016)

    Article  Google Scholar 

  15. D. Maurya, M. Murayama, A.J. Pramanick, W.T. Reynolds, K. An, S. Priya, Origin of high piezoelectric response in A-site disordered morphotropic phase boundary composition of lead-free piezoelectric 0.93(Na0.5Bi0.5)TiO3–0.07BaTiO3. J. Appl. Phys. 113 114101–114109 (2013)

  16. S. Klaus, W. Jo, J. Rodel, Temperature-insensitive large strain of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-(K0.5Na0.5)NbO3 lead-free piezoceramics, J. Am. Ceram. Soc. 93(5) 1392–1396 (2010)

  17. T.H. Dinh, J.K. Kang, J.S. Lee, N.H. Khansur, J. Daniels, H.Y. Lee, F.Z. Yao, K. Wang, J.F. Li, H.S. Han, W. Jo, Nanoscale ferroelectric/relaxor composites: origin of large strain in lead-free Bi-based incipient piezoelectric ceramics. J. Eur. Ceram. Soc. 36(14), 3401–3407 (2016)

    Article  CAS  Google Scholar 

  18. R.F. Ge, Z.H. Zhao, S.F. Duan, X.Y. Kang, Y.K. Lv, D.S. Yin, Y. Dai, Large electro-strain response of La3+‏ and Nb5+‏ co-doped ternary 0.85Bi0.5Na0.5TiO3–0.11Bi0.5K0.5TiO3–0.04BaTiO3 lead-free piezoelectric ceramics. J. Alloys Compd. 724 1000–1006 (2017)

  19. P. Fan, Y. Zhang, B. Xie, Y. Zhu, W. Ma, C. Wang, B. Yang, J. Xu, J. Xiao, H. Zhang, Large electric-field-induced strain in B-site complex-ion (Fe0.5Nb0.5)4+- doped Bi1/2 (Na0.82K0.12)1/2TiO3 lead-free piezoceramics. Ceram. Int. 44 3211–3217 (2018)

  20. B. Yan, H. Fan, C. Wang, M. Zhang, A.K. Yadav, X. Zheng, H. Wang, Z. Du, Giant electro-strain and enhanced energy storage performance of (Y0.5Ta0.5)4+ co-doped 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 lead-free ceramics. Ceram. Int. 46(1) 281–288 (2020)

  21. N. Zhao, H. Fan, X. Ren, S. Gao, J. Ma, Y. Shi, A novel ((Bi0.5Na0.5)0.94Ba0.06)1-x(K0.5Nd0.5)xTiO3 lead-free relaxor ferroelectric ceramic with large electrostrains at wide temperature ranges. Ceram. Int. 44 571–579 (2018)

  22. M. Zhou, R. Liang, Z. Zhou, C. Xu, X. Nie, X. Chen, X. Dong, High energy storage properties of (Ni1/3Nb2/3)4+ complex-ion modified (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 ceramics. Mater. Res. Bull. 98 166–172 (2018)

  23. H. Xie, L. Yang, S. Pang, C.Yuan, G. Chen, H. Wang, C. Zhou, J. Xu, The evolution of phase structure, dielectric, strain, and energy storage density of complex-ions (Sr1/3Nb2/3)4+ doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 ceramics, J. Phys. Chem. Solids 126 287–293 (2019)

  24. R. McQuade, T. Rowe, A. Manjon-Sanz, L. Puente, M.R. Dolgos, An investigation into group 13 (Al, Ga, In) substituted (Na0.5Bi0.5)TiO3-BaTiO3 (NBT-BT) lead-free piezoelectrics. J. Alloys Compd. 762 378–388 (2018)

  25. Y. Xu, X. Liu, G. Wang, X. Liu, Y. Feng, Antiferroelectricity in tantalum doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics, Ceram. Int. 42 (2016) 4313–4322.

  26. H.S. Han, W. Jo, J.K. Kang, C.W. Ahn, I.W. Kim, K.K. Ahn, J.S. Lee, Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics. J. Appl. Phys. 113 113–126 (2013)

  27. M. Chandrasekhar, P. Kumar, Synthesis and characterizations of SrTiO3 modified BNT-KNN ceramics for energy storage applications. J. Electroceram. 38, 111–118 (2017)

    Article  CAS  Google Scholar 

  28. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing Company, London, 1977)

    Google Scholar 

  29. B.W. Eerd, D. Damjanovic, N. Klein, N. Setter, J. Trodah, Structural complexity of (Na0.5)Ba0.5TiO3-BaTiO3 as revealed by Raman spectroscopy. Phys. Rev. B. 82 104112–104118 (2010)

  30. H. Xie, Y. Zhao, J. Xu, L. Yang, C. Zhou, H. Zhang, X. Zhang, W. Qiu, H. Wang, Structure, dielectric, ferroelectric, and field-induced strain response properties of (Mg1/3Nb2/3)4+ complex-ion modified Bi0.5(Na0.82K0.18)0.5TiO3 lead-free ceramics. J. Alloys Compd. 743 (2018) 73–82.

  31. J. Hao, W. Bai, W. Li, B. Shen, J. Zhai, Phase transitions, relaxor behavior, and large strain response in LiNbO3-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoceramics. J. Appl. Phys. 114 044103 (2013)

  32. W. Bai, F. Liu, P. Li, B. Shen, J. Zhai, H. Chen, Structure and electromechanical properties in Bi0.5Na0.5TiO3-based lead-free piezoceramics with calculated end-member Bi0.5Na0.5TiO3. J. Eur. Ceram. Soc. 35 3457–3466 (2015)

  33. X. Jia, J. Zhang, H. Xing, J. Wang, P. Zheng, F. Wen, Large electrostrain response in binary Bi1/2Na1/2TiO3-Ba(Mg1/3Nb2/3)O3 solid solution ceramics. J. Alloys Compd. 741, 7–13 (2018)

    Article  CAS  Google Scholar 

  34. W. Bai, Y. Bian, J. Hao, The Composition and temperature-dependent structure evolution and large strain response in (1-x)(Bi0.5Na0.5)TiO3-xBa(Al0.5Ta0.5)O3 Ceramics, J. Am. Ceram. Soc. 96 246–252 (2013)

  35. W. Bai, D. Chen, P. Zheng, B. Shen, J. Zhai, Z. Ji, Composition- and temperature-driven phase transition characteristics and associated electromechanical properties in Bi0.5Na0.5TiO3-based lead-free ceramics. Dalton Trans. 45 8573–8586 (2016)

  36. F. Wang, M. Xu, Y. Tang, T. Wang, W. Shi, C.M. Leung, J. Roedel, Large strain response in the ternary Bi0.5Na0.5TiO3-BaTiO3-SrTiO3 solid solutions. J. Am. Ceram. Soc. 95 1955–1959 (2012)

  37. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rodel, Giant electric-field-induced strains in lead-free ceramics for actuator applications- status and perspective. J Electroceram 29, 71–93 (2012)

    Article  CAS  Google Scholar 

  38. Y. Hiruma, H. Nagata, T. Takenaka, Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions. J. Appl. Phys. 104 124106 (2008)

  39. J. Shi, H. Fan, X. Liu, Q. Li, Giant strain response and structure evolution in (Bi0.5Na0.5)0.945-x(Bi0.2Sr0.70.1)xBa0.055TiO3 ceramics. J. Eur. Ceram. Soc. 34(15) 3675–3683 (2014)

  40. M. Acosta, W. Jo, J. Rodel, Temperature- and Frequency-Dependent Properties of the 0.75Bi1/2Na1/2TiO3–0.25SrTiO3 Lead-Free Incipient Piezoceramic. J. Am. Ceram. Soc., 97(6) 1937–1943 (2014)

  41. W. Krauss, D. Schutz, F. A. Mautner, A. Feteira, K. Reichmann, Piezoelectric Properties and Phase Transition Temperatures of the Solid Solution of (1-x)(Bi0.5Na0.5)TiO3–xSrTiO3. J. Eur. Ceram. Soc. 30(8) 1827–3182 (2010)

  42. D. Rout, K. S. Moon, S. J. L. Kang, I. W. Kim, “Dielectric and Raman Scattering Studies of Phase Transitions in the (100-X)Na0.5Bi0.5TiO3-xSrTiO3 System. J. Appl. Phys. 108(8) 084102–084108 (2010)

  43. N.D. Quan, L.H. Bac, D.V. Thiet, V.N. Hung, A.D. Dung, Current development in lead-free Bi0.5(Na,K)0.5TiO3-based piezoelectric materials. Adv. Mater. Sci. Eng. 2014 365391 (2014)

  44. A. Ullah, C.W. Ahn, A. Hussain, Y.L. Sun, I.W. Kim, Phase transition, electrical properties, and temperature insensitive large strain in BiAlO3 modified Bi0.5(Na0.75K0.25)0.5TiO3 lead free piezoelectric ceramics. J. Am. Ceram. Soc. 94 3915–3921 (2011)

  45. H. Zhang, P. Xu, E. Patterson, J. Zang, S. Jiang, J. Rodel, Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics. J. Eur. Ceram. Soc. 35(9), 2501–2512 (2015)

    Article  CAS  Google Scholar 

  46. A. Ullah, M. Alam, A. Ullah, C.W. Ahn, J.S. Lee, S. Cho, I.W. Kim, High strain response in ternary Bi0.5Na0.5TiO3-BaTiO3-Bi(Mn0.5Ti0.5)O3solid solutions. RSC Adv. 6 (68) 63915–63921 (2016)

  47. J. Hao, Z. Xu, R. Chu, W. Li, J. Du, Large electric-field-induced strain in SrZrO3 modified Bi0.5(Na0.8K0.2)0.5TiO3 lead-free electromechanical ceramics with fatigue resistant behavior. J. Alloys Compd. 647 857–865 (2015)

  48. S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rodel, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91(11) 112906 (2007)

  49. T.H. Dinh, J.K. Kang, J.S. Lee, N.H. Khansur, J. Daniels, H.Y. Lee, F.-Z. Yao, K. Wang, J.F. Li, H.S. Han, W. Jo, Nanoscale ferroelectric/relaxor composites: origin of large strain in lead-free Bi-based incipient piezoelectric ceramics. J. Eur. Ceram. Soc. 36(14), 3401–3407 (2016)

    Article  CAS  Google Scholar 

  50. R. Cheng, Z. Xu, R. Chu, J. Hao, J. Du, G. Li, Electric field-induced ultrahigh strain and large piezoelectric effect in Bi1/2Na1/2TiO3-based lead-free piezoceramics. J. Eur. Ceram. Soc. 36(3), 489–496 (2016)

    Article  CAS  Google Scholar 

  51. S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rodel, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91 112906 (2007)

  52. C. Groh, D.J. Franzbach, W. Jo, K.G. Webber, J. Kling, L.A. Schmitt, H.J. Kleebe, S.J. Jeong, J.S. Lee, J. Rodel, Relaxor/ferroelectric composites: a solution in the quest for practically viable lead-free incipient piezoceramics. Adv. Funct. Mater. 24, 356–362 (2014)

    Article  CAS  Google Scholar 

  53. V.D.N. Tran, H. Hyoung-Su, K. Kyung-Jong, A.M. Rizwan, H. Ali, L. Jae-Shin, Relaxor and field-induced strain behavior in lead-free Bi0.5(Na0.82K0.18)0.5TiO3 ceramics modified with BaZrO3. J. Ceram. Process. Res. 13 s177-s180 (2012)

  54. A. Ullah, R.A. Malik, A. Ullah, D.S. Lee, S.J. Jeong, J.S. Lee, I.W. Kim, C.W. Ahn, Electric-field-induced phase transition and large strain in lead-free Nb doped BNKT-BST ceramics. J. Eur. Ceram. Soc. 34, 29–35 (2014)

    Article  CAS  Google Scholar 

  55. W. Bai, D. Chen, Y. Huang, P. Zheng, J. Zhong, M. Ding, Y. Yuan, B. Shen, J. Zhai, Z. Ji, Temperature-insensitive large strain response with a low hysteresis behavior in BNT-based ceramics. Ceram. Int. 42, 7669–7680 (2016)

    Article  CAS  Google Scholar 

  56. H. Qian, Z. Yu, M. Mao, Y. Liu, Y. Lyu, Nanoscale origins of small hysteresis and remnant strain in Bi0.5Na0.5TiO3-based lead-free ceramics. J. Eur. Ceram. Soc. 37 3483–3491 (2017)

  57. M. Acosta, W. Jo, J. Rodel, Temperature-and frequency-dependent properties of the 0.75 Bi1/2Na1/2TiO3–0.25SrTiO3 lead-free incipient piezoceramic. J. Am. Ceram. Soc. 97 1937–1943 (2014)

  58. J. Shi, H. Fan, X. Liu, Q. Li, Giant strain response and structure evolution in (Bi0.5Na0.5)0.945-x(Bi0.2Sr0.7□0.1)xBa0.055TiO3 ceramics. J. Eur. Ceram. Soc. 34 3675–3683 (2014)

  59. W. Bai, P. Li, L. Li, J. Zhang, B. Shen, J. Zhai, Structure evolution and large strain response in BNT-BT lead-free piezoceramics modified with Bi(Ni0.5Ti0.5)O3. J. Alloy, Compd. 649 772–781 (2015)

  60. Y. Zhang, P. Fan, H. Li, J. Zhang, J. Xu, M. Li, X. Zhang, Z. Wei, J. Xu, L. Zhao, Y. Lu, H. Zhang, Significantly reduced hysteresis in (Fe1/2Nb1/2)4+-modified 0.75Na1/2Bi1/2TiO3–0.25SrTiO3 lead-free piezoceramics with large strain, Ceram. Int. 47 17915–17920 (2021) 

Download references

Acknowledgements

JS Lee acknowledges financial support from a National Research Foundation (NRF) of Republic of Korea Grant (2016R1D1A3B01008169) and HS Han acknowledges financial support from a National Research Foundation (NRF) of Republic of Korea Grant (2020R1C1C1007375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Bafandeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bafandeh, M.R., Han, HS. & Lee, JS. Enhanced electric field induced strain in complex-ion Ga3+ and Ta5+-doped 0.93BNT-0.07BT piezoceramic. J Electroceram 47, 89–99 (2021). https://doi.org/10.1007/s10832-021-00264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00264-5

Keywords

Navigation