Skip to main content
Log in

The role of catalase in assimilation of exogenous methanol by Chlamydomonas reinhardtii cells

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cultivation in liquid Kessler’s medium containing 0.2 % methanol stimulated the growth of Chlamydomonas reinhardtii autotrophic batch culture. To elucidate the mechanism, we examined the effects of methanol on the enzymatic activity of catalase, catalase gene (CAT1) expression, and ultrastructure of C. reinhardtii cells. CAT1 relative expression was detected by real time RT-PCR. The cellular ultrastructure was investigated using transmission electron microscopy (TEM). Catalase-mediated oxygen evolution from H2O2 was assayed with a Clark-type electrode. The localization of catalase activity in C. reinhardtii cells grown in the presence of methanol was studied by a method based on cytochemical staining with 3,3'-diaminobenzidine-tetrahydrochloride (DAB). The cytochemical data obtained in this study confirmed catalase localization in mitochondria of C. reinhardtii cells. It was shown biochemically that mitochondrial catalase activity of the alga can be enhanced by methanol. CAT1 gene expression after 4 h of growth with methanol was 16-fold higher than in the control samples. Methanol addition induced quantitative changes in ultrastructure of C. reinhardtii cells: the volume of C. reinhardtii cells and fractions of cell area occupied by chloroplasts decreased, the areas of vacuoles, mitochondria, and plastoglobules increased. The results suggest that mitochondrial catalase takes part in the oxidation of methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop NI, Senger H (1971) Preparation and photosynthetic properties of synchronous cultures of Scenedesmus. Meth Enzymol 23:53–66

    Google Scholar 

  • Brunner A, Ammann C, Neftel A, Spirig C (2007) Methanol exchange between grassland and the atmosphere. Biogeosci Discuss 4:125–164

    Google Scholar 

  • Chauvin L, Tural B, Moroney JV (2008) Chlamydomonas reinhardtii has genes for both glycolate oxidase and glycolate dehydrogenase. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis, Energy from the Sun. Springer, Dordrecht, pp 823–827

    Google Scholar 

  • Cossins R (1964) The utilization of carbon-1 compounds by plants. The metabolism of methanol-C14 and its role in amino acid biosynthesis. Can J Biochem 42:1793–1802

    CAS  Google Scholar 

  • Dixit S, Upadhyay SK, Singh H, Sidhu OP, Verma PC, Chandrashekar K (2013) Enhanced methanol production in plants provides broad spectrum insect resistance. PLoS ONE 8:e79664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dorokhov YL, Komarova TV, Petrunina IV, Kosorukov VS, Zinovkin RA, Shindyapina AV, Frolova OY, Gleba YY (2012) Methanol may function as a cross-kingdom signal. PLoS ONE 7:e36122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Downie A, Miyazaki S, Bohnert H, John P, Coleman J, Parry M, Haslam R (2004) Expression profiling of the response of Arabidopsis thaliana to methanol stimulation. Phytochemistry 65:2305–2316

    CAS  PubMed  Google Scholar 

  • Eisenthal R, Danson M (2002) Enzyme assays, a practical approach. Oxford University Press, Oxford

  • El Jay A (1996) Toxic effects of organic solvents on the growth of Chlorella vulgaris and Selenastrum capricornutum. Bull Environ Contam Toxicol 57:191–198

    PubMed  Google Scholar 

  • Fall R, Benson AA (1996) Leaf methanol – the simplest natural product from plants. Trends Plant Sci 1:296–301

    Google Scholar 

  • Ghosh S, Mahoney SR, Penterman JN, Peirson D, Dumbroff EB (2001) Ultrastructural and biochemical changes in chloroplasts during Brassica napus senescence. Plant Physiol Biochem 39:777–784

    CAS  Google Scholar 

  • Giraud G, Czaninski Y (1971) Localisation ultrastructurale d’activités oxydasiques chez le Chlamydomonas reinhardtii. C R Acad Sci 273:2500–2503

    CAS  Google Scholar 

  • Gout E, Aubert S, Bligny R, Rébeillé F, Nonomura A, Benson A, Douce R (2000) Metabolism of methanol in plant cells. Carbon–13 nuclear magnetic resonance studies. Plant Physiol 123:287–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson AD, Roje S (2001) Оne-carbon metabolism in higher plants. Annu Rev Plant Physiol Plant Mol Biol. 52:119–137

    CAS  PubMed  Google Scholar 

  • Harris EH (2001) Chlamydomonas as a model organism. Annu Rev Plant Biol 52:363–406

    CAS  Google Scholar 

  • Havir EA, McHale NA (1989) Regulation of catalase activity in leaves of Nicotiana sylvestris by high CO2. Arch Biochem Biophys 283:491–495

    Google Scholar 

  • Hayashi Y, Sato N, Shinozaki A, Watanabe M (2015) Increase in peroxisome number and the gene expression of putative glyoxysomal enzymes in Chlamydomonas cells supplemented with acetate. J Plant Res 128:177–185

    CAS  PubMed  Google Scholar 

  • Hayashi Y, Shinozaki A (2012) Visualization of microbodies in Chlamydomonas reinhardtii. J Plant Res 125:579–586

    CAS  PubMed  Google Scholar 

  • Heifetz PB, Förster B, Osmond CB, Giles LJ, Boynton JE (2000) Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses. Plant Physiol 122:1439–1446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hemming D, Criddle RS, Hansen LD (1995) Effects of methanol on plant respiration. J Plant Physiol 146:193–198

  • Humby PL, Snyder E, Durnford G (2013) Conditional senescence in Chlamydomonas reinhardtii (Chlorophyceae). J Phycol 49:389–400

    CAS  PubMed  Google Scholar 

  • Jakopitsch C, Wanasinghe A, Jantschko W, Furtmuller PG, Obinger C (2005) Kinetics of interconversion of ferrous enzymes, compound II and compound III, of wild-type Synechocystis catalase–peroxidase and Y249F, proposal for the catalytic mechanism. J Biol Chem 280:9037–9042

    CAS  PubMed  Google Scholar 

  • Jones JG, Bellion E (1991) Methanol oxidation and assimilation in Hansenula polymorpha. Biochem J 280:475–481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kato J, Yamahara T, Tanaka K, Takio S, Satoh T (1997) Characterization of catalase from green algae Chlamydomonas reinhardtii. J Plant Physiol 151:262–268

    CAS  Google Scholar 

  • Kotzabasis K, Hatziathanasiou A, Bengoa-Ruigomez MV, Kentouri M, Divanach P (1999) Methanol as alternative carbon source for quicker efficient production of the microalgae Chlorella minutissima, role of the concentration and frequence of administration. J Biotechnol 70:357–362

    CAS  Google Scholar 

  • Lake V, Willows RD (2003) Rapid extraction of RNA and analysis of transcript levels in Chlamydomonas reinhardtii using real-time RT-PCR, magnesium chelatase chlH, chlD and chlI gene expression. Photosynth Res 77:69–76

    CAS  PubMed  Google Scholar 

  • Lauersen KJ, Willamme R, Coosemans N, Joris M, Kruse O, Remacle C (2016) Peroxisomal microbodies are at the crossroads of acetate assimilation in the green microalga Chlamydomonas reinhardtii. Algal Res 16:266–274

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    CAS  Google Scholar 

  • Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Kanakagiri S, Van K, He W, Spalding MH (2005) Disruption of the glycolate dehydrogenase gene in the high–CO2–requiring mutant HCR89 of Chlamydomonas reinhardtii. Can J Bot 83:820–833

    CAS  Google Scholar 

  • Navakoudis E, Ioannidis NE, Dörnemann D, Kotzabasis K (2007) Changes in the LHCII-mediated energy utilization and dissipation adjust the methanol-induced biomass increase. Biochim Biophys Acta 1767:948–955

    CAS  PubMed  Google Scholar 

  • Nelson EB, Tolbert NE (1970) Glycolate dehydrogenase in green algae. Arch Biochem Biophys 141:102–110

    CAS  PubMed  Google Scholar 

  • Nonomura A, Benson A (1992) The path of carbon in photosynthesis, improved crop yields with methanol. Proc Natl Acad Sci USA 89:9794–9798

    CAS  PubMed  Google Scholar 

  • Novikoff AB, Goldhscher S (1969) Visualization of peroxisomes (microbodies) and mitochondria with diaminobenzidine. J Histochem Cytochem 17:675–680

    CAS  PubMed  Google Scholar 

  • Okumura Y, Koyama J, Takaku H, Satoh H (2001) Influence of organic solvents on the growth of marine microalgae. Arch Environ Contam Toxicol 41:123–128

    CAS  PubMed  Google Scholar 

  • Popova AF, Parshikova TV, Kemp R (2004) Influence of catamine on structural-functional peculiarities of Chlamydomonas reinhardtii Dang. Algologia 14:229–239

    Google Scholar 

  • Ro Y, Kim E, Kim Y (2000) Enzyme activities related to the methanol oxidation of Mycobacterium sp. strain JC1 DSM 3803. J Microbiol 38:209–217

    CAS  Google Scholar 

  • Rochaix JD (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genet 29:209–230

    CAS  PubMed  Google Scholar 

  • Rudella A, Friso G, Alonso JM, Ecker JR, van Wijk KJ (2006) Down regulation of ClpR2 leads to reduced accumulation of the ClpPRS protease complex and defects in chloroplast biogenesis in Arabidopsis. Plant Cell 18:1704–1721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seligman AM, Karnovsky MJ, Wasserkrug HL, Hanker JS (1968) Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). J Cell Biol 38:1–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shao N, Beck CF, Lemaire SD, Krieger-Liszkay A (2008) Photosynthetic electron flow affects H2O2 signaling by inactivation of catalase in Chlamydomonas reinhardtii. Planta 228:1055–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen CH, Yeh KW (2010) Hydrogen peroxide mediates the expression of ascorbate–related genes in response to methanol stimulation in Oncidium. J Plant Physiol 167:400–407

    CAS  PubMed  Google Scholar 

  • Stepanov SS, Zolotareva ЕК (2013) Photosynthesis, respiration and growth of Chlamydomonas reinhardtii on exogenous ethanol application. Microbiol Biotechnol 4:63–71 (In Ukrainian)

    Google Scholar 

  • Stepanov SS, Zolotareva EK (2015) Methanol-induced stimulation of growth, intracellular amino acids, and protein content in Chlamydomonas reinhardtii. J Appl Phycol 27:1509–1516

    CAS  Google Scholar 

  • Theodoridou A, Dörnemann D, Kotzabasis K (2002) Light dependent induction of strongly increased microalgal growth by methanol. Biochim Biophys Acta 1573:189–198

    CAS  PubMed  Google Scholar 

  • Tural B, Moroney JV (2005) Regulation of the expression of photorespiratory genes in Chlamydomonas reinhardtii. Can J Bot 83:810–819

    CAS  Google Scholar 

  • von Dahl CC, Hävecker M, Schlögl R, Baldwin IT (2006) Caterpillar-elicited methanol emissions, a new signal in plant-herbivore interactions? Plant J 46:948–960

    Google Scholar 

  • Zbiec I, Karczmarczyk S, Podsiado C (2003) Response of some cultivated plants to methanol as compared to supplemental irrigation. Elec J Polish Agric Univ Agron 6:1–749

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhiy S. Stepanov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, S.S., Zolotareva, E.K. & Belyavskaya, N.A. The role of catalase in assimilation of exogenous methanol by Chlamydomonas reinhardtii cells. J Appl Phycol 32, 1053–1062 (2020). https://doi.org/10.1007/s10811-019-01962-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01962-y

Keywords

Navigation