Skip to main content
Log in

Effect of pH and Polyelectrolytes on the Spectral-Kinetic Properties of AIS/ZnS Semiconductor Quantum Dots in Aqueous Solutions

  • Published:
Journal of Applied Spectroscopy Aims and scope

In aqueous solutions the spectral-kinetic parameters of quantum dots (QD) based on a mixture of semiconductors of groups I–III–VI, namely Ag–In–S and Ag–In–S2, with a layer of ZnS (AIS/ZnS QD), show a specific dependence on pH and on the local polarity caused by interaction with polyelectrolytes (spectral shifts, hyperchromism, and hypochromism in the absorption and photoluminescence spectra, changes of the average photoluminescence life time). It was found that the change in the properties of the AIS/ZnS QDs with variation of the pH of the solution is caused by reversible recharging of ampholyte ion groups, which alters the structure of the Helmholtz double layer at the surface of the QD covered by glutathione molecules. It was shown that the second derivative of the QD absorption spectra both in an acidic medium and during interaction with polyelectrolytes corresponds to a linear Stark effect due to the formation of an induced dipole moment in the QD. The obtained results can be used to develop selective markers based on AIS/ZnS QDs for testing local pH and polarity in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Ji, S. Koley, I. Slobodkin, S. Remennik, and U. Banin, Nano Lett., 20, No. 4, 2387–2395 (2020).

    Article  ADS  Google Scholar 

  2. K. Pal, Hybrid Nanocomposites: Fundamentals, Synthesis, and Applications, Jenny Stanford Publishing, USA (2019).

    Book  Google Scholar 

  3. S. V. Gaponenko and H. V. Demir, Applied Nanophotonics, Cambridge University Press, Cambridge (2018).

    Book  Google Scholar 

  4. E. Zenkevich and C. Von Borczyskowski, Self-Assembled Organic-Inorganic Nanostructures: Optics and Dynamics, Pan Stanford Publishing Pte. Ltd. (2016).

  5. S. V. Kilina, P. K. Tamukong, and D. S. Kilin, Acc. Chem. Res., 49, 2127–2135 (2016).

    Article  Google Scholar 

  6. R. Wang, Y. Shang, P. Kanjanaboos, W. Zhou, Z. Ning, and E. H. Sargent, Energy Environ. Sci., 9, 1130–1143 (2016).

    Article  Google Scholar 

  7. R. C. Pleus and V. Murashov, Physico-Chemical Properties of Nanomaterials, Pan Stanford, USA (2018).

    Book  Google Scholar 

  8. M. A. Boles, D. Ling, T. Hyeon, and D. V. Talapin, Nat. Mater., 2, 141–153 (2016).

    Article  ADS  Google Scholar 

  9. H. Zhong, Z. Bai, and B. Zou, J. Phys. Chem. Lett., 3, 3167–3175 (2012).

    Google Scholar 

  10. S. Chen, M. Ahmadiantehrani, N. G. Publicover, K. W. Hunter Jr., and X. Zhu, RSC Adv., 5, 60612–60620 (2015).

    Article  ADS  Google Scholar 

  11. S. R. Thomas, C. W. Chen, M. Date, Y. C. Wang, H. W. Tsai, Z. M. Wang, and Y. L. Chueh, RSC Adv., 6, 60643–60656 (2016).

    Article  ADS  Google Scholar 

  12. M. D. Regulacio and M. Y. Han, Acc. Chem. Res., 49, 511–519 (2016)

    Article  Google Scholar 

  13. A. S. Baimuratov, I. V. Martynenko, A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and S. Y. Kruchinin, J. Phys. Chem. C, 123, 16430–16438 (2019).

    Google Scholar 

  14. A. Raevskaya, O. Rosovik, A. Kozytskiy, O. Stroyuk, V. Dzhagan, and D. R. T. Zahn, RSC Adv., 6, 100145–100157 (2016).

    Article  ADS  Google Scholar 

  15. A. Raevskaya, V. Lesnyak, D. Haubold, V. Dzhagan, O. Stroyuk, N. Gaponik, D. R. T. Zahn, and A. Eychmuller, J. Phys. Chem. C, 121, 9032–9042 (2017).

    Google Scholar 

  16. O. Stroyuk, F. Weigert, A. Raevskaya, F. Spranger, C. Wurth, U. Resch-Genger, N. Gaponik, and D. R. T. Zahn, J. Phys. Chem. C, 123, 2632–2641 (2019).

    Article  Google Scholar 

  17. O. Stroyuk, A. Raevskaya, F. Spranger, N. Gaponik, and D. R. T. Zahn, Chem. Phys. Chem., 20, 1640–1648 (2019).

    Article  Google Scholar 

  18. I. A. Mir, V. S. Radhakrishanan, K. Rawat, T. Prasad, and H. B. Bohidar, Sci. Rep., 8, 9322–9334 (2018).

    Article  ADS  Google Scholar 

  19. M. S. Istomina, N. A. Pechnikova, D. V. Korolev, E. I. Pochkareva, D. S. Mazing, M. M. Galagudza, V. A. Moshnikov, and E. V. Shlyakhto, Vestn. RGMU, 6, 103–110 (2018).

    Google Scholar 

  20. J. Barar, Y. Omidi, BioImpacts, 3, No. 4, 149–162 (2013).

    Google Scholar 

  21. I. G. Motevich, N. D. Strekal', N. M. Popko, and S. A. Maskevich, Opt. Spektrosk., 122, No. 3, 459–463 (2017).

    Article  Google Scholar 

  22. I. G. Motevich, N. D. Strekal′, and S. A. Maskevich, Opt. Spektrosk., 124, No. 6, 766–769 (2018).

    Article  Google Scholar 

  23. I. G. Motevich, N. D. Strekal′, and S. A. Maskevich, Opt. Spektrosk., 124, No. 5, 605–611 (2018).

    Article  Google Scholar 

  24. A. V. Dobrynin, R. H. Colby, and M. Rubinstein, J. Polymer Sci. B: Polymer Phys., 42, 3513–3538 (2004).

    Google Scholar 

  25. V. I. Stepuro, Vestn. Grodn. Gos. Un-ta, No. 5, 52 (2001).

    Google Scholar 

  26. D. W. Marquardt, J. Soc. Ind. Appl. Math., 11, 431 (1963).

    Article  Google Scholar 

  27. E. Zenkevich, V. Sheinin, O. Kulikova, O. Selyshchev, V. Dzhagan, A. Stroyuk, A. Raevskaya, O. Koifman, C. von Borczyskowski, and D. R. T. Zahn, International Conference "Supramolecular Systems at the Interface" [in Russian], September 22–26 (2019), Tuapse, Moscow, A. N. Frumkin Institute of Physical Chemistry and Electrochemistry (2019), pp. 35–40.

    Google Scholar 

  28. R. M. C. Dawson, Data for Biochemical Research, 3rd edn., Oxford University Press, New York (1987), pp. 16–17.

    Google Scholar 

  29. F. Knittel, E. Gravel, E. Cassette, T. Pons, F. Pillon, B. Dubertret, and E. Doris. Nano Lett., 13, 5075–5078 (2013).

    Article  ADS  Google Scholar 

  30. J. W. Ball and D. K. Nordstrom, Open-File Report (1991), pp. 90–129.

    Google Scholar 

  31. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B, 101, 9463–9475 (1997).

    Article  Google Scholar 

  32. N. Strekal, Nanosci. Nanotechnol., 4, No. 1, 16–21 (2014).

    Google Scholar 

  33. A. A. P. Mansur, H. S. Mansur, C. Tabare, A. Paiva, and N. S. V. Capanema, J. Mater. Sci.: Mater. Electron., 30, 16702–16717 (2019).

    Google Scholar 

  34. A. Javier, D. Magana, T. Jennings, and G. F. Strouse, Appl. Phys. Lett., 83, 1423–1425 (2003).

    Article  ADS  Google Scholar 

  35. S. I. Pokutnii, FTP, 34, 1120–1124 (2000).

    Google Scholar 

  36. G. U. Bublitz and St. G. Boxer, Ann. Rev., 48, 213–243 (1997).

    Google Scholar 

  37. S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Phys. Rev. Lett., 77, 3873–3876 (1996).

    Article  ADS  Google Scholar 

  38. N. D. Strekal′ and S. A. Maskevich, Nauka Innovatsii, 129, No. 11, 62–65 (2013).

    Google Scholar 

  39. N. D. Strekal′, Photophysical Processes in Assemblies of Semiconducting CdSe/ZnS Nanoparticles, GrGU, Grodno (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Strekal.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 6, pp. 926–935, November–December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motevich, I.G., Zenkevich, E.I., Stroyuk, A.L. et al. Effect of pH and Polyelectrolytes on the Spectral-Kinetic Properties of AIS/ZnS Semiconductor Quantum Dots in Aqueous Solutions. J Appl Spectrosc 87, 1057–1066 (2021). https://doi.org/10.1007/s10812-021-01109-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01109-3

Keywords

Navigation