Skip to main content

Advertisement

Log in

Repetitive extraction of botryococcene from Botryococcus braunii: a study of the effects of different solvents and operating conditions

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

As global temperatures continue to increase the move to renewable energy sources is becoming an essential step in achieving a sustainable future. Biofuels from microalgae, while still more expensive to produce than fossil fuels, are of great interest for the high microalgae biomass growth rates, high lipid content, relatively low water requirements, and ability to be grown on non-arable land. Botryococcus braunii is a freshwater green microalga which grows in colonies supported by an extracellular matrix (ECM) of liquid hydrocarbons. Recent studies have investigated the efficiency of non-destructive in situ solvent extraction of lipids from B. braunii with a variety of solvents. These lipids are encapsulated in a retaining wall coated by a sheath of amphiphilic fibrils which have been found to act as a barrier to solvents. By carrying out repeated in situ solvent extraction in a high shear environment, we found that access to the ECM can be significantly improved. Sustainable botryococcene and total lipid productivities respectively of 29.9 ± 8.5 and 71.3 ± 20.3 mg L−1 day−1 were achieved with heptane extraction, a shear rate of 415 s−1, initial culture density of 1.62 ± 0.12 g L−1, contact period of 4 h, and a recovery period of 3 days. Nutrient supplementation to replace those lost in the emulsion entrained biomass will be required to maintain a sustainable process. The combined presence of heptane with high shear proved to be an effective colony disruption method which could be an effective pre-treatment followed by a low shear, high solvent contact, and extraction method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Ghussain L (2018) Global warming: review on driving forces and mitigation. Environ Prog Sustain 38:1–9

    Google Scholar 

  • Atobe S, Saga K, Hasegawa F, Furuhashi K, Tashiro Y, Suzuki T, Okada S, Imou K (2015) Effect of amphiphilic polysaccharides released from Botryococcus braunii Showa on hydrocarbon recovery. Algal Res 10:172–176

    Article  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Bligh E, Dyer W (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitig Adapt Strat Global Change 18:13–25

    Article  Google Scholar 

  • Chaudry S, Bahri PA, Moheimani NR (2015) Pathways of processing of wet microalgae for liquid fuel production: a critical review. Renew Sust Energ Rev 52:1240–1250

    Article  CAS  Google Scholar 

  • de Boer K, Moheimani NR, Borowitzka MA, Bahri PA (2012) Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J Appl Phycol 24:1681–1698

    Article  CAS  Google Scholar 

  • Dixon RK (2013) Algae based biofuels. Mitig Adapt Strat Global Change 18:1–4

    Article  Google Scholar 

  • Eroglu E, Okada S, Melis A (2011) Hydrocarbon productivities in different Botryococcus strains: comparative methods in product quantification. J Appl Phycol 23:763–775

    Article  CAS  PubMed  Google Scholar 

  • Fon Sing S, Isdepsky A, Borowitzka MA, Moheimani NR (2013) Production of biofuels from microalgae. Mitig Adapt Strat Global Change 18:47–72

    Article  Google Scholar 

  • Frenz J, Largeau C, Casadevall E, Kollerup F, Daugulis A (1989) Hydrocarbon recovery and biocompatibility of solvents for extraction from cultures of Botryococcus braunii. Biotechnol Bioeng 34:755–762

    Article  CAS  PubMed  Google Scholar 

  • Furuhashi K, Noguchi T, Okada S, Hasegawa F, Kaizu Y, Imou K (2016) The surface structure of Botryococcus braunii colony prevents the entry of extraction solvents into the colony interior. Algal Res 16:160–166

    Article  Google Scholar 

  • García-Cubero R, Wang W, Martín J, Bermejo E, Sijtsma L, Togtema A, Barbosa MJ, Kleinegris DM (2018) Milking exopolysaccharides from Botryococcus braunii CCALA778 by membrane filtration. Algal Res 34:175–181

    Article  Google Scholar 

  • Gebreslassie BH, Waymire R, You F (2013) Sustainable design and synthesis of algae-based biorefinery for simultaneous hydrocarbon biofuel production and carbon sequestration. AICHE J 59:1599–1621

    Article  CAS  Google Scholar 

  • Griehl C, Kleinert C, Griehl C, Bieler S (2015) Design of a continuous milking bioreactor for non-destructive hydrocarbon extraction from Botryococcus braunii. J Appl Phycol 27:1833–1843

    Article  CAS  Google Scholar 

  • Griffiths MJ, Harrison ST (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Guionet A, Hosseini B, Teissié J, Akiyama H, Hosseini H (2017) A new mechanism for efficient hydrocarbon electro-extraction from Botryococcus braunii. Biotechnol Biofuels 10:39–48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hillen L, Pollard G, Wake L, White N (1982) Hydrocracking of the oils of Botryococcus braunii to transport fuels. Biotechnol Bioeng 24:193–205

    Article  CAS  PubMed  Google Scholar 

  • Hou L, Park H, Okada S, Ohama T (2014) Release of single cells from the colonial oil-producing alga Botryococcus braunii by chemical treatments. Protoplasma 251:191–199

    Article  CAS  PubMed  Google Scholar 

  • IRENA (2017) Renewable energy statistics 2017. The International Renewable Energy Agency, Abu Dhabi

    Google Scholar 

  • Ishimatsu A, Matsuura H, Sano T, Kaya K, Watanabe MM (2012) Biosynthesis of isoprene units in the C34 botryococcene molecule produced by Botryococcus braunii strain bot-22. Procedia Environ Sci 15:56–65

    Article  CAS  Google Scholar 

  • Jackson BA, Bahri PA, Moheimani NR (2017) Repetitive non-destructive milking of hydrocarbons from Botryococcus braunii. Renew Sust Energy Rev 79:1229–1240

    Article  CAS  Google Scholar 

  • Jackson BA, Bahri PA, Moheimani NR (2018a) Response of Botryococcus braunii to repetitive non-destructive extraction of lipids with heptane. In: Chemeca 2018. Institution of Chemical Engineers, Queenstown, pp 89.1–89.9

  • Jackson BA, Bahri PA, Moheimani NR (2018b) Shear tolerance and lipid content of Botryococcus braunii during and post non-destructive solvent extraction. Comput-Aided Chem Eng 44:1735–1740

  • Kawachi M, Tanoi T, Demura M, Kaya K, Watanabe MM (2012) Relationship between hydrocarbons and molecular phylogeny of Botryococcus braunii. Algal Res 1:114–119

    Article  Google Scholar 

  • Kim J, Yoo G, Lee H, Lim J, Kim K, Kim CW, Park MS, Yang J-W (2013) Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol Adv 31:862–876

    Article  CAS  PubMed  Google Scholar 

  • Kojima E, Zhang K (1999) Growth and hydrocarbon production of microalga Botryococcus braunii in bubble column photobioreactors. J Biosci Bioeng 87:811–815

    Article  CAS  PubMed  Google Scholar 

  • Leupold M, Hindersin S, Gust G, Kerner M, Hanelt D (2012) Influence of mixing and shear stress on Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii. J Appl Phycol 25:485–495

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Maxwell J, Douglas A, Eglington G, McCormick A (1968) The botryococcenes-hydrocarbons of novel structure from the alga Botryococcus braunii Kutzing. Phytochemistry 7:2157–2171

    Article  CAS  Google Scholar 

  • Mehta P, Jackson BA, Nwoba EG, Vadiveloo A, Bahri PA, Mathur AS, Moheimani NR (2019) Continuous non-destructive hydrocarbon extraction from Botryococcus braunii BOT-22. Algal Res 41:101537

    Article  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source of hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  CAS  PubMed  Google Scholar 

  • Metzger P, Rager M-N, Largeau C (2007) Polyacetals based on polymethylsqualene diols, precursors of algaenan in Botryococcus braunii race B. Org Geochem 38:566–581

    Article  CAS  Google Scholar 

  • Moheimani NR, Cord-Ruwisch R, Raes E, Borowitzka MA (2013) Non-destructive oil extraction from Botryococcus braunii (Chlorophyta). J Appl Phycol 25:1653–1661

    Article  CAS  Google Scholar 

  • Moheimani NR, Matsuura H, Watanabe MM, Borowitzka MA (2014) Non-destructive hydrocarbon extraction from Botryococcus braunii BOT-22 (race B). J Appl Phycol 26:1453–1463

    Article  CAS  Google Scholar 

  • Nakaji Y, Oya S-i, Watanabe H, Watanabe MM, Nakagawa Y, Tamura M, Tomishige K (2017) Production of gasoline fuel from alga-derived botryococcene by hydrogenolysis over ceria-supported ruthenium catalyst. ChemCatChem 9:2701–2708

    Article  CAS  Google Scholar 

  • Raheem A, Prinsen P, Vuppaladadiyam AK, Zhao M, Luque R (2018) A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J Clean Prod 181:42–59

    Article  CAS  Google Scholar 

  • Sim S-J, An JY, Kim B-W (2001) Two-phase extraction culture of Botryococcuss braunii producing long-chain unsaturated hydrocarbons. Biotechnol Lett 23:201–205

    Article  CAS  Google Scholar 

  • Singh B, Guldhe A, Rawat I, Bux F (2014) Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew Sust Energ Rev 29:216–245

    Article  CAS  Google Scholar 

  • Tsutsumi S, Saito Y, Matsushita Y, Aoki H (2018) Effect of mechanical pretreatment on hydrocarbon extraction from concentrated wet hydrocarbon-rich microalga, Botryococcus braunii. Energy Fuel 32:1761–1770

    Article  CAS  Google Scholar 

  • Wang B, Li Y, Wu N, Lan C (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718

    Article  CAS  PubMed  Google Scholar 

  • Weiss TL, Roth R, Goodson C, Vitha S, Black I, Azadi P, Rusch J, Holzenburg A, Devarenne TP, Goodenough U (2012) Colony organisation in the green alga Botryococcus braunii (race B) is specified by a complex extracellular matrix. Eukaryot Cell 11:1424–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimura T, Okada S, Honda M (2013) Culture of the hydrocarbon producing microalga Botryococcus braunii strain Showa: optimal CO2, salinity, temperature, and irradiance conditions. Bioresour Technol 133:232–239

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Cheng L-H, Xu X-H, Zhang L, Chen H-L (2013) Application of membrane dispersion for enhanced lipid milking from Botryococcus braunii FACHB 357. J Biotechnol 165:22–29

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent A. Jackson.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, B.A., Bahri, P.A. & Moheimani, N.R. Repetitive extraction of botryococcene from Botryococcus braunii: a study of the effects of different solvents and operating conditions. J Appl Phycol 31, 3491–3501 (2019). https://doi.org/10.1007/s10811-019-01883-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01883-w

Keywords

Navigation