Skip to main content
Log in

Electrocatalytic activity enhancement of N,P-doped carbon nanosheets derived from polymerizable ionic liquids

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A facile preparation method was developed to obtain two-dimensional (2D) metal-free N, P-co-doped carbon nanosheets with sp2/sp3 interface derived from polymerizable ionic liquids (PIL) and ammonium nitrate (NH4NO3), exhibiting better electrocatalytic activity than that of the commercial Pt/C toward oxygen reduction reaction (ORR). The introduction of NH4NO3 can benefit the formation of carbon nanosheets structure and hierarchical porous structure due to decomposition and carbonization of polymer and gases emission resulting from ammonia nitrate, which can be confirmed by the SEM, TEM and BET results. The sp3 carbon and doping effect of heteroatoms of N, P can be investigated with the XPS, Raman and NEXAFS spectroscopy. The present work developed a facile method to prepare heteroatom-co-doped carbon as metal-free catalyst toward ORR with superior catalytic performance.

Graphic abstract

Two-dimensional carbon nanosheets doped with N, P atoms can be successfully prepared via pyrolysis process of the polymerizable ionic liquids ([Hvim]DHP) and NH4NO3, demonstrating superior electrocatalytic performance toward oxygen reduction in alkaline media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen Z (2018) Batteries and fuel cells for emerging electric vehicle markets. Nat Energy 3:279–289. https://doi.org/10.1038/s41560-018-0108-1

    Article  Google Scholar 

  2. Cheng F, Chen J (2012) Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41:2172–2192. https://doi.org/10.1039/C1CS15228A

    Article  CAS  PubMed  Google Scholar 

  3. Yin Z, Lin L, Ma D (2014) Construction of Pd-based nanocatalysts for fuel cells: opportunities and challenges. Catal Sci Technol 4:4116–4128. https://doi.org/10.1039/C4CY00760C

    Article  CAS  Google Scholar 

  4. Rabis A, Rodriguez P, Schmidt TJ (2012) Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges. ACS Catal 2:864–890. https://doi.org/10.1021/cs3000864

    Article  CAS  Google Scholar 

  5. Watanabe M, Tryk DA, Wakisaka M, Yano H, Uchida H (2012) Overview of recent developments in oxygen reduction electrocatalysis. Electrochim Acta 84:187–201. https://doi.org/10.1016/j.electacta.2012.04.035

    Article  CAS  Google Scholar 

  6. Shao M, Chang Q, Dodelet J-P, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116:3594–3657. https://doi.org/10.1021/acs.chemrev.5b00462

    Article  CAS  PubMed  Google Scholar 

  7. Shao Y, Dodelet JP, Wu G, Zelenay P (2019) PGM-free cathode catalysts for PEM fuel cells: a mini‐review on stability challenges. Adv Mater 31:1807615. https://doi.org/10.1002/adma.201807615

    Article  CAS  Google Scholar 

  8. Gewirth AA, Varnell JA, DiAscro AM (2018) Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems. Chem Rev 118:2313–2339. https://doi.org/10.1021/acs.chemrev.7b00335

    Article  CAS  PubMed  Google Scholar 

  9. Dai L, Xue Y, Qu L, Choi HJ, Baek JB (2015) Metal-free catalysts for oxygen reduction reaction. Chem Rev 115:4823–4892. https://doi.org/10.1021/cr5003563

    Article  CAS  PubMed  Google Scholar 

  10. Zheng Y, Jiao Y, Jaroniec M, Jin Y, Qiao SZ (2012) Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction. Small 8:3550–3566. https://doi.org/10.1002/smll.201200861

    Article  CAS  PubMed  Google Scholar 

  11. Wu G, Santandreu A, Kellogg W, Gupta S, Ogoke O, Zhang H, Wang H-L, Dai L (2016) Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition. Nano Energy 29:83–110. https://doi.org/10.1016/j.nanoen.2015.12.032

    Article  CAS  Google Scholar 

  12. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764. https://doi.org/10.1126/science.1168049

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Li J, Wei Z (2018) Recent progress of carbon-based materials in oxygen reduction reaction catalysis. ChemElectroChem 5:1764–1774. https://doi.org/10.1002/celc.201701335

    Article  CAS  Google Scholar 

  14. Daems N, Sheng X, Vankelecom IF, Pescarmona PP (2014) Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J Mater Chem A 2:4085–4110. https://doi.org/10.1039/C3TA14043A

    Article  CAS  Google Scholar 

  15. Zhang J, Zhao Z, Xia Z, Dai L (2015) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 10:444–452. https://doi.org/10.1038/nnano.2015.48

    Article  CAS  PubMed  Google Scholar 

  16. Xiang Z, Cao D, Huang L, Shui J, Wang M, Dai L (2014) Nitrogen-doped holey graphitic carbon from 2D covalent organic polymers for oxygen reduction. Adv Mater 26:3315–3320. https://doi.org/10.1002/adma.201306328

    Article  CAS  PubMed  Google Scholar 

  17. Yang Q, Zhang Z, Sun X-G, Hu Y-S, Xing H, Dai S (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47:2020–2064. https://doi.org/10.1039/C7CS00464H

    Article  CAS  PubMed  Google Scholar 

  18. Paraknowitsch JP, Zhang J, Su D, Thomas A, Antonietti M (2010) Ionic liquids as precursors for nitrogen-doped graphitic carbon. Adv Mater 22:87–92. https://doi.org/10.1002/adma.200900965

    Article  CAS  PubMed  Google Scholar 

  19. Yang W, Fellinger T-P, Antonietti M (2011) Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J Am Chem Soc 133:206–209. https://doi.org/10.1021/ja108039j

    Article  CAS  PubMed  Google Scholar 

  20. Qian W, Texter J, Yan F (2017) Frontiers in poly(ionic liquid)s: syntheses and applications. Chem Soc Rev 46:1124–1159. https://doi.org/10.1039/C6CS00620E

    Article  CAS  PubMed  Google Scholar 

  21. Gao J, He C, Liu J, Ren P, Lu H, Feng J, Zou Z, Yin Z, Wen X, Tan X (2018) Polymerizable ionic liquid as a precursor for N, P co-doped carbon toward the oxygen reduction reaction. Catal Sci Technol 8:1142–1150. https://doi.org/10.1039/C7CY02268A

    Article  CAS  Google Scholar 

  22. Gao J, Ma N, Zhai J, Li T, Qin W, Zhang T, Yin Z (2015) Polymerizable ionic liquid as nitrogen-doping precursor for Co–N–C catalyst with enhanced oxygen reduction activity. Ind Eng Chem Res 54:7984–7989. https://doi.org/10.1021/acs.iecr.5b01703

    Article  CAS  Google Scholar 

  23. Gao J, Ma N, Zheng Y, Zhang J, Gui J, Guo C, An H, Tan X, Yin Z, Ma D (2017) Cobalt/nitrogen-doped porous carbon nanosheets derived from polymerizable ionic liquids as bifunctional electrocatalyst for oxygen evolution and oxygen reduction reaction. ChemCatChem 9:1601–1609. https://doi.org/10.1002/cctc.201601207

    Article  CAS  Google Scholar 

  24. Gao J, Wang Y, Wu H, Liu X, Wang L, Yu Q, Li A, Wang H, Song C, Gao Z, Peng M, Zhang M, Ma N, Wang J, Zhou W, Wang G, Yin Z, Ma D (2019) Construction of a sp3/sp2 carbon interface in 3D N-doped nanocarbons for the oxygen reduction reaction. Angew Chem Int Ed 58:15089–15097. https://doi.org/10.1002/anie.201907915

    Article  CAS  Google Scholar 

  25. Lv J-J, Li Y, Wu S, Fang H, Li L-L, Song R-B, Ma J, Zhu J-J (2018) Oxygen species on nitrogen-doped carbon nanosheets as efficient active sites for multiple electrocatalysis. ACS Appl Mater Interfaces 10:11678–11688. https://doi.org/10.1021/acsami.8b00240

    Article  CAS  PubMed  Google Scholar 

  26. He X, Ma H, Wang J, Xie Y, Xiao N, Qiu J (2017) Porous carbon nanosheets from coal tar for high-performance supercapacitors. J Power Sources 357:41–46. https://doi.org/10.1016/j.jpowsour.2017.04.108

    Article  CAS  Google Scholar 

  27. Zhang J, Qu L, Shi G, Liu J, Chen J, Dai L (2016) N, P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew Chem Int Ed 55:2230–2234. https://doi.org/10.1002/ange.201510495

    Article  CAS  Google Scholar 

  28. Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo J-C, Pennycook SJ, Dai H (2012) An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes. Nat Nanotechnol 7:394. https://doi.org/10.1038/nnano.2012.72

    Article  CAS  PubMed  Google Scholar 

  29. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780. https://doi.org/10.1038/nmat3087

    Article  CAS  PubMed  Google Scholar 

  30. Pan F, Cao Z, Zhao Q, Liang H, Zhang J (2014) Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction. J Power Sources 272:8–15. https://doi.org/10.1016/j.jpowsour.2014.07.180

    Article  CAS  Google Scholar 

  31. He Y, Zhuang X, Lei C, Lei L, Hou Y, Mai Y, Feng X (2019) Porous carbon nanosheets: synthetic strategies and electrochemical energy related applications. Nano Today 24:103–119. https://doi.org/10.1016/j.nantod.2018.12.004

    Article  CAS  Google Scholar 

  32. Liu Y, Song C, Lv G, Cao X, Wang L, Qiao Y, Yang X (2016) Surface functional groups and sp3/sp2 hybridization ratios of in-cylinder soot from a diesel engine fueled with n-heptane and n-heptane/toluene. Fuel 179:108–113. https://doi.org/10.1016/j.fuel.2016.03.082

    Article  CAS  Google Scholar 

  33. Zhu YS, Lin YM, Zhang BS, Rong JF, Zong BN, Su DS (2015) Nitrogen-doped annealed nanodiamonds with varied sp2/sp3 ratio as metal-free electrocatalyst for the oxygen reduction reaction. ChemCatChem 7:2840–2845. https://doi.org/10.1002/cctc.201402930

    Article  CAS  Google Scholar 

  34. Arrigo R, Hävecker M, Wrabetz S, Blume R, Lerch M, McGregor J, Parrott EP, Zeitler JA, Gladden LF, Knop-Gericke A (2010) Tuning the acid/base properties of nanocarbons by functionalization via amination. J Am Chem Soc 132:9616–9630. https://doi.org/10.1021/ja910169v

    Article  CAS  PubMed  Google Scholar 

  35. Jiang H, Wang Y, Hao J, Liu Y, Li W, Li J (2017) N and P co-functionalized three-dimensional porous carbon networks as efficient metal-free electrocatalysts for oxygen reduction reaction. Carbon 122:64–73. https://doi.org/10.1016/j.carbon.2017.06.043

    Article  CAS  Google Scholar 

  36. Niu J, Shao R, Liang J, Dou M, Li Z, Huang Y, Wang F (2017) Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy 36:322–330. https://doi.org/10.1016/j.nanoen.2017.04.042

    Article  CAS  Google Scholar 

  37. Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y (2006) Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc 128:11635–11642. https://doi.org/10.1021/ja063303n

    Article  CAS  PubMed  Google Scholar 

  38. Jaouen M, Tourillon G, Delafond J, Junqua N, Hug G (1995) A NEXAFS characterization of ion-beam-assisted carbon-sputtered thin films. Diam Relat Mater 4:200–206. https://doi.org/10.1016/0925-9635(94)00252-5

    Article  CAS  Google Scholar 

  39. Zhang Q, Wang J, Yu P, Song F, Yin X, Chen R, Nie H, Zhang X, Yang W (2018) Porous carbon electrocatalyst with exclusive metal-coordinate active sites for acidic oxygen reduction reaction. Carbon 132:85–94. https://doi.org/10.1016/j.carbon.2018.02.019

    Article  CAS  Google Scholar 

  40. Deng D, Chen X, Yu L, Wu X, Liu Q, Liu Y, Yang H, Tian H, Hu Y, Du P (2015) A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci Adv 1:1–9. https://doi.org/10.1126/sciadv.1500462

    Article  Google Scholar 

  41. Zhu X, Tan X, Wu K-H, Chiang C-L, Lin Y-C, Lin Y-G, Wang D-W, Smith S, Lu X, Amal R (2019) N, P co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis. J Mater Chem A 7:14732–14742. https://doi.org/10.1039/C9TA03011E

    Article  CAS  Google Scholar 

  42. Benck JD, Chen Z, Kuritzky LY, Forman AJ, Jaramillo TF (2012) Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal 2:1916–1923. https://doi.org/10.1021/cs300451q

    Article  CAS  Google Scholar 

  43. Li X, Zhang K, Mitlin D, Yang Z, Wang M, Tang Y, Jiang F, Du Y, Zheng J (2018) Fundamental insight into Zr modification of Li- and Mn-rich cathodes: combined transmission electron microscopy and electrochemical impedance spectroscopy study. Chem Mater 30:2566–2573. https://doi.org/10.1021/acs.chemmater.7b04861

    Article  CAS  Google Scholar 

  44. Wang X, Hao H, Liu J, Huang T, Yu A (2011) A novel method for preparation of macroporous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochim Acta 56:4065–4069. https://doi.org/10.1016/j.electacta.2010.12.108

    Article  CAS  Google Scholar 

  45. Liang Z, Zheng H, Cao R (2019) Importance of electrocatalyst morphology for the oxygen reduction reaction. ChemElectroChem 6:2600–2614. https://doi.org/10.1002/celc.201801859

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21776219, 21872104, 21676200, 51761135106, 21673273, 21872163) and Innovation Project of University Students (No. 201610058095). J. Gao is also grateful to the funding support from China Postdoctoral Science Foundation (No. 2018M631746).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Gao, Xifei Li or Zhen Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 2599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Zhang, Z., Qin, F. et al. Electrocatalytic activity enhancement of N,P-doped carbon nanosheets derived from polymerizable ionic liquids. J Appl Electrochem 51, 669–679 (2021). https://doi.org/10.1007/s10800-020-01506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01506-0

Keywords

Navigation