Skip to main content

Advertisement

Log in

Intracellular uptake and reduction of hexavalent chromium by the cyanobacterium Synechocystis sp. PUPCCC 62

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A hexavalent chromium-tolerant cyanobacterial strain isolated from the Satluj River, Ludhiana, India was identified as Synechocystis sp. strain PUPCCC 62 based on the 16S rRNA gene and phycocyanin cpcBA-intergenic spacer sequence analysis. Cr IC50 for the organism was determined to be 100 μmol L−1. The organism removed nearly four times more Cr(VI) from imidazole-HCl buffer (200 mmol L−1, pH 6.0) (250 nmol Cr(VI) mg−1 protein) compared with basal medium (59 nmol Cr(VI) mg−1 protein) in 8 h. Temperature of 28 °C, pH of 6.0, and biomass load of 200 μg protein mL−1 were found to be the optimum parameters for Cr(VI) bioremoval from the buffer solution. Cr(VI) bioremoval by the cyanobacterium was light/photosynthesis dependent. Along with Cr(VI) bioremoval, its reduction to Cr(III) was also demonstrated. In a 6-h period, the amount of Cr(VI) in the solution decreased to 7.3 μmol and the amount of Cr(III) increased to 2.7 μmol from initial amount of 10 μmol Cr(VI). Both Cr(VI) and Cr(III) were observed in the solution only and not on the surface or inside the cells. It has been demonstrated that the organism reduced Cr(VI) to Cr(III) intracellularly and excreted it outside the cells. This is the first report on intracellular reduction of Cr(VI) by a cyanobacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amoozegar MA, Ghasemi A, Razavi MR, Naddaf S (2007) Evaluation of hexavalent chromium reduction by chromate resistant moderately halophile, Nesterenkonia sp. strain MF2. Process Biochem 42:1475–1479

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association), American Water Works Association (AWWA), Water Environment Federation (WEF) (2005) Standard methods for the examination of water and wastewater, 21st edn. APHA, Washington DC, pp 3–20

    Google Scholar 

  • Asatiani NV, Abuladze MK, Kartvelishvili TM, Bakradze NG, Sapojnikov NA, Tsibakhashvili NY, Tabatadze LV, Lejava LV, Asanishvili LL, Holman HY (2004) Effect of chromium (VI) action on Arthrobacter oxydans. Curr Microbiol 49:321–326

    Article  CAS  PubMed  Google Scholar 

  • Bae WC, Lee HK, Choe YC, Jahng DK, Lee SH, Kim SJ, Lee JH, Jeong BC (2005) Purification and characterization of NADPH dependent Cr(VI) reductase from Escherichia coli ATCC 33456. J Microbiol 43:21–27

    CAS  PubMed  Google Scholar 

  • Beleza VM, Boaventura RA, Almeida MF (2001) Kinetics of chromium removal from spent tanning liquors using acetylene production sludge. Environ Sci Technol 35:4379–4383

    Article  CAS  PubMed  Google Scholar 

  • Brito F, Ascanio J, Mateo S, Hermindez C, Araujo L, Gili P, Martin-Zarza P, Dominguez S, Mederos A (1997) Equilibria of chromate (VI) species in acid medium and ab initio studies of these species. Polyhedron 16:3835–3846

    Article  CAS  Google Scholar 

  • Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interaction of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  PubMed  Google Scholar 

  • Codd R, Dillon CT, Levina A, Lay PA (2001) Studies on the genotoxicity of chromium: from the test tube to the cell. Coord Chem Rev 216–217:537–582

    Article  Google Scholar 

  • Colica G, Mecarozzi PC, De Philippis R (2010) Treatment of Cr(VI)-containing waste water with exopolysaccharide-producing cyanobacteria in pilot flow through and batch systems. Appl Microbiol Biotechnol 87:1953–1961

  • Czako-Ver K, Batie M, Raspor P, Sipiczki M, Pasti M (1999) Hexavalent chromium uptake by sensitive and tolerant mutants of Schizosaccharomyces pombe. FEMS Microbiol Lett 178:109–115

    Article  CAS  PubMed  Google Scholar 

  • Das S, Patnaik SC, Sahu HK, Chakraborty A, Sudarshan M, Thatoi HN (2013) Heavy metal contamination, physico-chemical and microbial evaluation of water samples collected from chromite mine environment of Sukinda, India. Trans Nonferr Metal Soc 23:484–493

    Article  CAS  Google Scholar 

  • Decorosi F, Tatti E, Mini A, Giovannetti L, Viti C (2009) Characterization of two genes involved in chromate resistance in a Cr(VI)-hyper-resistant bacterium. Extremophiles 13:917–923

    Article  CAS  PubMed  Google Scholar 

  • Essahale A, Malki M, Marın I, Moumni M (2012) Hexavalent chromium reduction and accumulation by Acinetobacter AB1 isolated from Fez Tanneries in Morocco. Indian J Microbiol 52:48–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Faisal M, Hasnain S (2004) Comparative study of chromium (VI) reduction in industrial effluents by Ochrobactrum intermedium vs. Brevibacterium sp. Biotechnol Lett 26:1623–1628

  • Focardi S, Pepi M, Landi G, Gasperini S, Ruta M, Biasio PD, Focardi SE (2012) Hexavalent chromium reduction by whole cells and cell free extract of the moderate halophilic bacterial strain Halomonas sp. TA-04. Int Biodeter Biodegrad 66:63–70

    Article  CAS  Google Scholar 

  • Fourest E, Canal C, Roux JC (1994) Improvement of heavy metal biosorption by fungal mycelia by-products: mechanism and influence of pH. Appl Microbiol Biotechnol 37:399–403

    Article  Google Scholar 

  • Ganguli A, Tripathi AK (2002) Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl Microbiol Biotechnol 58:416–420

    Article  CAS  PubMed  Google Scholar 

  • Gokhale SV, Jyoti KK, Lele SS (2008) Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour Technol 99:3600–3608

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Bhagwat SG, Sainis JK (2013) Synechococcus elongates PCC 7942 is more tolerant to chromate as compared to Synechocystis sp. PCC 6803. Biometals 26:309–319

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Jain R, Mittal A, Mathur M, Sikarwar S (2007) Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J Colloid Interface Sci 309:464–469

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Sharma S (2003) Removal of zinc from aqueous solutions using bagasse fly ash—a low cost adsorbent. Ind Eng Chem Res 42:6619–6624

    Article  CAS  Google Scholar 

  • Hameed A, Hasnain S (2012) Isolation and molecular identification of metal resistant Synechocystis from polluted areas. Afr J Microbiol Res 6:648–652

    CAS  Google Scholar 

  • He M, Li X, Liu H, Miller SJ, Wang G, Rensing C (2011) Characterization and genomic analysis of a chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J Hazard Mater 185:682–688

    Article  CAS  PubMed  Google Scholar 

  • Jain AK, Gupta VK, Bhatnagar A, Suhas (2003) A comparative study of adsorbents prepared from industrial wastes for removal of dyes. Sep Sci Technol 38:463–481

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Jain S, Suhas (2004) Removal of chlorophenols using industrial wastes. Environ Sci Technol 38:1195–1200

    Article  CAS  PubMed  Google Scholar 

  • James AM, Stephen SL, Jenny RR, Claudia S, Shih-Houng Y, Xianglin S, Michael DT (2005) Effect of stainless steel manual metal arc welding fume on free radical production, DNA damage, and apoptosis induction. Mol Cell Biochem 279:17–23

    Article  Google Scholar 

  • Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Tech 29:1–46

    Article  CAS  Google Scholar 

  • Komárek J, Anagnostidis K (1998) Cyanoprokaryota 1. Teil: Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa 19/1 Gustav Fischer Jena pp. 548

  • Lefebvre DD, Kelly D, Budd K (2007) Biotransformation of Hg(II) by cyanobacteria. App Environ Microbiol 73:243–249

    Article  CAS  Google Scholar 

  • Levis AG, Bianchi V (1982) Mutagenic and cytogenetic effect of chromium compounds. In: Langard S (ed) Biological and environmental aspect of chromium. Elsevier, Amsterdam, pp 171–208

    Chapter  Google Scholar 

  • Liu YG, Xu WH, Zeng GM, Li X, Gao H (2006) Cr(VI) reduction by Bacillus sp. isolated from chromium landfill. Process Biochem 41:1981–1986

    Article  CAS  Google Scholar 

  • Losi ME, Amrhein C, Frankenberger WT Jr (1994) Environmental biochemistry of chromium. Rev Environ Contam 36:91–121

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Ma Z, Zhu W, Long H, Chai L, Wang Q (2007) Chromate reduction by resting cells of Achromobacter sp. Ch-1 under aerobic conditions. Process Biochem 42:1028–1032

    Article  CAS  Google Scholar 

  • Mabbett AN, Macaskie LE (2001) A novel isolate of Desulfovibrio sp. with enhanced ability to reduce Cr(VI). Biotechnol Lett 23:683–687

    Article  CAS  Google Scholar 

  • Mallick N, Rai LC (1993) Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris. World J Microbiol Biotechnol 9:196–201

    Article  CAS  PubMed  Google Scholar 

  • Max C, Catherine K (2006) Toxicity and carcinogenicity of chromium compound in humans. Crit Rev Toxicol 36:151–163

    Google Scholar 

  • Meikle AJ, Gadd GM, Reed RH (1990) Manipulation of yeast for transport studies: critical association of cultural and experimental procedure. Enz Microb Technol 12:865–872

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Malviya A, Gupta VK (2010) Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. J Colloid Interface Sci 344:497–507

    Article  CAS  PubMed  Google Scholar 

  • Myers CR, Carstens BP, Antholine WE, Myers JM (2000) Chromium (VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J Appl Microbiol 88:98–106

    Article  CAS  PubMed  Google Scholar 

  • Nacorda JO, Martinez-Goss MR, Torreta NK (2010) Bioremoval and bioreduction of chromium(VI) by the green microalga, Chlorella vulgaris Beij., isolated from Laguna de Bay, Philippines. Philipp J Sci 139:181–188

    Google Scholar 

  • Narayani M, Shetty VK (2014) Reduction of hexavalent chromium by a novel Ochrobactrum sp.-microbial characteristics and reduction kinetics. J Basic Microbiol 54:296–305

  • Neilan BA, Jacobs D, Goodmann A (1995) Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl Environ Microbiol 61:3875–3883

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nepple BB, Kessi J, Bachofen R (2000) Chromate reduction by Rhodobacter sphaeroides. J Ind Microbiol Biotechnol 25:198–203

    Article  CAS  Google Scholar 

  • Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788–1795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pattanapipitpaisal P, Brown NL, Macaskie LF (2001) Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI) contaminated site. Appl Microbiol Biotechnol 57:257–261

    Article  CAS  PubMed  Google Scholar 

  • Safferman RS, Morris ME (1964) Growth characteristics of the blue green algal virus LPP-1. J Bacteriol 88:771–775

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saleh TA, Gupta VK (2012) Column with CNT/magnesium oxide composite for lead(II) removal from water. Environ Sci Pollut Res 19:1224–1228

    Article  CAS  Google Scholar 

  • Sen M, Dastidar MG (2010) Chromium removal using various biosorbents. Iran J Environ Health Sci Eng 7:182–190

    Google Scholar 

  • Shukla D, Vankar PS, Srivastava SK (2012) Bioremediation of hexavalent chromium by a cyanobacterial mat. Appl Water Sci 2:245–251

    Article  CAS  Google Scholar 

  • Singh DP, Khattar JIS, Kaur M, Kaur G, Gupta M, Singh Y (2013) Anilofos tolerance and its mineralization by the cyanobacterium Synechocystis sp. strain PUPCCC 64. PLoS ONE 8(1):e53445

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (Order Chroococcales). Bact Rev 35:171–205

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony method. Mol Bio Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Vogel AI (1978) Text book of quantitative inorganic analysis, 4th edn. Longman, New York

    Google Scholar 

  • Yewalkar SN, Dhumal KN, Sainis JK (2007) Chromium(VI)-reducing Chlorella spp. isolated from disposal sites of paper-pulp and electroplating industry. J Appl Phycol 19:459–465

    Article  CAS  Google Scholar 

  • Zayed A, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Head of the Department of Botany, Punjabi University, Patiala and Coordinator, SAP-II of the University Grants Commission, New Delhi for laboratory facilities. Infrastructural facility provided by the Director of CSIR-IHBT, Palampur, India for the molecular biology work is also acknowledged. Shahnaz thanks the University Grants Commission, New Delhi for providing financial assistance in the form of Maulana Azad National Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. S. Khattar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattar, J.I.S., Parveen, S., Singh, Y. et al. Intracellular uptake and reduction of hexavalent chromium by the cyanobacterium Synechocystis sp. PUPCCC 62. J Appl Phycol 27, 827–837 (2015). https://doi.org/10.1007/s10811-014-0374-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0374-7

Keywords

Navigation