Skip to main content

Advertisement

Log in

Sustainability and cyanobacteria (blue-green algae): facts and challenges

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cyanobacteria (blue-green algae) are widely distributed Gram-negative oxygenic photosynthetic prokaryotes with a long evolutionary history. They have potential applications such as nutrition (food supplements and fine chemicals), in agriculture (as biofertilizer and in reclamation of saline USAR soils) and in wastewater treatment (production of exopolysaccharides and flocculants). In addition, they also produce wide variety of chemicals not needed for their normal growth (secondary metabolites) which show powerful biological activities such as strong antiviral, antibacterial, antifungal, antimalarial, antitumoral and anti-inflammatory activities useful for therapeutic purposes. In recent years, cyanobacteria have gained interest for producing biofuels (both biomass and H2 production). Because of their simple growth needs, it is potentially cost-effective to exploit cyanobacteria for the production of recombinant compounds of medicinal and commercial value. Recent advances in culture, screening and genetic engineering techniques have opened new ways to exploit the potential of cyanobacteria. This review analyses the sustainability of cyanobacteria to solve global problems such as food, energy and environmental degradation. It emphasizes the need to adopt multidisciplinary approaches and a multi-product production (biorefinery) strategy to harness the maximum benefit of cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahuja P, Gupta R, Saxena RK (1999) Zn2+ biosorption by Oscillatoria anguistissima. Process Biochem 34:77–85

    Article  CAS  Google Scholar 

  • Aiyer RS, Sulahudean S, Venkataraman GS (1972) Long-term algalization field trial with high yielding rice varieties. Indian J Agric Sci 42:380–383

    Google Scholar 

  • Ananyev G, Carrieri D, Dismukes GC (2008) Optimization of metabolic capacity and flux through environmental clues to maximize hydrogen production by the cyanobacterium “Arthrospira (Spirulina) maxima”. Appl Environ Microbiol 74:6102–6113

    Article  CAS  PubMed  Google Scholar 

  • Angermayr SA, Hellingwerf KJ, Lindblad P, Teixera de Mattos MJ (2009) Energy biotechnology with cyanobacteria. Curr Opin Biotechnol 20:257–263

    Article  CAS  PubMed  Google Scholar 

  • Antal TK, Lindblad P (2005) Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol 98:114–120

    Article  CAS  PubMed  Google Scholar 

  • Aoyama K, Uemura I, Miyake J et al (1997) Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis. J Ferment Bioeng 83:17–20

    Article  CAS  Google Scholar 

  • Asada Y, Miyake M, Miyake J et al (1999) Photosynthetic accumulation of poly-(hydroxybutyrate) by cyanobacteria—the metabolism and potential for CO2 recycling. Int J Biol Macromol 25:37–42

    Article  CAS  PubMed  Google Scholar 

  • Atkins EDT (1986) Biomolecular structures of naturally occurring carbohydrate polymers. Int J Biol Macromol 8:323–329

    Article  CAS  Google Scholar 

  • Bagu JR, Sykes BD, Craig MM, Holmes CFB (1997) A molecular basis for different interactions of marine toxins with protein phosphatase-1, molecular modes for bound motuporin, microcystins, okadaic acid and calyculin A. J Biol Chem 272:5087–5089

    Article  CAS  PubMed  Google Scholar 

  • Banker R, Carmeli S, Werman M, Teltsch B, Porat R, Sukenik A (2001) Uracil moiety is required for toxicity of the cyanobacterial hepatotoxin cylindrospermopsin. J Toxicol Environ Health 62:281–288

    Article  CAS  Google Scholar 

  • Barbaras D, Kaiser M, Brunb R, Gademann K (2008) Potent and selective antiplasmodial activity of the cyanobacterial alkaloid nostocarboline and its dimers. Bioorg Med Chem Lett 18:4413–4415

    Article  CAS  PubMed  Google Scholar 

  • Bardach JE, Ryther JH, McLarney WO (1972) Aquaculture: the farming and husbandry of fresh water and marine organisms. Wiley, New York

    Google Scholar 

  • Bar-Or Y, Shilo M (1987) Characterization of macromolecular flocculants produced by Phormidium sp. strain J1 and by Anabaenopsis circularis. Appl Environ Microbiol 53:2226–2230

    CAS  PubMed  Google Scholar 

  • Barrow RA, Hemscheidt T, Liang J, Paik S, Moore RE, Tius MA (1995) Total synthesis of cryptophycins. Revision of the structures of cryptophycins A and C. J Am Chem Soc 117:2479–2490

    Article  CAS  Google Scholar 

  • Becher PG, Beuchat J, Gademann K, Jüttner F (2005) Nostocarboline: isolation and synthesis of a new cholinesterase inhibitor from Nostoc 78-12A. J Nat Prod 68:1793–1795

    Article  CAS  PubMed  Google Scholar 

  • Becker E, Jakover B, Luft D, Schmuclling RM (1986) Clinical and biochemical evaluations of the alga Spirulina with regard to its application in the treatment of obesity: a double blind cross-over study. Nutr Rep Int 33:565–574

    Google Scholar 

  • Beiderbeck H, Taraz K, Budzikiewicz H, Walsby AEZ (2000) Anachelin, the siderophore of the cyanobacterium Anabaena cylindrica CCAP 1403/2A. Z Naturforsch C 55:681–687

    CAS  PubMed  Google Scholar 

  • Belnap J (2003) The world at your feet: desert biological soil crusts. Front Ecol Environ 1:181–189

    Article  Google Scholar 

  • Benemann JR, Weissman JC (1976) Biophotolysis: problems and prospects. In: Schlegel HG, Bamen J (eds) Microbial energy conversion. Erich Goltze KG, Göttingen, pp 413–426

    Google Scholar 

  • Benemann JR, Weissman JC, Koopman BL, Oswald WJ (1977) Energy production by microbial photosynthesis. Nature 268:19–23

    Article  CAS  Google Scholar 

  • Berman FW, Gerwick WH, Murray TF (1999) Antillatoxin and kalkitoxin, ichthyotoxins from the tropical cyanobacterium Lyngbya majuscula, induce distinct temporal patterns of NMDA receptor-mediated neurotoxicity. Toxicon 37:1645–1648

    Article  CAS  PubMed  Google Scholar 

  • Berry JP, Gantar M, Perez MH, Berry G, Noriega FG (2008) Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Mar Drugs 6:117–146

    Article  CAS  PubMed  Google Scholar 

  • Biagi PL, Bordoni A, Masi M, Ricci G, Fanelli C, Patrizi A, Ceccolini E (1988) A long term study on the use of evening primrose oil (Efamol) in atopic children. Drugs Exp Clin Res 14:285–290

    CAS  PubMed  Google Scholar 

  • Bibo L, Yan G, Bangding X, Jiantong L, Yongding L (2008) A laboratory study on risk assessment of microcystin-RR in cropland. J Environ Manage 86:556–574

    Article  CAS  Google Scholar 

  • Bister B, Keller S, Baumann HI, Nicholson G, Weist S, Jung G, Süssmuth RD, Juüttner FJ (2004) Cyanopeptolin 963A, a chymotrypsin inhibitor of Microcystis PCC 7806. J Nat Prod 67:1755–1757

    Article  CAS  PubMed  Google Scholar 

  • Block DL, Melody I (1992) Efficiency and cost goals for photo-enhanced hydrogen production processes. Int J Hydrogen Energy 17:853–861

    Article  CAS  Google Scholar 

  • Bonjouklian R, Smitka TA, Doolin LE, Molloy RM, Debono M, Shaffer SA, Moore RE, Stewart JB, Patterson GML (1991) Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis. Tetrahedron 47:7739

    Article  CAS  Google Scholar 

  • Borowitzka LJ, Demmerle S, Mackay MA, Norton RS et al (1980) Carbon-13 nuclear magnetic resonance study of osmoregulation in a blue-green alga. Science 210:650–651

    Article  CAS  PubMed  Google Scholar 

  • Bose P, Nagpal US, Venkataraman GS, Goyal SK et al (1971) Solubilization of tricalcium phosphate by blue-green algae. Curr Sci 40:165–166

    CAS  Google Scholar 

  • Boyd M (1997) Protein isolated from blue-green algae inactivatesHIV. Antimicrob Agents Chemother 41:1521–1530

    CAS  PubMed  Google Scholar 

  • Boyd MR, Shoemaker RH (1999) Nucleic acids encoding antiviral cyanovirin proteins isolated from cyanobacteria such as Nostoc ellipsosporum useful for treating virus infections (especially human immune deficiency virus). Patent PN 5962668, US Department of Health-Human Service, Washington, DC, USA

  • Brown RM, Nobles DR (2008) The future of biofuels in renewable energy and reduction of global warming. Available at: www.botany.utexas.edu

  • Burja AM, Banaigs EB, Abou-Mansour et al (2001) Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57:9347–9377

    Article  CAS  Google Scholar 

  • Campanella L, Crescentini G, Avino P (1999) Chemical composition and nutritional evaluation of some natural and commercial food products based on Spirulina. Analusis 27:533–540

    Article  Google Scholar 

  • Cardellina JH II, Marner FJ, Moore RE (1979) Seaweed dermatitis: structure of lyngbyatoxin A. Science 204:193–195

    Article  CAS  PubMed  Google Scholar 

  • Carmichael WW (1994) The toxins of cyanobacteria. Sci Am 270:64–70

    Article  Google Scholar 

  • Castenholz RW (2001) Bergey’s manual of systematic bacteriology. Boone DR, Castenholz RW (eds), vol I, 2nd edn. Springer, Berlin. pp. 474-487

  • Chen BD, Nakeff A, Valeriote F (1998) Cellular uptake of a novel cytotoxic agent, cryptophycin-52, by human THP-1 leukaemia cells and H-125 lung tumor cells. Int J Cancer 77:869–873

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Son L, Dai J, Ganb N, Liua Z (2004) Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon 43:393–400

    Article  CAS  PubMed  Google Scholar 

  • Chen PC, Fan SH, Chiang CL, Lee CM (2008) Effect of growth conditions on the hydrogen production with cyanobacterium Anabaena sp. Strain CH3. Int J Hydrogen Energy 33:1460–1464

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Choi CW, Yoo SA, Oh I-H et al (1998) Characterisation of an extracellular flocculating substance produced by a planktonic cyanobacterium, Anabaena sp. Biotechnol Lett 20:643–646

    Article  CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Górecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59:75–84

    Article  CAS  PubMed  Google Scholar 

  • Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47:551–578

    CAS  PubMed  Google Scholar 

  • Codd GA, Bell SG, Brooks WP (1989) Cyanobacterial toxins in water. Water Sci Technol 21:1–13

    CAS  Google Scholar 

  • Codd GA, Morrison LF, Metcalf JS (2005) Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharmacol 203:264–272

    Article  CAS  PubMed  Google Scholar 

  • Cohen Z (1996) The chemicals of Spirulina. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology, and biotechnology. Taylor and Francis, London, pp 175–204

    Google Scholar 

  • Cohen Z, Vonshak A, Richmond A (1987) Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry 26:2255–2258

    Article  CAS  Google Scholar 

  • Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morrison LF, Codd GA, Bergman B et al (2005) Diverse taxa of cyanobacteria produce beta-N-methylamino-l-alanine, a neurotoxic amino acid. Proc Natl Acad Sci USA 102:5074–5078

    Article  CAS  PubMed  Google Scholar 

  • Davies-Coleman M, Dzeha TM, Gray CA, Hess S, Pannell LK, Hendricks DT, Arendse CE (2003) Isolation of homodolastatin 16, a new cyclic depsipeptide from a Kenyan collection of Lyngbya majuscula. J Nat Prod 66:712–715

    Article  CAS  PubMed  Google Scholar 

  • De PK (1939) The role of blue-green algae in nitrogen fixation in rice fields. Proc R Soc Lond, B Biol Sci 127:121–129

    Article  CAS  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175

    Article  Google Scholar 

  • De Philippis R, Ena A, Paperi R, Sili C, Vincenzini M (2000) Assessment of the potential of Nostoc strains from Pasteur Culture Collection for the production of polysaccharides of applied interest. J Appl Phycol 12:401–407

    Article  Google Scholar 

  • De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possibleexploitation: a review. J Appl Phycol 13:293–299

    Article  Google Scholar 

  • De Philippis R, Paperi R, Sili C, Vincenzini M (2003) Assessment of the metal removal capability of two capsulated cyanobacteria, Cyanospira capsulata and Nostoc PCC7936. J Appl Phycol 15:155–161

    Article  Google Scholar 

  • Delwiche CF, Palmer JD (1997) The origin of plastids and their spread via secondary symbiosis. In: Bhattacharya D (ed) Origin of algae and their plastids. Springer, Berlin, pp 53–96

    Google Scholar 

  • Deng M-D, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65:523–528

    CAS  PubMed  Google Scholar 

  • DeRuyter YS, Fromme P (2008) Molecular structure of the photosynthetic apparatus. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution. Caister Academic Press, Norfolk, pp 217–270

    Google Scholar 

  • Dexter J, Fu P (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci 2:857–864

    Article  CAS  Google Scholar 

  • Dey B, Lerner DL, Lusso P, Boyd MR, Elder JH, Berger EA (2000) Multiple antiviral activities of cyanovirin-N: blocking of Human Immunodeficiency Virus Type I gp 120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. J Virol 74:4562–4569

    Article  CAS  PubMed  Google Scholar 

  • Ding WX, Shen HM, Zhu HG, Ong CN (1999) Genotoxicity of microcystic cyanobacteria extract of a water source in China. Mutat Res 442:69–77

    CAS  PubMed  Google Scholar 

  • Dittmann E, Erhard M, Kaebernick M, Scheler C, Neilan BA, von Döhren H, Börner T (2001) Altered expression of two light-dependent genes in a microcystin-lacking mutant of Microcystis aeruginosa PCC 7806. Microbiol 147:3113–3119

    CAS  Google Scholar 

  • Dubey AK, Rai AK (1995) Application of algal biofertilizers (Aulosira fertilissima tenuis and Anabaena doliolum Bhardwaja) for sustained paddy cultivation in Northern India. Isr J Plant Sci 43:41–51

    Google Scholar 

  • Dutta D, De D, Chaudhuri S, Bhattacharaya SK (2005) Hydrogen production by cyanobacteria. Microb Cell Fact 4:1–11

    Article  CAS  Google Scholar 

  • Dyerberg J (1986) Linoleate-derived polyunsaturated fatty acids and prevention of atherosclerosis. Nutr Res 44:125–128

    CAS  Google Scholar 

  • Edwards C, Graham D, Fowler N, Lawton LA (2008) Biodegradation of microcystins and nodularin in freshwaters. Chemosphere 73:1315–1321

    Article  CAS  PubMed  Google Scholar 

  • Eggen MJ, Georg GI (2002) The cryptophycins: their synthesis and anticancer activity. Med Res Rev 22:85–101

    Article  CAS  PubMed  Google Scholar 

  • El-Sheekh MM, El-Shouny WA, Osman MFH, El-Gammal WE (2005) Growth and heavy metals removal affinity of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial wastewater effluent. Environ Toxicol Pharmacol 19:357–365

    Article  CAS  PubMed  Google Scholar 

  • El-Sheekh MM, Gharieb MM, Abou-El-Souod GW (2009) Biodegradation of dyes by some green algae and cyanobacteria. Int Biodeterior Biodegrad 63:699–704

    Article  CAS  Google Scholar 

  • Falconer IR, Beresford AM, Runnegar MTC (1983) Evidence of liver damage by toxin from a bloom of the blue-green alga Microcystis aeruginosa. Med J Aust 1:511–514

    CAS  PubMed  Google Scholar 

  • Fattom A, Shilo M (1984) Phormidium J-1 bioflocculant: production and activity. Arch Microbiol 139:421–426

    Article  CAS  Google Scholar 

  • Fawell JK, Mitchell RE, Hill RE, Everett DJ (1999) The toxicity of cyanobacterial toxins in the mouse: II Anatoxin-A. Hum Exp Toxicol 18:168–173

    Article  CAS  PubMed  Google Scholar 

  • Fennell BJ, Carolan S, Pettit GR, Bell A (2003) Effects of the antimitotic natural product dolastatin 10, and related peptides, on the human malarial parasite Plasmodium falciparum. J Antimicrob Chemother 51:833–841

    Article  CAS  PubMed  Google Scholar 

  • Fleming ED, Castenholz RW (2007) Effects of nitrogen source on the synthesis of the UV screening compound, scytonemin, in the cyanobacterium Nostoc punctiforme PCC 73102. FEMS Microbiol Ecol 63:301–308

    Article  CAS  Google Scholar 

  • Fleming ED, Castenholz RW (2008) Effects of periodic dessication on the synthesis of the UV screening compound, scytonemin, in cyanobacteria. Environ Microbiol 9:1448–1455

    Article  CAS  Google Scholar 

  • Food and Agricultural Organization (2006) Introducing the international bioenergy platform. FAO, Rome

    Google Scholar 

  • Froscio SM, Humpage AR, Burcham PC, Falconer IR (2003) Cylindrospermopsin-induced protein synthesis inhibition and its dissociation from acute toxicity in mouse hepatocytes. Environ Toxicol 18:243–251

    Article  CAS  PubMed  Google Scholar 

  • Fu P (2009) Genome-scale modelling of Synechocystis sp. PCC 6803 and prediction of pathway insertion. J Chem Technol Biotechnol 84:473–483

    Article  CAS  Google Scholar 

  • Funari E, Testai E (2008) Human health risk assessment related to cyanotoxins exposure. Crit Rev Toxicol 38:97–125

    Article  CAS  PubMed  Google Scholar 

  • Gademan K, Portman C (2008) Secondary metabolites from cyanobacteria: complex structures and powerful bioactivities. Curr Org Chem 12:326–341

    Article  Google Scholar 

  • Gantar M, Svircev Z (2008) Microalgae and cyanobacteria: food for thought. J Phycol 44:260–268

    Article  Google Scholar 

  • Garbisu C, Hall DO (1993) Removal of phosphate by foam immobilised Phormidium laminosum in batch and continuous flow bioreactor. J Chem Biotechnol 57:181–189

    Article  CAS  Google Scholar 

  • Gebens-Leenes W, Hoekstra AY, van der Meer TH (2009) The water footprint of bioenergy. Proc Natl Acad Sci USA 106:10219–10223

    Article  Google Scholar 

  • Gershwin ME, Belay A (2008) Spirulina in human nutrition and health. CRC Press, Boca Raton, p 312

    Google Scholar 

  • Gerwick WH, Proteau PJ, Nagle DG, Hamel E, Blokhin A, Slate DL (1994) Structure of Curacin A, a novel antimitotic, antiproliferative and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula. J Org Chem 59:1243–1245

    Article  CAS  Google Scholar 

  • Gong R, Ding Y, Liu H, Chen Q, Liu Z (2005) Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass. Chemosphere 58:125–130

    Article  CAS  PubMed  Google Scholar 

  • Gordon JM, Polle JEW (2007) Ultra-high bioproductivity from algae. Appl Microbiol Biotechnol 76:969–975

    Article  CAS  PubMed  Google Scholar 

  • Gröniger A, Sinha RP, Klisch M, Häder DP (2000) Photoprotective compounds in cyanobacteria, phytoplankton and macroalgae—a database. J Photochem Photobiol, B Biol 58:115–122

    Article  Google Scholar 

  • Grosse Y, Baan R, Straif K, Secretan B, Ghissassi F, El Cogliano V (2006) Carcinogenicity of nitrate, nitrite, and cyanobacterial peptide toxins. Lancet Oncol 7:628–629

    Article  PubMed  Google Scholar 

  • Guerrero MG, Vega JM, Losada M (1981) The assimilatory nitrate reducing system and its regulation. Annu Rev Plant Physiol 32:169–204

    Article  CAS  Google Scholar 

  • Gulledge BM, Aggen JB, Huang HB, Nairn AC, Chamberlin AR (2002) The microcystins and modularins: cyclic polypeptide inhibitors of PP1 and PP2A. Curr Med Chem 9:1991–2003

    CAS  Google Scholar 

  • Gunasekera SP, Ross C, Paul VJ, Matthew S, Luesch H (2008) Dragonamides C and D, linear lipopeptides from the marine cyanobacterium Lyngbya polychroa. J Nat Prod 71:887–890

    Article  CAS  PubMed  Google Scholar 

  • Gustafson KR, Cardellina JH II, Fuller RW, Weislow OS, Kiser RF, Snader KM, Patterson GM, Boyd MR (1989) AIDS-antiviral sulfolipids from cyanobacteria (blue green algae). J Natl Cancer Inst 81:1254–1258

    Article  CAS  PubMed  Google Scholar 

  • Hagmann L, Juettner F (1996) Fischerellin-A, a novel photosystem-II-inhibiting allelochemical of the cyanobacterium Fischerella muscicola with antifungal and herbicidal activity. Tetrahedron Lett 37:6539–6542

    Article  CAS  Google Scholar 

  • Harrigan GG, Luesch H, Yoshida YWY, WY MRE, Nagle DG, Paul VJ, Mooberry SL, Corbett TH, Valeriote FA (1998) Symplostatin 1: a dolastatin 10 analogue from the marine cyanobacterium Symploca hydnoides. J Nat Prod 61:1075–1077

    Article  CAS  PubMed  Google Scholar 

  • Hawkins PR, Runnegar MTC, Jackson ARB, Falconer IR (1985) Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green alga) Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water supply reservoir. Appl Environ Microbiol 50:1292–1295

    CAS  PubMed  Google Scholar 

  • Hayashi T, Hayashi K, Maedaa M, Kojima I (1996a) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod 59:83–87

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Hayashi T, Kojima I (1996b) A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-Herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Res Hum Retrovir 12:1463–1471

    Article  CAS  PubMed  Google Scholar 

  • Hellingwerf KJ, Teixeira de Mattos MJ (2009) Alternative routes to biofuels: light-driven biofuel formation from CO2 and water based on the “Photanol” approach. J Biotechnol 142:87–89

    Article  CAS  PubMed  Google Scholar 

  • Hemscheidt T, Puglisi MP, Larsen LK, Patterson GML, Moore RE, Rios JL, Clardy J (1994) Structure and biosynthesis of borophycin, a new boeseken complex of boric acid from a marine strain of the blue-green alga Nostoc linckia. J Org Chem 59:3467–3471

    Article  CAS  Google Scholar 

  • Hernández JM, López-Rodas V, Costas E (2009) Microcystins from tap water could be a risk factor for liver and colorectal cancer: a risk intensified by global change. Med Hypothesis 72:539–540

    Article  CAS  Google Scholar 

  • Herrero A, Flores E (2008) The cyanobacteria: molecular biology, genomics and evolution. Caister Academic Press, Norfolk, p 484

    Google Scholar 

  • Hirata K, Takashina J, Nakagami H, Ueyama KM, Kanamori T, Miyamoto K (1996) Growth inhibition of various organisms by a violet pigment, nostocine-A, produced by Nostoc spongiaeforme. Biosci Biotechnol Biochem 60:1905–1906

    Article  CAS  Google Scholar 

  • Hirata K, Yoshitomi S, Dwi S, Iwabea O, Mahakhantb A, Polchaib J, Miyamoto K (2003) Bioactivities of nostocine A produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169. J Biosci Bioeng 95:512–517

    CAS  PubMed  Google Scholar 

  • Hitzfeld BC, Hoeger SJ, Dietrich DR (2000) Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environ Health Perspect 108(S1):113–122

    Article  CAS  PubMed  Google Scholar 

  • Hori KG, Ishibashi G, Okita T (1994) Hypocholesterolemic effect of blue-green alga, ishikurage (Nostoc commune) in rats fed atherogenic diet. Plant Foods Hum Nutr 45:63–70

    Article  CAS  PubMed  Google Scholar 

  • Horrobin DF (1981) The possible roles of prostaglandin E1 and of essential fatty acids in mania depression and alcoholism. In: Holman RT (ed) Progress in lipid research, vol 20. Pergamon Press, New York, pp 539–541

    Google Scholar 

  • Horrobin DF, Huang YS (1983) Schizophrenia: the role of abnormal essential fatty acid and prostaglandin metabolism. Med Hypothesis 10:329–336

    Article  CAS  Google Scholar 

  • Hu C, Liu Y, Paulsen BS, Petersen D, Klaveness D (2003) Extracellular carbohydrate polymers from five desert soil algae with different cohesion in the stabilization of fine sand grain. Carbohydr Polym 54:33–42

    Article  CAS  Google Scholar 

  • Huang YS, Cunnane SC, Horrobin DF, Davignon J et al (1982) Most biological effects of Zn deficiency corrected by γ-linolenic acid 18:3 ω6 but not by 18:2 ω6. Atherosclerosis 41:193–208

    Article  CAS  PubMed  Google Scholar 

  • Hudson BZF, Karis IG (1974) The lipids of the alga Spirulina. J Sci Food Agric 25:759–763

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Butler A (2005) Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp. PCC 7002. Limnol Oceanogr 50:1918–1923

    Article  CAS  Google Scholar 

  • Iwata K, Inayama T, Kato T (1990) Effects of Spirulina platensis on plasma lipoprotein lipase activity in fructose-induced hyperlipidemic rats. J Nutr Sci Vitaminol 36:165–171

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal P, Singh PK, Prasanna R (2008) Cyanobacterial bioactive molecules—an overview of their toxic properties. Can J Microbiol 54:701–717

    Article  CAS  PubMed  Google Scholar 

  • Järvenpää S, Lundberg-Niinistö C, Spoof L, Sjövall O, Tyystjärvi E, Meriluoto J (2007) Effects of microcystins on broccoli and mustard, and analysis of accumulated toxin by liquid chromatography–mass spectrometry. Toxicon 49:865–874

    Article  PubMed  CAS  Google Scholar 

  • Jayaraj R, Anand T, Rao PVL (2006) Activity and gene expression profile of certain antioxidant enzymes to microcystin-LR induced oxidative stress in mice. Toxicology 220:136–146

    Article  CAS  PubMed  Google Scholar 

  • Jeffries TW, Timourien H, Ward RL (1978) Hydrogen production by Anabaena cylindrical: effect of varying ammonium and ferric ions, pH and light. Appl Environ Microbiol 35:704–710

    CAS  PubMed  Google Scholar 

  • Jensen GS, Ginsberg DI, Huerta P, Citton M, Drapeau C (2000) Consumption of Aphanizomenon flos aquae has rapid effects on the circulation and function of immune cells in humans. JANA 2:50–58

    Google Scholar 

  • Jiang Y, Ji B, Wong RNS, Wong MH (2008) Statistical study on the effects of environmental factors on the growth and microcystins production of bloom-forming cyanobacterium-Microcystis aeruginosa. Harmful Algae 7:127–136

    Article  CAS  Google Scholar 

  • Jochimsen EM, Carmichael WW, An J et al (1998) Liver failure and death after exposure to microcystins at a haemodialysis center in Brazil. N Engl J Med 338:873–878

    Article  CAS  PubMed  Google Scholar 

  • Jones AC, Gu L, Sorrels CM, Sherman DH, Gerwick WH (2009) New tricks from ancient algae: natural products biosynthesis in marine cyanobacteria. Curr Opin Chem Biol 13:216–223

    Article  CAS  PubMed  Google Scholar 

  • Kaebernick M, Dittmann E, Börner T, Neilan BA (2002) Multiple alternate transcripts direct the biosynthesis of microcystin, a cyanobacterial nonribosomal peptide. Appl Environ Microbiol 68:449–455

    Article  CAS  PubMed  Google Scholar 

  • Kannaiyan S, Aruna SJ, Kumari SMP, Hall DO (1997) Immobilized cyanobacteria as a biofertilizer for rice crops. J Appl Phycol 9:167–174

    Article  Google Scholar 

  • Karl D, Michaels A, Bergman B, Capone D, Carpenter E, Letelier R, Lipschultz F, Paerl H, Sigman D, Stal L (2002) Dinitrogen fixation in the world’s oceans. Biogeochemistry 57(58):47–98

    Article  Google Scholar 

  • Karube I, Ikemoto H, Kajiwawa K, Tamiya E, Matsuoka H (1986) Photochemical energy conversion using immobilised blue-green algae. J Biotechnol 4:73–80

    Article  CAS  Google Scholar 

  • Kato T, Takemoto K, Katayama H, Kuwabara Y (1984) Effects of Spirulina on dietary hypercholesterolemia in rats. J Jpn Soc Nutr Food Sci 37:323–332

    Article  Google Scholar 

  • Kaya K, Mahakhant A, Keovara L (2002) Spiroidesin, a novel lipopeptide from the cyanobacterium Anabaena spiroides that inhibits cell growth of the cyanobacterium Microcystis aeruginosa. J Nat Prod 65:920–921

    Article  CAS  PubMed  Google Scholar 

  • Kernoff PBA, Willis AL, Stone KJ, Davies JA, McNicol GP (1977) Antithrombotic potential of dihomo γ-linolenic acid in man. Br Med J 2:1441–1444

    Article  CAS  PubMed  Google Scholar 

  • Kirkpatrick B, Fleming LE, Squicciarini D (2004) Literature review of Florida red tide: implications for human health effects. Harmful Algae 3:99–115

    Article  PubMed  Google Scholar 

  • Klimmek S, Stan HJ, Wilke A, Bunke G, Buchholz R (2001) Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environ Sci Technol 35:4283–4288

    Article  CAS  PubMed  Google Scholar 

  • Knoll AH (2008) Cyanobacteria and earth history. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution. Caister Academic Press, Norfolk, pp 1–20

    Google Scholar 

  • Kodani S, Ishida K, Murakami M (1998) Aeruginosin 103-A, a thrombin inhibitor from the cyanobacterium Microcystis viridis. J Nat Prod 61:1046–1048

    Article  CAS  PubMed  Google Scholar 

  • Koksharova OA, Wolk CP (2002) Genetic tool for cyanobacteria. Appl Microbiol Biotechnol 58:123–137

    Article  CAS  PubMed  Google Scholar 

  • Koptera ZP (1970a) Biosynthesis of thiamine, riboflavin and vitamin B12 by some blue-green algae. Microbiol Z (Kiev) 32:429–433

    Google Scholar 

  • Koptera ZP (1970b) Biosynthesis of biotin, pyredoxin, nicotinic acid and pantothenic acids by some blue-green algae. Microbiol Z (Kiev) 32:555–560

    Google Scholar 

  • Krakstad C, Herfindal L, Gjertsen BT, Bøe R, Vintermyr OK, Fladmark KE, Døskeland SO (2006) CaM-kinaseII-dependent commitment to microcystin induced apoptosis is coupled to cell budding, but not to shrinkage or chromatin hypercondensation. Cell Death Differ 13:1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Kuritz T, Wolk CP (1994) Use of filamentous cyanobacteria for biodegradation of organic pollutants. Environ Microbiol 61:234–238

    Google Scholar 

  • Kushak R, Van Cott E, Drapeau C, Winter H et al (1999) Effect of algae Aphanizomenon flos-aquae on digestive enzyme activity and polyunsaturated fatty acids level in blood plasma. Gastroenterol 116:A559

    Google Scholar 

  • Kushak RI, Drapeau C, Van Cott EM (2000) Favorable effects of blue-green algae Aphanizomenon flos-aquae on rat plasma lipids. JANA 2:59–65

    Google Scholar 

  • Kwan JC, Rocca JR, Abboud KA, Paul VJ, Luesch H (2008) Total structure determination of grassypeptolide, a new marine cyanobacterial cytotoxin. Org Lett 10:789–792

    Article  CAS  PubMed  Google Scholar 

  • Lankford CE, Walker JR, Reeves JB, Nabbut NH, Byers BR (1966) Inoculum-dependent division lag of Bacillus cultures and its relation to an endogenous factor(s) (“Schizokinen”). J Bacteriol 91:1070–1079

    CAS  PubMed  Google Scholar 

  • Larsen LK, Moore RE, Patterson GML (1994) Carbolines from the blue-green alga Dichothrix baueriana. J Nat Prod 57:419–421

    Article  CAS  PubMed  Google Scholar 

  • Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20:280–285

    Article  CAS  PubMed  Google Scholar 

  • Li H, Murphy T, Guo J, Parr T, Nalewajko C (2009) Iron-stimulated growth and microcystin production of Microcystis novacekii UAM 250. Limnologica-Ecol Manage In Water 39:255–259

    Article  CAS  Google Scholar 

  • Lindberg P, Lindblad P, Cournac L (2004) Gas exchange in the filamentous cyanobacterium Nostoc punctiforme strain ATCC29133 and its hydrogenase-defficient mutant strain NHM5. Appl Environ Microbiol 70:2137–2145

    Article  CAS  PubMed  Google Scholar 

  • Linington RG, González J, Ureña LD, Romero LI, Ortega-Barría E, Gerwick WH (2007) Venturamides A and B: antimalarial constituents of the Panamanian marine cyanobacterium Oscillatoria sp. J Nat Prod 70:397–401

    Article  CAS  PubMed  Google Scholar 

  • Linington RG, Edwards DJ, McPhail SCF, KL MT, Gerwick WH (2008) Symplocamide A, a potent cytotoxin and chymotrypsin inhibitor from the marine cyanobacterium Symploca sp. J Nat Prod 71:22–27

    Article  CAS  PubMed  Google Scholar 

  • Luesch H, Pangilinan R, Yoshida WY, Moore RE, Paul VJ (2001) Pitipeptolides A and B, new cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 64:304–307

    Article  CAS  PubMed  Google Scholar 

  • Luesch H, Yoshida WY, Paul MRE, VJ MSL, Corbett TH (2002) Symplostatin 3, a new dolastatin 10 analogue from the marine cyanobacterium Symploca sp. VP452. J Nat Prod 65:16–20

    Article  CAS  PubMed  Google Scholar 

  • Lumpkin TA (1987) Collection, maintenance and cultivation of Azolla. In: Elkan GH (ed) Symbiotic nitrogen fixation technology. Marcel Dekker Inc., New York, pp 55–94

    Google Scholar 

  • Lumpkin TA, Plucknett C (1982) Azolla as a green manure: use and management in crop production. Westview Press, Boulder, p 230

    Google Scholar 

  • Ma LX, Led JJ (2000) Determination by high field NMR spectroscopy of the longitudinal electron relaxation rate in Cu(II) plastocyanin form Anabaena variabilis. Am Chem Soc 122:7823–7824

    Article  CAS  Google Scholar 

  • Madamwar D, Garg N, Shah V (2000) Cynobacterial hydrogen production. World J Microbiol Biotechnol 16:8–9

    Article  Google Scholar 

  • Mackay MA, Norton RS, Borowitzka LJ (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130:2177–2191

    CAS  Google Scholar 

  • Masukawa H, Mochimaru M, Sakurai H (2002) Hydrogenases and photobiological hydrogen production utilizing nitrogenase system in cyanobacteria. Int J Hydrogen Energy 27:1471–1474

    Article  CAS  Google Scholar 

  • Markov SA (1997) Production of hydrogen from blue-green algae. Russian Patent RU 2083481

  • Mathew B, Sankaranarayanan R, Nair P, Varghese C, Somanathan T (1995) Evaluation of chemo-prevention of oral cancer with Spirulina fusiformis. Nutr Cancer 24:197–202

    Article  CAS  PubMed  Google Scholar 

  • McPhail KL, Correa J, Linington RG, Gonzalez J, Ortega-Barría E, Capson TL, Gerwick WH (2007) Antimalarial linear lipopeptides from a Panamanian strain of the marine cyanobacterium Lyngbya majuscula. J Nat Prod 70:984–988

    Article  CAS  PubMed  Google Scholar 

  • Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152

    Article  CAS  PubMed  Google Scholar 

  • Metcalf JS, Barakate A, Codd GA (2004) Inhibition of plant protein synthesis by the cyanobacterial hepatotoxin, cylindrospermopsin. FEMS Microbiol Lett 235:125–129

    Article  CAS  PubMed  Google Scholar 

  • Metting B (1981) Systematics and ecology of soil algae. Bot Rev 147:195–312

    Article  Google Scholar 

  • Metting B (1988) Microalgae in agriculture. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 288–304

    Google Scholar 

  • Mian MH (1984) A N-tracer study to differentiate nitrogen supply to flooded rice plants by Azolla and Anabaena during their early and later stages of decomposition. Indian J Agric Sci 54:733–738

    CAS  Google Scholar 

  • Mishima T, Murata J, Toyoshima M, Fujii K, Nakajima M, Hayashi T, Kato T, Saiki I (1998) Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis. Clin Exp Metastasis 16:541–550

    Article  CAS  PubMed  Google Scholar 

  • Mitsui A (1980) Saltwater based biological solar energy conversion for fuel, chemical, fertiliser, food and feed. In: Proceedings of Bioenergy’ 80, Bioenergy Council, Washington DC. pp. 486–491

  • Miyaki J (1998) The science of biohydrogen: an energetic view. In: Zaborsky OR (ed) Biohydrogen. Plenum Press, New York, pp 7–17

    Google Scholar 

  • Moreno J, Vargas MA, Madiedo JM, Muñoz J, Rivas J, Guerrero MG (2000) Chemical and rheological properties of an extracellular polysaccharide produced by the cyanobacterium Anabaena sp. ATCC 33047. Biotechnol Bioeng 67:283–290

    Article  CAS  PubMed  Google Scholar 

  • Moore AW (1969) Azolla: biology and agronomic significance. Bot Rev 35:17–34

    Article  CAS  Google Scholar 

  • Morliere P, Maziere JC, Santus R et al (1998) Tolyporphin: a natural product from cyanobacteria with potent photosensitizing activity against tumor cells in vitro and in vivo. Cancer Res 58:3571–3578

    CAS  PubMed  Google Scholar 

  • Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814

    Article  CAS  PubMed  Google Scholar 

  • Mynderse JS, Moore RE, Kashiwagi M, Norton TD (1977) Antileukemia activity in Oscillatoriaceae, isolation of debromoaplysiatoxin from Lyngbya. Science 196:538–540

    Article  CAS  PubMed  Google Scholar 

  • Nagase H, Inthorn D, Oda A, Nishimura J, Kajiwara Y, Park MO, Hirata K, Miyamoto K (2005) Improvement of selective removal of heavy metals in cyanobacteria by NaOH treatment. J Biosci Bioeng 99:372–377

    Article  CAS  PubMed  Google Scholar 

  • Nagle DG, Paul VJ, Roberts MA (1996) Ypaoamide, a new broadly acting feeding deterrent from the marine cyanobacterium Lyngbya majuscule. Tetrahedron Lett 37:6263–6266

    Article  CAS  Google Scholar 

  • Nakaya N, Homa Y, Goto Y (1988) Cholesterol lowering effect of Spirulina. Nutr Rep Int 37:1329–1337

    CAS  Google Scholar 

  • Newman DJ, Cragg GM (2004a) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2004b) Advanced preclinical and clinical trials of natural products and related compounds from marine sources. Curr Med Chem 11:1693–1713

    CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–1037

    Article  CAS  PubMed  Google Scholar 

  • Niederholtmeyer H, Wolfstadter BT, Savage DF, Silver PA, Way JC (2010) Engineering cyanobacteria to synthesize and export hydrophilic products. Appl Environ Microbiol 76:3462–3466

    Article  CAS  PubMed  Google Scholar 

  • Nishiwaki-Matsushima R, Ohta T, Nishiwaki S, Suganuma M, Kohyama K, Ishikawa T, Carmichael WW, Fujiki H (1992) Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin LR. J Cancer Res Clin Oncol 118:420–424

    Article  CAS  PubMed  Google Scholar 

  • Nobles DR, Romanovicz DK, Brown RM (2001) Cellulose in cyanobacteria: origin of vascular plant cellulose synthase. Plant Physiol 127:529–542

    Article  CAS  PubMed  Google Scholar 

  • Olson JM (2006) Photosynthesis in the Archean era. Photosynth Res 88:109–117

    Article  CAS  PubMed  Google Scholar 

  • Ördög V, Stirk WA, Lenobel R, Bancírová M, Strnad M, van Staden J, Szigeti J, Németh L (2004) Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J Appl Phycol 16:309–314

    Article  Google Scholar 

  • Ortega-Calvo JJ, Mazuelos C, Hermosin B, Saiz-Jimenez C (1993) Chemical composition of Spirulina and eukaryotic algae food products marketed in Spain. J Appl Phycol 1:425–435

    Article  Google Scholar 

  • Otero JM, Panagiotou G, Olsson L (2007) Fuelling industrial biotechnology growth with bioethanol. Adv Biochem Eng Biotechnol 108:1–40

    CAS  PubMed  Google Scholar 

  • Ouellette AJA, Wilhelm SW (2003) Toxic cyanobacteria: the evolving molecular toolbox. Front Ecol Environ 1:359–366

    Article  Google Scholar 

  • Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1:27–37

    Article  CAS  Google Scholar 

  • Paerl HW, Fulton RS III, Moisander PH, Dyble J (2001) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World 1:76–113

    CAS  Google Scholar 

  • Panda D, Ananthnarayan V, Larson G, Shi C, Jordan MA, Wilson L (2000) Interaction of the antitumor compound cryptophycin-52 with tubulin. Biochemistry 39:14121–14127

    Article  CAS  PubMed  Google Scholar 

  • Papendorf O, Konig GM, Wright AD (1998) Hierridin B and 2, 4-dimethoxy-6-heptadecyl-phenol, secondary metabolites from the cyanobacterium Phormidium ectocarpi with antiplasmodial activity. Phytochemistry 49:2383–2386

    Article  CAS  PubMed  Google Scholar 

  • Park K-H, Kim D-II, Lee C-G (2000) Effect of flashing light on oxygen production rates in high-density algal cultures. J Microbiol Biotechnol 10:817–822

    Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    Article  CAS  PubMed  Google Scholar 

  • Pflugmacher S (2002) Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environ Toxicol 17:407–413

    Article  CAS  PubMed  Google Scholar 

  • Pflugmacher S, Hofmann J, Hübner B (2007) Effects on growth and physiological parameters in wheat (Triticum aestivum L.) grown in soil and irrigated with cyanobacterial toxin contaminated water. Environ Toxicol Chem 26:2710–2716

    Article  CAS  PubMed  Google Scholar 

  • Piorreck M, Baasch K-H, Pohl P (1984) Biomass production, total protein, chlorophylls, lipids and fatty acids of fresh water green and blue-green algae under different nitrogen regimes. Phytochemistry 23:207–216

    Article  CAS  Google Scholar 

  • Plude JL, Parker DL, Schommer OJ, Timmerman RJ, Hagstrom SA, Joers JM, Hnasko R (1991) Chemical characterization of polysaccharides from the slime layer of the cyanobacterium Microcystis flos-aquae C3-40. Appl Environ Microbiol 57:1696–1700

    CAS  PubMed  Google Scholar 

  • Pouria S, de Andrade A, Barbosa J et al (1998) Fatal microcystin intoxication in haemodialysis unit in Caruaru Brazil. Lancet 352:21–26

    Article  CAS  PubMed  Google Scholar 

  • Prabaharan D, Subramanian G (1996) Oxygen-free hydrogen production by the marine cyanobacterium Phormidium valderianum BDU 20041. Bioresour Technol 57:111–116

    Article  CAS  Google Scholar 

  • Prabaharan D, Sumathi M, Subramanian G (1994) Ability to use ampicillin as a nitrogen source by the marine cyanobacterium Phormidium valderanum BDU 30501. Curr Microbiol 28:314–320

    Article  Google Scholar 

  • Prasanna R, Nain L, Tripathi R, Gupta V, Chaudhary V, Middha S, Joshi M, Ancha R, Kaushik BD (2008) Evaluation of fungicidal activity of extracellular filterates of cyanobacteria—possible role of hydrolytic enzymes. J Basic Microbiol 48:186–194

    Article  CAS  PubMed  Google Scholar 

  • Prepas EE, Kotak BG, Campbell LM, Evans JC, Hrudey SE, Holmes CFB (1997) Accumulation and elimination of cyanobacterial hepatotoxins by the fresh water clam Anodonta simpsonina. Can J Fish Aquat Sci 54:41–46

    CAS  Google Scholar 

  • Prince EK, Myers TL, Naar J, Kubanek J (2008) Competing phytoplankton undermines allelopathy of a bloom-forming dinoflagellate. Proc R Soc Lond B 275:2733–2741

    Article  Google Scholar 

  • Pruder G (1983) Biological control of gas exchange in intensive aquatic production system. IEEE 15:1002–1004

    Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of Microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  PubMed  Google Scholar 

  • Rai V, Rai AK (1999) Growth behaviour of Azolla pinnata at various salinity levels and induction of high salt tolerance. Plant Soil 206:79–84

    Article  Google Scholar 

  • Rai AK, Sharma NK (2006) Phosphate metabolism in the cyanobacterium Anabaena doliolum under salt stress. Curr Microbiol 52:6–12

    Article  CAS  PubMed  Google Scholar 

  • Rastogi RP, Sinha RP (2009) Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv 27:521–539

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Bagachi SN (2001) Nutrients and pH regulate algicide accumulation in cultures of the cyanobacterium Oscillatoria laetevirens. New Phytol 149:455–460

    Article  CAS  Google Scholar 

  • Reddy CM, Bhat VB, Kiranmai G, Reddy MN, Reddanna P, Madyastha K (2000) Selective inhibition of cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis. Biochem Biophys Res Commun 3:599–603

    Article  CAS  Google Scholar 

  • Reshef V, Mizrachi E, Maretzki T, Silberstein C, Loya S, Hizi A, Carmeli S (1997) New acylated sulfoglycolipids and digalactolipids and related known glycolipids from cyanobacteria with a potential to inhibit to reverse transcriptase of HIV-1. J Nat Prod 60:1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Richmond A (1988) Spirulina. In: Borowitzka MA, Borowitzka LJ (eds) Microlgal biotechnology. Cambridge University Press, Cambridge, pp 85–121

    Google Scholar 

  • Rickards RW, Rothschild JM, Willis AC et al (1999) Calothrixins-A and -B, novel pentacyclic metabolites from Calothrix sp. cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron 55:13513–13520

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Robbins WJ, Hervey A, Stebbins M (1951) Further observations on Euglena and B12. Bull Torrey Bot Club 86:367–373

    Google Scholar 

  • Rodŕiguez AA, Stella AM, Storni MM, Zulpa G, Zaccaro MC (2006) Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Syst 2:7

    Article  PubMed  CAS  Google Scholar 

  • Roger PA, Kulasooriya SA (1980) Blue-green algae and rice. IRRI, Los Baños, p 112

    Google Scholar 

  • Roger PA, Watanabe I (1984) Algae and aquatic weeds as a source of organic matter and plant nutrition for wetland rice. In: Organic matter and rice. IRRI, Los Baños, pp 147–168

    Google Scholar 

  • Rohrlack T, Dittmann E, Borner T, Christoffersen K (2001) Effects of cell-bound microcystins on survival and feeding of Daphnia spp. Appl Environ Microbiol 67:3523–3529

    Article  CAS  PubMed  Google Scholar 

  • Rohrlack T, Christoffersen K, Hansen PE et al (2003) Isolation, characterization, and quantitative analysis of Microviridin J, a new Microcystis metabolite toxic to Daphnia. J Chem Ecol 29:1757–1770

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg JN, Oyler GA, Wikinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Kondo A, Ishii H, Saito H, Nishida F, Abe T, Chen C (2001) Nodularin-Har: a new nodularin from Nodularia. J Nat Prod 64:139–141

    Article  CAS  PubMed  Google Scholar 

  • Salazar M, Martinez E, Madrigal E, Ruiz LE, Chamorro GA (1998) Subchronic toxicity study in mice fed Spirulina maxima. J Ethnopharmacol 62:235–241

    Article  CAS  PubMed  Google Scholar 

  • Sangthongpitag K, Delaney SF, Rogers PL (1996) Evaluation of four fresh-water unicellular cyanobacteria as potential hosts for mosquitocidal toxins. Biotechnol Lett 18:175–180

    Article  CAS  Google Scholar 

  • Santillan C (1982) Mass production of Spirulina. Experientia 38:40–43

    Article  CAS  Google Scholar 

  • Saqrane S, Ghazali IE, Oudra B et al (2008) Effects of cyanobacteria producing microcystins on seed germination and seedling growth of several agricultural plants. J Environ Sci Health B 43:443–451

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW (2000) The fossil records: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 13–35

    Google Scholar 

  • Schwartz RE, Hirsch CF, Sesin DF et al (1990) Pharmaceuticals from cultured algae. J Ind Microbiol 5:113–124

    Article  CAS  Google Scholar 

  • Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215:229–238

    Article  CAS  PubMed  Google Scholar 

  • Shapiro J (1972) Blue-green algae: why they become dominant? Science 179:382–384

    Article  Google Scholar 

  • Shashirekha S, Uma L, Subramanian G (1997) Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU 30501. J Ind Microbiol Biotechnol 19:130–133

    Article  CAS  Google Scholar 

  • Sheehan JJ (2009) Biofuels and the conundrum of sustainability. Curr Opin Biotechnol 20:318–324

    Article  CAS  PubMed  Google Scholar 

  • Sielaff H, Christiansen G, Schwecke T (2008) Natural products from cyanobacteria: exploiting a new source for drug discovery. IDrug 9:119–127

    Google Scholar 

  • Simmons TL, Andrianasolo E, McPhail K, Flatt P, Gerwick WH (2005) Marine natural products as anticancer drugs. Mol Cancer Ther 4:333–342

    CAS  PubMed  Google Scholar 

  • Singh RN (1950) Reclamation of usar soils in India through blue-green algae. Nature 165:325–326

    Article  Google Scholar 

  • Singh RN (1961) Role of blue-green algae in nitrogen economy of Indian agriculture. ICAR, New Delhi

    Google Scholar 

  • Singh PK (1977) Multiplication and utilization of fern Azolla containing nitrogen fixing algal symbiont as green manure in rice cultivation. RISO 26:125–136

    Google Scholar 

  • Singh PK (1988) Biofertilization of rice crop. In: Sen SP, Palit P (eds) Biofertilizers: potentialities and problems. Plant Physiology Forum, Calcutta, pp 109–114

    Google Scholar 

  • Singh IP, Milligan KE, Gerwick WH (1999) Tanikolide, a toxic and antifungal lactone from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 62:1333–1335

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    Article  CAS  PubMed  Google Scholar 

  • Sirenko LA, Kirpenko YA, Kirpenko NI (1999) influence of metabolites of certain algae on human and animal cell cultures. Int J Algae 1:122–126

    Google Scholar 

  • Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences monitoring and management. E and FN Spon, London, pp 41–111

    Google Scholar 

  • Skulberg OM (2000) Microalgae as a source of bioactive molecules—experience from cyanophyte research. J Appl Phycol 12:341–348

    Article  CAS  Google Scholar 

  • Skulberg OM, Carmichael WW, Codd GA, Skulberg R (1993) Taxonomy of toxic cyanophyceae (cyanobacteria). In: Falconer IR (ed) Algal toxins in seafood and drinking water. Academic, London, pp 145–164

    Google Scholar 

  • Solomon BD (2010) Biofuels and sustainability. Ann NY Acad Sci 1185:119–134

    Article  PubMed  Google Scholar 

  • Song D, Fu J, Shi D (2008) Exploitation of oil-bearing microalgae for biodiesel. Chin J Biotechnol 24:341–348

    Article  CAS  Google Scholar 

  • Srivastava VC, Manderson GJ, Bhamidimarri R (1999) Inhibitory metabolites production by the cyanobacterium Fischerella muscicola. Microbiol Res 153:309–317

    Article  CAS  PubMed  Google Scholar 

  • Stewart I, Schluter PJ, Shaw GR (2006) Cyanobacterial lipopolysaccharides and human health—a review. Environ Health Glob Acess Sci Source 5:7

    Article  CAS  Google Scholar 

  • Switzer L (1981) Spirulina the whole food revolution. Proteus Corporation Bantam Books, Toronto

    Google Scholar 

  • Talley SN, Talley BJ, Rains DW (1977) Nitrogen fixation by Azolla in rice fields. In: Lyons JM, Valentine RC, Phillips DA, Rains DW, Huffaker RC (eds) Genetic engineering for nitrogen-fixation. Plenum Press, New York, pp 363–384

    Google Scholar 

  • Tamagnini P, Leitao E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31:692–720

    Article  CAS  PubMed  Google Scholar 

  • Tan LT (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68:954–979

    Article  CAS  PubMed  Google Scholar 

  • Tan LT (2010) Filamentous tropical marine cyanobacteria: a rich source of natural products for anticancer drug discovery. J Appl Phycol. doi:10.1007/s10811-010-9506-x

    Google Scholar 

  • Tang PS, Ding-Ji S, Changzheng H (1981) Regulation of energy metabolism (photosynthesis and nitrogen fixation) in blue-green algae. In: Proceeding of Joint China-US Phycology Symposium. p. 339

  • Taori K, Matthew S, Rocca JR, Paul VJ, Luesch H (2007) Lyngbyastatins 5–7, potent elastase inhibitors from Floridian marine cyanobacteria, Lyngbya spp. J Nat Prod 70:1593–1600

    Article  CAS  PubMed  Google Scholar 

  • Teixeira M, Da GLC, Da CN CM, De Carvalho VLP, Dos S, Hage E (1993) Gastroenteritis epidemic in the area of the Itaparica Dam, Bahia, Brazil. Bull Pan Am Health Organ 27:244–253

    Google Scholar 

  • Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57

    CAS  Google Scholar 

  • Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 7:753–764

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Socolow R, Foley JA et al (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325:270–271

    Article  CAS  PubMed  Google Scholar 

  • Todorova AK, Juettner F, Linden A, Plüss T, von Philipsborn W (1995) Nostocyclamide: a new macrocyclic, thiazole-containing allelochemical from Nostoc sp. 31 (cyanobacteria). J Org Chem 60:7891–7895

    Article  CAS  Google Scholar 

  • Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Nat Acad Sci USA 103:5442–5447

    Article  CAS  PubMed  Google Scholar 

  • Tonk L, Welker M, Huisman J, Visser PM (2009) Production of cyanopeptolins, anabaenopeptins, and microcystins by the harmful cyanobacteria Anabaena 90 and Microcystis PCC 7806. Harmful Algae 8:219–224

    Article  CAS  Google Scholar 

  • Torres-Duran PV, Miranda-Zamora R, Paredes-Carbajal MC, Mascher D, Blé-Castillo J, Díaz-Zagoya JC, Juárez-Oropeza MA (1999) Studies on the preventive effect of Spirulina maxima on fatty liver development induced by carbon tetrachloride, in the rat. J Ethnopharmacol 64:141–147

    Article  CAS  PubMed  Google Scholar 

  • Trimurtulu G, Ogino J, Helzel CE et al (1995) Structure determination confirmational analysis chemical stability studies and anti tumor evaluation of the cryptophycins: Isolation of 18 new analogues from Nostoc sp. strain GSV 224. J Am Chem Soc 117:12030–12049

    Article  Google Scholar 

  • Tsuji K, Asakawa M, Anzai Y, Sumino T, Harada K et al (2006) Degradation of microcystins using immobilized microorganism isolated in a eutrophic lake. Chemosphere 65:117–124

    Article  CAS  PubMed  Google Scholar 

  • Valencia A, Walker J (1999) A multi-axial treatment paradigm for mild traumatic brain injury to achieve reparative functional meta-plasticity. In: 3rd World Congress on Brain Injury, IBIA, Quebec City

  • Van Hille RP, Boshoff GA, Rose PD, Duncan JR (1999) A continuous process for the biological treatment of heavy metal contaminated acid mine water. Resour Conserv Recycl 27:157–167

    Article  Google Scholar 

  • Van Wagoner RM, Drummond AK, Wright JLC (2007) Biogenetic diversity of cyanobacterial metabolites. Adv Appl Microbiol 61:89–217

    Article  PubMed  CAS  Google Scholar 

  • Venkataraman GS (1972) Algal biofertilizer and rice cultivation. Today and tomorrow’s Printers and Publishers, New Delhi

    Google Scholar 

  • Venkataraman GS (1981) Algal biofertilizer for rice. IARI, New Delhi

    Google Scholar 

  • Verdier-Pinard P, Sitachitta N, Rossi JV, Sackett DL, Gerwick WH, Hamel E (1999) Biosynthesis of radiolabeled curacin A and its rapid and apparently irreversible binding to the colchicine site of tubulin. Arch Biochem Biophys 370:51–58

    Article  CAS  PubMed  Google Scholar 

  • Véize C, Rapala J, Vaitomaa J, Sivonen K (2002) Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations. Microb Ecol 43:443–454

    Article  CAS  Google Scholar 

  • Vlad M, Bordas E, Caseanu E, Uza G, Creteanu E, Polinicenco C (1995) Effect of cuprofilin on experimental atherosclerosis. Biol Trace Elem Res 48:99–109

    Article  CAS  PubMed  Google Scholar 

  • Volk RB (2005) Screening of microalgal culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and Nodularia harveyana. J Appl Phycol 17:339–347

    Article  CAS  Google Scholar 

  • Volk RB (2006) Antialgal activity of several cyanobacterial exometabolites. J Appl Phycol 18:145–151

    Article  CAS  Google Scholar 

  • Vonshak A (1996) Use of Spirulina biomass. In: Vonshak A (ed) Spirulina platensis (Arthropsira). Taylor and Francis, London, pp 205–212

    Google Scholar 

  • Walker DA (2009) Biofuels, facts, fantasy, and feasibility. J Appl Phycol 21:509–517

    Article  Google Scholar 

  • Wang W, Liu Y, Li D, Hu C, Rao B (2009) Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biol Biochem 41:926–929

    Article  CAS  Google Scholar 

  • Wase NV, Wright PC (2008) System biology of cyanobacterial secondary metabolite production and its role in drug discovery. Expert Opin Drug Discov 3:903–929

    Article  CAS  Google Scholar 

  • Watanabe I (1962) Effect of nitrogen-fixing blue-green alga Tolypthrix tenuis on the nitrogenous fertility of paddy soil and on the crop yield of rice plants. J Gen Appl Microbiol 8:85–91

    Article  Google Scholar 

  • Watanabe I (1977) Azolla utilization in rice culture. Int Rice Res Newsl 2:3–8

    Google Scholar 

  • Watanabe I (1987) Summary reports of the Azolla programme on the international network on soil fertility and fertilizer evaluation for rice. IRRI, Los Baños, pp 197–205

    Google Scholar 

  • Watanabe I, Lee KK, Alimagno BV, Sato M, Del Rosario DC, De Guzman M (1977) Biological N2 fixation in paddy field studies by in situ acetylene reduction assays. IRRI Res Pap Ser 3:1–16

    CAS  Google Scholar 

  • White JD, Kim T-S, Nambu M (1997) Absolute configuration and total synthesis of (+)-curacin A, an antiproliferative agent from the cyanobacterium Lyngbya majuscula. J Am Chem Soc 119:103–111

    Article  CAS  Google Scholar 

  • Whitton BA, Potts M (eds) (2000) The ecology of cyanobacteria. Kluwer, Dordrecht. pp. 669

  • Wolk CP (1973) Physiology and cytological chemistry of blue-green algae. Bacteriol Rev 37:32–101

    CAS  PubMed  Google Scholar 

  • Wu M, Okino T, Nogle LM, Marquez BL, Williamson RT, Sitachitta N, Berman FW, Murray TF, McGough K, Jacobs R, Colsen K, Asano T, Yokokawa F, Shioiri T, Gerwick WH (2000) Structure, synthesis, and biological properties of kalkitoxin, a novel neurotoxin from the marine cyanobacterium Lyngbya majuscula. J Am Chem Soc 122:12041–12042

    Article  CAS  Google Scholar 

  • Yee N, Benning LG, Phoenix VR, Ferris FG (2004) Characterization of metal-cyanobacteria sorption reaction: a combined macroscopic and infrared spectroscopic investigation. Environ Sci Technol 38:775–782

    Article  CAS  PubMed  Google Scholar 

  • Zurawell RW, Chen H, Burke JM, Prepas EE (2005) Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in fresh water environments. J Toxicol Environ Health 8:1–37

    CAS  Google Scholar 

Download references

Acknowledgements

NKS is thankful to the Indo-US Science and Technology Forum, New Delhi for financial assistance in form of a fellowship (IUSSTF Fellowship-2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani K. Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, N.K., Tiwari, S.P., Tripathi, K. et al. Sustainability and cyanobacteria (blue-green algae): facts and challenges. J Appl Phycol 23, 1059–1081 (2011). https://doi.org/10.1007/s10811-010-9626-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-010-9626-3

Keywords

Navigation