Skip to main content

Advertisement

Log in

Electrochemical degradation of antivirus drug lamivudine formulation: photoelectrocoagulation, peroxi-electrocoagulation, and peroxi-photoelectrocoagulation processes

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This study evaluates the performance of photoelectrocoagulation, peroxi-electrocoagulation, and peroxi-photoelectrocoagulation for the removal of the antiviral drug lamivudine formulation from wastewater by a stainless-steel electrode. To investigate matrix effects for this oxidation process, the influence of substrates such as urea and simulated wastewater (SWW) was studied. Moreover, degradation kinetics and energy efficiency are also discussed. Results indicate that the removal efficiency was in the order of peroxi-photoelectrocoagulation > peroxi-photoelectrocoagulation (in the presence of urea) > peroxi-photoelectrocoagulation (in the presence of SWW) > peroxi-electrocoagulation > photoelectrocoagulation. In peroxi-photoelectrocoagulation, the 96% degradation of lamivudine formulation indicates a nearly complete degradation of lamivudine. In this process, the presence of urea and SWW resulted in a substantial reduction of chemical oxygen demand (COD) decay. Kinetic studies using linear pseudo-first and pseudo-second-order reaction kinetics showed that the pseudo-first-order equation effectively described the removal of lamivudine formulation. The highest energy consumption per kgCOD decay (i.e., kWh kgCOD− 1) was obtained for the photoelectrocoagulation process, while the lowest energy consumption was obtained for peroxi-electrocoagulation, for all electrolysis times. The peroxi-photoelectrocoagulation process was shown to be an effective and energy-efficient technique for removing the antiviral drug lamivudine formulation from wastewater.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim K-R, Owens G, Kwon S-I et al (2011) Occurrence and Environmental Fate of Veterinary Antibiotics in the Terrestrial Environment. Water Air Soil Pollut 214:163–174

    CAS  Google Scholar 

  2. Li X, Xie Y, Wang J et al (2013) Influence of planting patterns on fluoroquinolone residues in the soil of an intensive vegetable cultivation area in northern China. Sci Total Environ 458–460:63–69

    PubMed  Google Scholar 

  3. Na G, Fang X, Cai Y et al (2013) Occurrence, distribution, and bioaccumulation of antibiotics in coastal environment of Dalian, China. Mar Pollut Bull 69:233–237

    CAS  PubMed  Google Scholar 

  4. Li W, Shi Y, Gao L et al (2012) Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere 89:1307–1315

    CAS  PubMed  Google Scholar 

  5. Fekadu S, Alemayehu E, Dewil R, Van der Bruggen B (2019) Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge. Sci Total Environ 654:324–337

    CAS  PubMed  Google Scholar 

  6. Rizzo L, Manaia C, Merlin C et al (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci Total Environ 447:345–360

    CAS  PubMed  Google Scholar 

  7. Sui Q, Zhao W, Cao X et al (2017) Pharmaceuticals and personal care products in the leachates from a typical landfill reservoir of municipal solid waste in Shanghai, China: Occurrence and removal by a full-scale membrane bioreactor. J Hazard Mater 323:99–108

    CAS  PubMed  Google Scholar 

  8. Peltzer PM, Lajmanovich RC, Attademo AM et al (2017) Ecotoxicity of veterinary enrofloxacin and ciprofloxacin antibiotics on anuran amphibian larvae. Environ Toxicol Pharmacol 51:114–123

    CAS  PubMed  Google Scholar 

  9. Saravanan M, Hur JH, Arul N, Ramesh M (2014) Toxicological effects of clofibric acid and diclofenac on plasma thyroid hormones of an Indian major carp, Cirrhinus mrigala during short and long-term exposures. Environ Toxicol Pharmacol 38:948–958

    CAS  PubMed  Google Scholar 

  10. Schultz MM, Painter MM, Bartell SE et al (2011) Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows. Aquat Toxicol 104:38–47

    CAS  PubMed  Google Scholar 

  11. Contardo-Jara V, Lorenz C, Pflugmacher S et al (2011) Exposure to human pharmaceuticals Carbamazepine, Ibuprofen and Bezafibrate causes molecular effects in Dreissena polymorpha. Aquat Toxicol 105:428–437

    CAS  PubMed  Google Scholar 

  12. Strauch S, Jantratid E, Dressman JB et al (2011) Biowaiver monographs for immediate release solid oral dosage forms: Lamivudine. J Pharm Sci 100:2054–2063

    CAS  PubMed  Google Scholar 

  13. K’oreje KO, Vergeynst L, Ombaka D et al (2016) Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city. Kenya Chemosphere 149:238–244

    PubMed  Google Scholar 

  14. Johnson MA, Moore KHP, Yuen GJ et al (1999) Clinical pharmacokinetics of lamivudine. Clin Pharmacokinet 36:41–66

    CAS  PubMed  Google Scholar 

  15. Vaňková M (2010) Biodegradability analysis of pharmaceuticals used in developing countries; screening with OxiTop ® - C 110

  16. Bedse G, Kumar V, Singh S (2009) Study of forced decomposition behavior of lamivudine using LC, LC-MS/TOF and MSn. J Pharm Biomed Anal 49:55–63

    CAS  PubMed  Google Scholar 

  17. Kanakaraju D, Glass BD, Oelgem M (2018) Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. J Environ Manage 219:189–207

    CAS  PubMed  Google Scholar 

  18. Papastefanakis N, Mantzavinos D, Katsaounis A (2010) DSA electrochemical treatment of olive mill wastewater on Ti/RuO 2 anode. J Appl Electrochem 40:729–737

    CAS  Google Scholar 

  19. Boye B, Farnia G, Sandonà G et al (2005) Removal of vegetal tannins from wastewater by electroprecipitation combinedwith electrogenerated Fenton oxidation. J Appl Electrochem 35:369–374

    CAS  Google Scholar 

  20. Krishna BM, Murthy UN, Manoj Kumar B, Lokesh KS (2010) Electrochemical pretreatment of distillery wastewater using aluminum electrode. J Appl Electrochem 40:663–673

    CAS  Google Scholar 

  21. Tirado L, Gökkuş Ö, Brillas E, Sirés I (2018) Treatment of cheese whey wastewater by combined electrochemical processes. J Appl Electrochem 48:1307–1319

    CAS  Google Scholar 

  22. Farhadi S, Aminzadeh B, Torabian A et al (2012) Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes. J Hazard Mater 219–220:35–42

    PubMed  Google Scholar 

  23. Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chem Rev 109:6570–6631

    CAS  PubMed  Google Scholar 

  24. Puspita P, Roddick F, Porter N (2015) Efficiency of sequential ozone and UV-based treatments for the treatment of secondary effluent. Chem Eng J 268:337–347

    CAS  Google Scholar 

  25. Katsoyiannis IA, Canonica S, von Gunten U (2011) Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2. Water Res 45:3811–3822

    CAS  PubMed  Google Scholar 

  26. Vilhunen S, Vilve M, Vepsäläinen M, Sillanpää M (2010) Removal of organic matter from a variety of water matrices by UV photolysis and UV/H2O2 method. J Hazard Mater 179:776–782

    CAS  PubMed  Google Scholar 

  27. Moreno CHA, Cocke DL, Gomes JAG et al (2009) Electrochemical Reactions for Electrocoagulation Using Iron Electrodes. Ind Eng Chem Res 48:2275–2282

    Google Scholar 

  28. An T, An J, Yang H et al (2011) Photocatalytic degradation kinetics and mechanism of antivirus drug-lamivudine in TiO2 dispersion. J Hazard Mater 197:229–236

    CAS  PubMed  Google Scholar 

  29. Loos G, Scheers T, Van Eyck K et al (2018) Electrochemical oxidation of key pharmaceuticals using a boron doped diamond electrode. Sep Purif Technol 195:184–191

    CAS  Google Scholar 

  30. Jiang J, Graham N, André C et al (2002) Laboratory study of electro-coagulation–flotation for water treatment. Water Res 36:4064–4078

    CAS  PubMed  Google Scholar 

  31. Pablo Cañizares C, Jiménez F, Martínez, et al (2007) Study of the Electrocoagulation. Process Using Aluminum and Iron Electrodes. https://doi.org/10.1021/IE070059F

    Article  Google Scholar 

  32. Parga JR, Cocke DL, Valverde V et al (2005) Characterization of Electrocoagulation for Removal of Chromium and Arsenic. Chem Eng Technol 28:605–612

    CAS  Google Scholar 

  33. Bazrafshan E, Mohammadi L, Ansari-Moghaddam A, Mahvi AH (2015) Heavy metals removal from aqueous environments by electrocoagulation process– a systematic review. J Environ Heal Sci Eng 13:74

    Google Scholar 

  34. Holt PK, Barton GW, Mitchell CA (2005) The future for electrocoagulation as a localised water treatment technology. Chemosphere 59:355–367

    CAS  PubMed  Google Scholar 

  35. Boczkaj G, Fernandes A (2017) Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chem Eng J 320:608–633

    CAS  Google Scholar 

  36. Gargurevich IA (2016) Aqueous Urea Decomposition Reactor: Reaction Modeling and Scale Up. J Chem Eng Process Technol 07:2–5

    Google Scholar 

  37. Rusydi AF (2018) Correlation between conductivity and total dissolved solid in various type of water: A review. IOP Conf Ser Earth Environ Sci 118:012019

    Google Scholar 

  38. Ali NS, Mo K, Kim M (2012) A case study on the relationship between conductivity and dissolved solids to evaluate the potential for reuse of reclaimed industrial wastewater. KSCE J Civ Eng. https://doi.org/10.1007/s12205-012-1581-x

    Article  Google Scholar 

  39. Sahu JN, Gangadharan P, Patwardhan AV, Meikap BC (2009) Catalytic hydrolysis of urea with fly ash for generation of ammonia in a batch reactor for flue gas conditioning and NOx reduction. Ind Eng Chem Res 48:727–734

    CAS  Google Scholar 

  40. Li L, Zhang S, Li G, Zhao H (2012) Determination of chemical oxygen demand of nitrogenous organic compounds in wastewater using synergetic photoelectrocatalytic oxidation effect at TiO2 nanostructured electrode. Anal Chim Acta 754:47–53

    CAS  PubMed  Google Scholar 

  41. Urbańczyk E, Sowa M, Simka W (2016) Urea removal from aqueous solutions—a review. J Appl Electrochem 46:1011–1029

    Google Scholar 

  42. Al-Shannag M, Al-Qodah Z, Bani-Melhem K et al (2015) Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chem Eng J 260:749–756

    CAS  Google Scholar 

  43. Zhang X, Lin H, Hu B (2016) Phosphorus removal and recovery from dairy manure by electrocoagulation. RSC Adv 6:57960–57968

    CAS  Google Scholar 

  44. Gurung K, Ncibi MC, Shestakova M, Sillanpää M (2018) Removal of carbamazepine from MBR effluent by electrochemical oxidation (EO) using a Ti/Ta2O5-SnO2 electrode. Appl Catal B Environ 221:329–338

    CAS  Google Scholar 

  45. Bucchianico AD (2014) Coefficient of Determination (R 2). Wiley StatsRef Stat Ref Online 2

  46. Jarrah N, Mu’azu ND (2016) Simultaneous electro-oxidation of phenol, CN–, S2 – and NH4 + in synthetic wastewater using boron doped diamond anode. J Environ Chem Eng 4:2656–2664

    CAS  Google Scholar 

  47. Bolton JR, Bircher KG, Tumas W, Tolman CA (2001) Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric-and solar-driven systems (IUPAC Technical Report). Pure Appl Chem 73:1998–1999

    Google Scholar 

Download references

Acknowledgements

The first author would like to thank NASCERE scholarship program and Jimma University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Fekadu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fekadu, S., Alemayehu, E., Dewil, R. et al. Electrochemical degradation of antivirus drug lamivudine formulation: photoelectrocoagulation, peroxi-electrocoagulation, and peroxi-photoelectrocoagulation processes. J Appl Electrochem 51, 607–618 (2021). https://doi.org/10.1007/s10800-020-01521-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01521-1

Keywords

Navigation