Skip to main content
Log in

Structural explanation for the tunable substrate specificity of an E. coli nucleoside hydrolase: insights from molecular dynamics simulations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Parasitic protozoa rely on nucleoside hydrolases that play key roles in the purine salvage pathway by catalyzing the hydrolytic cleavage of the N-glycosidic bond that connects nucleobases to ribose sugars. Cytidine–uridine nucleoside hydrolase (CU–NH) is generally specific toward pyrimidine nucleosides; however, previous work has shown that replacing two active site residues with Tyr, specifically the Thr223Tyr and Gln227Tyr mutations, allows CU–NH to process inosine. The current study uses molecular dynamics (MD) simulations to gain atomic-level insight into the activity of wild-type and mutant E. coli CU–NH toward inosine. By examining systems that differ in the identity and protonation states of active site catalytic residues, key enzyme-substrate interactions that dictate the substrate specificity of CU–NH are identified. Regardless of the wild-type or mutant CU–NH considered, our calculations suggest that inosine binding is facilitated by interactions of the ribose moiety with active site residues and Ca2+, and π-interactions between two His residues (His82 and His239) and the nucleobase. However, the lack of observed activity toward inosine for wild-type CU–NH is explained by no residue being correctly aligned to stabilize the departing nucleobase. In contrast, a hydrogen-bonding network between hypoxanthine and a newly identified general acid (Asp15) is present when the two Tyr mutations are engineered into the active site. Investigation of the single CU–NH mutants reveals that this hydrogen-bonding network is only maintained when both Tyr mutations are present due to a π-interaction between the residues. These results rationalize previous experiments that show the single Tyr mutants are unable to efficiently hydrolyze inosine and explain how the Tyr residues work synergistically in the double mutant to stabilize the nucleobase leaving group during hydrolysis. Overall, our simulations provide a structural explanation for the substrate specificity of nucleoside hydrolases, which may be used to rationally develop new treatments for kinetoplastid diseases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A:

Adenosine

AAG:

Alkyladenine DNA glycosylase

C:

Cytidine

CU–NH:

Cytidine–uridine nucleoside hydrolase

G:

Guanosine

I:

Inosine

IAG–NH:

Inosine–adenosine–guanosine nucleoside hydrolase

IG–NH:

Inosine–guanosine nucleoside hydrolase

IU–NH:

Inosine–uridine nucleoside hydrolase

MCPB:

Metal center parameter builder

MD:

Molecular dynamics

NH:

Nucleoside hydrolase

pAPIR:

p-Aminophenyliminoribitol

PDB:

Protein data bank

RESP:

Restrained electrostatic potential

rms:

Root-mean-square

rmsd:

Root-mean-square deviation

U:

Uridine

UDG:

Uracil DNA glycosylase

X:

Xanthosine

References

  1. Barrett MP, Croft SL (2012) Management of trypanosomiasis and leishmaniasis. Br Med Bull 104:175–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. el Kouni MH (2003) Potential chemotherapeutic targets in the purine metabolism of parasites. Pharmacol Ther 99:283–309

    Article  CAS  PubMed  Google Scholar 

  3. Delespaux V, de Koning HP (2007) Drugs and drug resistance in African trypanosomiasis. Drug Resist Updat 10:30–50

    Article  CAS  PubMed  Google Scholar 

  4. Kennedy PGE (2013) Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol 12:186–194

    Article  PubMed  Google Scholar 

  5. Minodier P, Parola P (2007) Cutaneous leishmaniasis treatment, Travel Med. Infect Dis 5:150–158

    Google Scholar 

  6. Garcia MN, O’Day S, Fisher-Hoch S, Gorchakov R, Patino R, Arroyo F, Laing TP, Lopez ST, Ingber JE, Jones A, K. M., et al (2016) One health interactions of Chagas disease vectors, canid hosts, and human residents along the Texas-Mexico border. PLoS Negl Trop Dis 10:e0005074

    Article  PubMed  PubMed Central  Google Scholar 

  7. Garcia MN, Woc-Colburn L, Aguilar D, Hotez PJ, Murray KO (2015) Historical perspectives on the epidemiology of human Chagas disease in Texas and recommendations for enhanced understanding of clinical Chagas disease in the southern United States. PLoS Negl Trop Dis 9:e0003981

    Article  PubMed  PubMed Central  Google Scholar 

  8. Demers E, Forrest DM, Weichert GE (2013) Cutaneous leishmaniasis in a returning traveller. Can Med Assoc J 185:681–683

    Article  Google Scholar 

  9. Boitz JM, Ullman B, Jardim A, Carter NS (2012) Purine salvage in Leishmania: complex or simple by design? Trends Parasitol 28:345–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilson ZN, Gilroy CA, Boitz JM, Ullman B, Yates PA (2012) Genetic dissection of pyrimidine biosynthesis and salvage in Leishmania donovani. J Biol Chem 287:12759–12770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carter NS, Yates P, Arendt CS, Boitz JM, Ullman B (2008) Purine and pyrimidine metabolism in Leishmania. In: Majumder H (ed) Drug targets in kinetoplastid parasites. Springer, New York, pp. 141–154.

    Chapter  Google Scholar 

  12. Hammond DJ, Gutteridge WE (1984) Purine and pyrimidine metabolism in the Trypanosomatidae. Mol Biochem Parasitol 13:243–261

    Article  CAS  PubMed  Google Scholar 

  13. Murkin AS, Moynihan MM (2014) Transition-state-guided drug design for treatment of parasitic neglected tropical diseases. Curr Med Chem 21:1781–1793

    Article  CAS  PubMed  Google Scholar 

  14. Degano M, Gopaul DN, Scapin G, Schramm VL, Sacchettini JC (1996) Three-dimensional structure of the inosine-uridine nucleoside N-ribohydrolase from Crithidia fasciculata. Biochemistry 35:5971–5981

    Article  CAS  PubMed  Google Scholar 

  15. Horenstein BA, Zabinski RF, Schramm VL (1993) A new class of C-nucleoside analogues. 1-(S)-aryl-1,4-dideoxy-1,4-imino-d-ribitols, transition state analogue inhibitors of nucleoside hydrolase. Tetrahedron Lett 34:7213–7216

    Article  CAS  Google Scholar 

  16. Shi WX, Schramm VL, Almo SC (1999) Nucleoside hydrolase from Leishmania major—cloning, expression, catalytic properties, transition state inhibitors, and the 2.5-Å crystal structure. J Biol Chem 274:21114–21120

    Article  CAS  PubMed  Google Scholar 

  17. Evans GB, Furneaux RH, Gainsford GJ, Schramm VL, Tyler PC (2000) Synthesis of transition state analogue inhibitors for purine nucleoside phosphorylase and N-riboside hydrolases. Tetrahedron 56:3053–3062

    Article  CAS  Google Scholar 

  18. Berg M, Van der Veken P, Goeminne A, Haemers A, Augustyns K (2010) Inhibitors of the purine salvage pathway: a valuable approach for antiprotozoal chemotherapy? Curr Med Chem 17:2456–2481

    Article  CAS  PubMed  Google Scholar 

  19. Berg M, Kohl L, Van der Veken P, Joossens J, Al-Salabi MI, Castagna V, Giannese F, Cos P, Versees W, Steyaert J et al (2010) Evaluation of nucleoside hydrolase inhibitors for treatment of African trypanosomiasis. Antimicrob Agents Chemother 54:1900–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Versees W, Goeminne A, Berg M, Vandemeulebroucke A, Haemers A, Augustyns K, Steyaert J (2009) Crystal structures of T. vivax nucleoside hydrolase in complex with new potent and specific inhibitors. Biochim Biophys Acta Proteins Proteom 1794:953–960

    Article  CAS  Google Scholar 

  21. Goeminne A, Berg M, McNaughton M, Bal G, Surpateanu G, Van der Veken P, De Prol S, Versees W, Steyaert J, Haemers A et al (2008) N-arylmethyl substituted iminoribitol derivatives as inhibitors of a purine specific nucleoside hydrolase. Biorg Med Chem 16:6752–6763

    Article  CAS  Google Scholar 

  22. Goeminne A, McNaughton M, Bal G, Surpateanu G, Van der Veken P, De Prol S, Versees W, Steyaert J, Haemers A, Augustyns K (2008) Synthesis and biochemical evaluation of guanidino-alkyl-ribitol derivatives as nucleoside hydrolase inhibitors. Eur J Med Chem 43:315–326

    Article  CAS  PubMed  Google Scholar 

  23. Renno MN, Franca C, Nico D, Palatnik-de-Sousa CB, Tinoco LW, Figueroa-Villar JD (2012) Kinetics and docking studies of two potential new inhibitors of the nucleoside hydrolase from Leishmania donovani. Eur J Med Chem 56:301–307

    Article  CAS  PubMed  Google Scholar 

  24. Franca TCC, Rocha MdRM, Reboredo BM, Renno MN, Tinoco LW, Figueroa-Villar JD (2008) Design of inhibitors for nucleoside hydrolase from Leishmania donovani using molecular dynamics studies. J Braz Chem Soc 19:64–73

    Article  CAS  Google Scholar 

  25. Goeminne A, McNaughton M, Bal G, Surpateartu G, Van der Veken P, De Prol S, Versees W, Steyaert J, Apers S, Haemers A et al (2007) 1,2,3-triazolylalkylribitol derivatives as nucleoside hydrolase inhibitors. Bioorg Med Chem Lett 17:2523–2526

    Article  CAS  PubMed  Google Scholar 

  26. Versees W, Steyaert J (2003) Catalysis by nucleoside hydrolases. Curr Opin Struct Biol 13:731–738

    Article  CAS  PubMed  Google Scholar 

  27. Vandemeulebroucke A, De Vos S, Van Holsbeke E, Steyaert J, Versees W (2008) A flexible loop as a functional element in the catalytic mechanism of nucleoside hydrolase from Trypanosoma vivax. J Biol Chem 283:22272–22282

    Article  CAS  PubMed  Google Scholar 

  28. Versees W, Decanniere K, Van Holsbeke E, Devroede N, Steyaert J (2002) Enzyme-substrate interactions in the purine-specific nucleoside hydrolase from Trypanosoma vivax. J Biol Chem 277:15938–15946

    Article  CAS  PubMed  Google Scholar 

  29. Versees W, Decanniere K, Pelle R, Depoorter J, Brosens E, Parkin DW, Steyaert J (2001) Structure and function of a novel purine specific nucleoside hydrolase from Trypanosoma vivax. J Mol Biol 307:1363–1379

    Article  CAS  PubMed  Google Scholar 

  30. Arivett B, Farone M, Masiragani R, Burden A, Judge S, Osinloye A, Minici C, Degano M, Robinson M, Kline P (2014) Characterization of inosine-uridine nucleoside hydrolase (RihC) from Escherichia coli. Biochim Biophys Acta Proteins Proteom 1844:656–662

    Article  CAS  Google Scholar 

  31. Giannese F, Berg M, Van der Veken P, Castagna V, Tornaghi P, Augustyns K, Degano M (2013) Structures of purine nucleosidase from Trypanosoma brucei bound to isozyme-specific trypanocidals and a novel metalorganic inhibitor. Acta Crystallogr Sect D 69:1553–1566

    Article  CAS  Google Scholar 

  32. Iovane E, Giabba B, Muzzolini L, Matafora V, Fornili A, Minici C, Giannese F, Degano M (2008) Structural basis for substrate specificity in group I nucleoside hydrolases. Biochemistry 47:4418–4426

    Article  CAS  PubMed  Google Scholar 

  33. Giabbai B, Degano M (2004) Crystal structure to 1.7 angstrom of the Escherichia coli pyrimidine nucleoside hydrolase YeiK, a novel candidate for cancer gene therapy. Structure 12:739–749

    Article  CAS  PubMed  Google Scholar 

  34. Gopaul DN, Meyer SL, Degano M, Sacchettini JC, Schramm VL (1996) Inosine-uridine nucleoside hydrolase from Crithidia fasciculata. Genetic characterization, crystallization, and identification of histidine 241 as a catalytic site residue. Biochemistry 35:5963–5970

    Article  CAS  PubMed  Google Scholar 

  35. Vandemeulebroucke A, Minici C, Bruno I, Muzzolini L, Tornaghi P, Parkin DW, Versees W, Steyaert J, Degano M (2010) Structure and mechanism of the 6-oxopurine nucleosidase from Trypanosoma brucei brucei. Biochemistry 49:8999–9010

    Article  CAS  PubMed  Google Scholar 

  36. Degano M, Almo SC, Sacchettini JC, Schramm VL (1998) Trypanosomal nucleoside hydrolase. A novel mechanism from the structure with a transition-state inhibitor. Biochemistry 37:6277–6285

    Article  CAS  PubMed  Google Scholar 

  37. Horenstein BA, Parkin DW, Estupinan B, Schramm VL (1991) Transition-state analysis of nucleoside hydrolase from Crithidia fasciculata. Biochemistry 30:10788–10795

    Article  CAS  PubMed  Google Scholar 

  38. Parkin DW, Schramm VL (1995) Binding modes for substrate and a proposed transition-state analog of protozoan nucleoside hydrolase. Biochemistry 34:13961–13966

    Article  CAS  PubMed  Google Scholar 

  39. Mazumder D, Bruice TC (2002) Exploring nucleoside hydrolase catalysis in silico: molecular dynamics study of enzyme-bound substrate and transition state. J Am Chem Soc 124:14591–14600

    Article  CAS  PubMed  Google Scholar 

  40. Fornili A, Giabbai B, Garau G, Degano M (2010) Energy landscapes associated with macromolecular conformational changes from endpoint structures. J Am Chem Soc 132:17570–17577

    Article  CAS  PubMed  Google Scholar 

  41. Fan F, Chen N, Wang Y, Wu R, Cao Z (2018) QM/MM and MM MD simulations on the pyrimidine-specific nucleoside hydrolase: a comprehensive understanding of enzymatic hydrolysis of uridine. J Phys Chem B 122:1121–1131

    Article  CAS  PubMed  Google Scholar 

  42. Versees W, Loverix S, Vandemeulebroucke A, Geerlings P, Steyaert J (2004) Leaving group activation by aromatic stacking: an alternative to general acid catalysis. J Mol Biol 338:1–6

    Article  CAS  PubMed  Google Scholar 

  43. Mazumder-Shivakumar D, Bruice TC (2005) Computational study of IAG-nucleoside hydrolase: determination of the preferred ground state conformation and the role of active site residues. Biochemistry 44:7805–7817

    Article  CAS  PubMed  Google Scholar 

  44. Wu R, Gong W, Ting L, Zhang Y, Cao Z (2012) QM/MM molecular dynamics study of purine-specific nucleoside hydrolase. J Phys Chem B 116:1984–1991

    Article  CAS  PubMed  Google Scholar 

  45. Guimaraes AP, Oliveira AA, da Cunha EFF, Ramalho TC, Franco TCC (2011) Analysis of Bacillus anthracis nucleoside hydrolase via in silico docking with inhibitors and molecular dynamics simulation. J Mol Model 17:2939–2951

    Article  CAS  PubMed  Google Scholar 

  46. Mancini DT, Matos KS, da Cunha EFF, Assis TM, Guimaraes AP, Franca TCC, Ramalho TC (2012) Molecular modeling studies on nucleoside hydrolase from the biological warfare agent Brucella suis. J Biomol Struct Dyn 30:125–136

    Article  CAS  PubMed  Google Scholar 

  47. Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 40:W537–W541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke J, Luo R, Crowley M, Walker RC, Zhang W et al (2008) Amber Tools, Version 1.0 edn. University of California, San Francisco

    Google Scholar 

  49. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general Amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  50. Li P, Merz KM (2016) MCPB.Py: a python based metal center parameter builder. J Chem Inf Model 56:599–604

    Article  CAS  PubMed  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2016) Gaussian 09, Revision D. 01. Gaussian, Inc., Wallingford

    Google Scholar 

  52. Seminario JM (1996) Calculation of intramolecular force fields from second-derivative tensors. Int J Quantum Chem 60:1271–1277

    Article  Google Scholar 

  53. Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC (2013) Routine microsecond molecular dynamics simulations with Amber on GPUs. 2. Explicit solvent particle mesh ewald. J Chem Theory Comput 9:3878–3888

    Article  CAS  PubMed  Google Scholar 

  54. Le Grand S, Götz AW, Walker RC (2013) SPFP: Speed without compromise—a mixed precision model for GPU accelerated molecular dynamics simulations. Comput Phys Commun 184:374–380

    Article  CAS  Google Scholar 

  55. Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084–3095

    Article  CAS  Google Scholar 

  56. Altona C, Sundaralingam M (1972) Conformational analysis of the sugar ring in nucleosides and nucleotides. New description using the concept of pseudorotation. J Am Chem Soc 94:8205–8212

    Article  CAS  PubMed  Google Scholar 

  57. Lenz SAP, Kohout JD, Wetmore SD (2016) Hydrolytic glycosidic bond cleavage in RNA nucleosides: effects of the 2′-hydroxy group and acid–base catalysis. J Phys Chem B 120:12795–12806

    Article  CAS  PubMed  Google Scholar 

  58. Wilson KA, Wells RA, Abendong MN, Anderson CB, Kung RW, Wetmore SD (2015) Landscape of π–π and sugar–π contacts in DNA–protein interactions. J Biomol Struct Dyn 34:184–200

    Article  CAS  PubMed  Google Scholar 

  59. Wilson KA, Kellie JL, Wetmore SD (2014) DNA-protein pi-interactions in nature: abundance, structure, composition and strength of contacts between aromatic amino acids and DNA nucleobases or deoxyribose sugar. Nucleic Acids Res 42:6726–6741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lenz SAP, Wetmore SD (2016) Evaluating the substrate selectivity of alkyladenine DNA glycosylase: the synergistic interplay of active site flexibility and water reorganization. Biochemistry 55:798–808

    Article  CAS  PubMed  Google Scholar 

  61. Rutledge LR, Wetmore SD (2011) Modeling the chemical step utilized by human alkyladenine DNA glycosylase: a concerted mechanism aids in selectively excising damaged purines. J Am Chem Soc 133:16258–16269

    Article  CAS  PubMed  Google Scholar 

  62. Bashford D, Karplus M (1990) Pka’s of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 29:10219–10225

    Article  CAS  PubMed  Google Scholar 

  63. Parikh SS, Mol CD, Slupphaug G, Bharati S, Krokan HE, Tainer JA (1998) Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J 17:5214–5226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Computational resources from the New Upscale Cluster for Lethbridge to Enable Innovative Chemistry (NUCLEIC) and those provided by Westgrid and Compute/Calcul Canada are greatly appreciated.

Funding

Support for this research was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC, Grant No. 2016–04568), the Canada Foundation for Innovation (Grant No. 22770) and the Board of Governors Research Chair Program at the University of Lethbridge. S.A.P.L. acknowledges NSERC (CGS-D), Alberta Innovates-Technology Futures (AI-TF) and the University of Lethbridge for student scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacey D. Wetmore.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Supporting information—Discussion of wild-type (Asp15 His239) and single mutant (Asp15 His239+) data, active site parameters (Tables S1 and S2), replicate backbone rmsd (Table S3), key distances (Table S4), hydrogen-bonding (Tables S5 and S8), active site torsional angles (Tables S6 and S9), MM-GBSA binding energies (Table S7); structure and numbering of calcium-ligating residues (Figure S1), overlay of MD representative structure and X-ray crystal structure for wild-type CU–NH-I (Figure S2), radial distribution plot of water density with respect to Ca2+, stacked histogram of pseudorotational angle occupancy (Figure S4), overlays of MD representative structures and water distribution figures (Figure S5–S9). Full citation for references 6, 20, 22, 26, 48, and 51. Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19888 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenz, S.A.P., Wetmore, S.D. Structural explanation for the tunable substrate specificity of an E. coli nucleoside hydrolase: insights from molecular dynamics simulations. J Comput Aided Mol Des 32, 1375–1388 (2018). https://doi.org/10.1007/s10822-018-0178-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0178-y

Keywords

Navigation