Skip to main content
Log in

Effects of the algicides CuSO4 and NaOCl on various physiological parameters in the harmful dinoflagellate Cochlodinium polykrikoides

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The marine dinoflagellate Cochlodinium polykrikoides has spread worldwide and is responsible for harmful algal blooms. The chemical biocides, copper sulfate (CuSO4) and sodium hypochlorite (NaOCl), are known to be effective in removing bloom-forming or biofouling organisms. Here, we assessed the biocidal efficiency and toxicological properties of NaOCl and CuSO4 on the physiological and catalase responses of C. polykrikoides. The endpoints used were cell counts, pigment content, chlorophyll autofluorescence (CAF), and antioxidant catalase (CAT) activity. The test organism showed a dose-dependent decrease in growth rate against the algicides; 72-h median effective concentrations (EC50) were 0.584 and 0.633 mg L–1 for NaOCl and CuSO4, respectively. The decrease in pigment levels and CAF intensity showed that NaOCl and CuSO4 might affect the photosynthetic processes of the exposed cells. Furthermore, a considerable increase in CAT activity in the cells was detected, indicating that the algicides might generate reactive oxygen species, thereby markedly damaging the cells. These results suggest that the test algicides are very effective in removing C. polykrikoides by inducing cellular stress and inhibiting cell recovery at higher concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdul-Baki AA (1974) Pitfalls in using sodium hypochlorite as a seed disinfectant in 14C incorporation studies. Plant Physiol 53:768–771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Albrich JM, Mccarthy CA, Hurst JK (1981) Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase. Proc Natl Acad Sci U S A 78:210–214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • American Public Health Association (APHA) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Anderson DM (2007) The ecology and oceanography of harmful algal blooms: multidisciplinary approaches to research and management. IOC Technical Series 74, UNESCO 2007, IOC/2007/TS/74. http://lib.ruppin.ac.il/multimedia_michmoret/Anderson_BruunMemorialLecture2005.pdf. Accessed 29 Jan 2014

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Bonini MG, Siraki AG, Bhattacharjee S, Mason RP (2007) Glutathione-induced radical formation on lactoperoxidase does not correlate with the enzyme's peroxidase activity. Free Radic Biol Med 42:985–992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calderon RL (2000) The epidemiology of chemical contaminants of drinking water. Food Chem Toxicol 38:513–520

    Article  Google Scholar 

  • Cervantes C, Gutierrez-Corona F (1994) Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev 14:121–137

    Article  CAS  PubMed  Google Scholar 

  • Ebenezer V, Ki J-S (2013) Physiological and biochemical responses of the marine dinoflagellate Prorocentrum minimum exposed to the oxidizing biocide chlorine. Ecotoxicol Environ Saf 92:129–134

    Article  CAS  PubMed  Google Scholar 

  • Gant VA, Wren MWD, Rollins MSM, Jeanes A, Hickok SS, Hall TJ (2007) Three novel highly charged copper-based biocides: safety and efficacy against healthcare-associated organisms. J Antimicrob Chemother 62:294–299

    Article  Google Scholar 

  • García-Villada L, Rico M, Altamirano M, Sánchez-Martín L, Lopez-Rodas V, Costas E (2004) Occurrence of copper resistant mutants in the toxic cyanobacterium Microcystis aeruginosa: characterization and future implications in the use of copper sulphate as an algaecide. Water Res 38:2207–2213

    Article  PubMed  Google Scholar 

  • Gómez JM, Jiménez A, Olmos E, Sevilla F (2004) Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. J Exp Bot 55:119–130

    Article  PubMed  Google Scholar 

  • Gregg MD, Hallegraef GM (2007) Efficacy of three commercially available ballast water biocides against vegetative microalgae, dinoflagellate cysts and bacteria. Harmful Algae 6:567–584

    Article  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine plankton diatoms. I. Cyclotella nana Hustedt and Detonula covervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Ki JS (2012) Differential transcription of heat shock protein 90 (HSP90) in the dinoflagellate Prorocentrum minimum by copper and endocrine-disrupting chemicals. Ecotoxicology 21:1448–1457

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han FX, Hargreaves JA, Kingery WL, Huggett DB, Schlenk DK (2001) Accumulation, distribution, and toxicity of copper in sediments of catfish ponds receiving periodic copper sulfate applications. J Environ Qual 30:912–919

    Article  CAS  PubMed  Google Scholar 

  • Haas CN (1999) Disinfection. In: Letterman RD (ed) Water quality and treatment a handbook of community water supplies. American Water Works Association 5th edn. McGraw-Hill, New York, pp 14.1–14.60.

  • Hilgren J, Swanson KM, Diez-Gonzalez F, Cords B (2007) Inactivation of Bacillus anthracis spores by liquid biocides in the presence of food residue. Appl Environ Microbiol 73:6370–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hinton DE, Lauren DJ (1990) Liver structural alterations accompanying chronic toxicity in fishes potential bio-markers of exposure. In: McCarthy JF, Shugart LR (eds) Biomarkers of environmental contamination. Lewis Publishers, Boca Raton, pp 17–57

    Google Scholar 

  • Jegatheesan V, Kim S-H, Joo CK, Baoyu G (2009) Evaluating the effects of granular and membrane filtrations on chlorine demand in drinking water. J Environ Sci 21:23–29

    Article  CAS  Google Scholar 

  • Jeong HJ, Kim HR, Kim KI, Kim KY, Park KH, Kim ST, Yoo YD, Song JY, Kim JS, Seong KA, Yih WH, Pae SJ, Lee CH, Huh MD, Lee SH (2002) NaOCl produced by electrolysis of natural seawater as a potential method to control marine red tide dinoflagellates. Phycologia 41:643–656

    Article  Google Scholar 

  • Kim CK, Lee SG, Kim HG (2000) Biochemical responses of fish exposed to a harmful dinoflagellate Cochlodinium polykrikoides. J Exp Mar Biol Ecol 254:131–141

    Article  CAS  PubMed  Google Scholar 

  • Kim DI, Matsuyama Y, Nagasoe S, Yamaguchi M, Yoon YH, Oshima Y, Imada N, Honjo T (2004) Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). J Plankton Res 26:61–66

    Article  Google Scholar 

  • Kim HG (2006) Mitigation and controls of HABs. Ecological Studies 189:327–338

    Google Scholar 

  • Kim J-G, Kim B, Lee C-G (2007) Alga-lytic activity of Pseudomonas fluorescens against the red tide causing marine alga Heterosigma akashiwo (Raphidophyceae). Biol Control 41:296–303

    Article  Google Scholar 

  • Kudela RM, Gobler CJ (2012) Harmful dinoflagellate blooms caused by Cochlodinium sp.: global expansion and ecological strategies facilitating bloom formation. Harmful Algae 14:71–86

    Article  Google Scholar 

  • Lee YS (2008) Utilization of various nitrogen, phosphorus, and selenium compounds by Cochlodinium polykrikoides. J Environ Biol 29:799–804

    CAS  PubMed  Google Scholar 

  • Letelier ME, Lepe AM, Faundez M, Salazar J, Marin R, Aracena P, Speisky H (2005) Possible mechanisms underlying copper-induced damage in biological membranes leading to cellular toxicity. Chem Biol Interact 151:71–82

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Trush MA (1993) DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu(II)/Cu(I)) redox cycle and reactive oxygen generation. Carcinogenesis 14:1303–1311

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Gao K, Li W, Xu Z, Lin H, Zheng Y (2011) Impacts of chlorination and heat shocks on growth, pigments and photosynthesis of Phaeodactylum tricornutum (Bacillariophyceae). J Exp Mar Biol Ecol 397:214–219

    Article  CAS  Google Scholar 

  • Mahawar M, Tran V, Sharp JS, Maier RJ (2011) Synergistic roles of Helicobacter pylori methionine sulfoxide reductase and GroEL in repairing oxidant-damaged catalase. J Biol Chem 286:19159–19169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nancharaiah YV, Rajadurai M, Venugopalan VP (2007) Single cell level microalgal ecotoxicity assessment by confocal laser scanning microscopy and digital image analysis. Environ Sci Technol 41:2617–2621

    Article  CAS  PubMed  Google Scholar 

  • Ogawa K (2005) Glutathione - associated regulation of plant growth and stress responses. Antioxid Redox Signal 7:973–981

    Article  CAS  PubMed  Google Scholar 

  • Oliveira-Filho ECD, Lopes RM, Paumgartten FJER (2004) Comparative study on the susceptibility of freshwater species to copper-based pesticides. Chemosphere 56:369–374

    Article  PubMed  Google Scholar 

  • Organisation for Economic Cooperation and Development (OECD) (2011) OECD guidelines for the testing of chemicals, Test no. 201: freshwater algal and cyanobacteria growth inhibition test. OECD Publications, Paris

    Google Scholar 

  • Oukarroum A, Perreault F, Popovic R (2012) Interactive effects of temperature and copper on photosystem II photochemistry in Chlorella vulgaris. J Photochem Photobiol B 110:9–14

    Article  CAS  PubMed  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, p 84

    Book  Google Scholar 

  • Patil JS, Jagadeesan V (2011) Effect of chlorination on the development of marine biofilms dominated by diatoms. Biofouling 27:241–254

    Article  CAS  PubMed  Google Scholar 

  • Phe MH, Dossot M, Guilloteau H, Block JC (2005) Nucleic acid fluorochromes and flow cytometry prove useful in assessing the effect of chlorination on drinking water bacteria. Water Res 39:3618–3628

    Article  CAS  PubMed  Google Scholar 

  • Qian H, Yu S, Sun Z, Xie X, Liu W, Fu Z (2010) Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa. Aquat Toxicol 99:405–12

    Article  CAS  PubMed  Google Scholar 

  • Radocanović TB, Borković-Mitić SS, Perendija BR, Despotović SG, Pavlović SZ, Cakić PD, Saičić ZS (2010) Superoxide dismutase and catalase activities in the liver and muscle of barbel (Barbus barbus) and its intestinal parasite (Pomphoryinchus laevis) from the Danube river, Serbia. Arch Biol Sci 62:97–105

    Article  Google Scholar 

  • Raman RK, Cook BC (1990) Guidelines for applying copper sulphate as an algicide: Lake Laomi field study, vol 217. Illinois State Water Survey, Springfield, pp 785–2800

    Google Scholar 

  • Richlen MA, Morton SL, Jamali EA, Rajan A, Anderson DA (2010) The catastrophic 2008-2009 red tide in the Arabian Gulf region, with observations on the identification and phylogeny of fish-killing dinoflagellate Cochlodinium polykrikoides. Harmful Algae 9:163–172

    Article  Google Scholar 

  • Santo CE, Taudte N, Nies DH, Grass G (2008) Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces. Appl Environ Microbiol 74:977–986

    Google Scholar 

  • Sengo MR, Anderson DM (2004) Controlling harmful algal blooms through clay flocculation. J Eukaryot Microbiol 51:169–172

    Article  Google Scholar 

  • Shao H-B, Chu L-Y, Lu Z-H, Kang C-M (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    Article  CAS  PubMed Central  Google Scholar 

  • Song Y-C, Sivakumar S, Woo J-H, Ko S-J, Hwang E-J, Jo Q (2010) Removal of Cochlodinium polykrikoides by dredged sediment: a field study. Harmful Algae 9:227–232

    Article  CAS  Google Scholar 

  • Soto P, Gaete H, Hidalgo ME (2011) Assessment of catalase activity, lipid peroxidation, chlorophyll-a and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc. Lat Am J Aquat Res 39:280–285

    Article  Google Scholar 

  • Stauber JL, Franklin NM, Adams MS (2002) Applications of flow cytometry to ecotoxicity testing using microalgae. Trends Biotechnol 20:141–143

    Article  CAS  PubMed  Google Scholar 

  • Stiborová M, Doubravová M, Březinova A, Friedrich A (1986) Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley (Hordeum vulgare L.). Photosynthetica 20:418–425

    Google Scholar 

  • Teisseyre A, Mozrzymas JW (2006) The inhibitory effect of copper ions on lymphocyte KVI.3 potassium channels. J Physiol Pharmacol 57:301–314

    CAS  PubMed  Google Scholar 

  • Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–1374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trampe E, Kolbowski J, Schreiber U, Kühl M (2011) Rapid assessment of different oxygenic phototrophs and single-cell photosynthesis with multicolour variable chlorophyll fluorescence imaging. Mar Biol 158:1667–1675

    Article  CAS  Google Scholar 

  • Trivedi MH, Sangai NP, Renuka A (2012) Assessment of toxicity of copper sulphate pentahydrate on oxidative stress indicators on liver of gold fish (Carassius auratus). Bull Environ Pharmacol Life Sci 1:52–57

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (2009) Reregistration eligibility decision (RED) for coppers. U.S. Environmental Protection Agency, Washington, DC. http://www.epa.gov/oppsrrd1/REDs/copper_red_amend.pdf. Accessed 29 Jan 2014

  • Verhoeven RL, Eloff JN (1979) Effect of lethal concentrations of copper on the ultrastructure and growth of Microcystis. Proc Electron Microsc Soc South Afr 9:161–162

    Google Scholar 

  • Viriyatum R (2013) Effectiveness of coated, controlled-release copper sulfate as an algicide for phytoplankton control in ponds. PhD dissertation, Auburn University, Auburn, Alabama. http://hdl.handle.net/10415/3585. Accessed 29 Jan 2014

  • Watson CA, Yanong RPE (2006) Use of copper in freshwater aquaculture and farm ponds. University of Florida, Gainesville. FL. http://edis.ifas.ufl.edu/FA008. Accessed 29 Jan 2014

  • White GC (1999) Handbook of chlorination and alternative disinfectants, 4th edn. John Wiley and Sons Inc., New York, pp 212–287

    Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (nos. 2012-0001741, 2013-044476), a grant from the National Fisheries Research and Development (NFRDI) funded to J.-S. Ki, and a 2014 Research Grant from Sangmyung University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jang-Seu Ki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Variation in chlorophyll autoflourescence in C. polykrikoides after 6 and 72 h exposure to algicides NaOCl (upper panel) and CuSO4 (lower panel). Scale = 20 μm. (PPT 491 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebenezer, V., Lim, W.A. & Ki, JS. Effects of the algicides CuSO4 and NaOCl on various physiological parameters in the harmful dinoflagellate Cochlodinium polykrikoides . J Appl Phycol 26, 2357–2365 (2014). https://doi.org/10.1007/s10811-014-0267-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0267-9

Keywords

Navigation