Skip to main content
Log in

Fabrication and optimization of polypyrrole/cerium oxide/glassy carbon sensing platform for the electrochemical detection of flupirtine

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In spite of single nanomaterials, nanocomposites have come to be the superior modifying materials for electrochemical sensing. Herein, the highly sophisticated and sensitive voltammetric sensor of polypyrrole/cerium oxide/glassy carbon electrode (Ppyr/CeO2/GCE) has been fabricated for the electrochemical analysis of flupirtine maleate (FPM). Prior to the fabrication, the synthetic Ppyr/CeO2 material and its constituents viz., Ppyr and CeO2 were spectrally characterized by FTIR, XRD, and SEM to confirm the successful synthesis. After the fabrication of the Ppyr/CeO2/GCE sensor, it together with its corresponding forms i.e., CeO2/GCE and Ppyr/GCE including bare GCE was characterized by voltammetry and electrochemical impedance spectroscopy (EIS). The electrode characteristics such as charge transfer resistance, heterogeneous electron transfer (HET) rate constant, (\(k_{{{\text{eff}}}}^{0}\)) and surface area suggest that the designed electrochemical sensor has got the conductivity (sensitivity) par excellence as compared to CeO2/GCE, Ppyr/GCE and bare GCE. The fabricated probe after characterization was optimized for the detection of the FPM by voltammetry and found to show a direct correlation between the oxidation current and the FPM concentration varying from 100 ng mL−1 to 500 ng mL−1 having correlation coefficient (r2) of 0.9940. By measuring the calibration curve, the fabricated Ppyr/CeO2/GCE sensor was found to reach the minimum limit of detection (LOD) i.e., 26.76 ng mL−1 and minimum limit of quantification (LOQ) i.e., 89.20 ng mL−1, for FPM, thereby showing the sensitivity par excellence in terms of conductivity.

Graphic abstract

Fabrication of Ppyr/CeO2/GCE voltammetric sensor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang D, Song X, Su J (2014) Isolation, identification and characterization of novel process-related impurities in flupirtine maleate. J Pharm Biomed Anal 90:27–34

    CAS  PubMed  Google Scholar 

  2. Lemmerhirt CJ, Rombach M, Bodtke A, Bednarski PJ, Link A (2015) Oxidation potentials of N-modified derivatives of the analgesic flupirtine linked to potassium KV7 channel opening activity but not hepatocyte toxicity. ChemMedChem 10(2):368–379

    CAS  PubMed  Google Scholar 

  3. Bock C, Beirow K, Surur AS, Schulig L, Bodtke A, Bednarski PJ, Link A (2018) Synthesis and potassium KV7 channel opening activity of thioether analogues of the analgesic flupirtine. Org Biomol Chem 16(45):8695–8699

    CAS  PubMed  Google Scholar 

  4. Surur AS, Beirow K, Bock C, Schulig L, Kindermann MK, Bodtke A, Siegmund W, Bednarski PJ, Link A (2019) Flupirtine analogues: explorative synthesis and influence of chemical structure on KV7.2/KV7.3 channel opening activity. Chem Open 8(1):41–44

    CAS  Google Scholar 

  5. Scheuch E, Methling K, Bednarski PJ, Oswald S, Siegmund W (2015) Quantitative LC–MS/MS determination of flupirtine, its N-acetylated and two mercapturic acid derivatives in man. J Pharm Biomed Anal 102:377–385

    CAS  PubMed  Google Scholar 

  6. Surur AS, Bock C, Beirow K, Wurm K, Schulig L, Kindermann MK, Siegmund W, Bednarski PJ, Link A (2019) Flupirtine and retigabine as templates for ligand-based drug design of KV7.2/3 activators. Org Biomol Chem 17(18):4512–4522

    CAS  PubMed  Google Scholar 

  7. Bock C, Surur AS, Beirow K, Kindermann MK, Schulig L, Bodtke A, Bednarski PJ, Link A (2019) Sulfide analogues of flupirtine and retigabine with nanomolar KV7.2/KV7.3 channel opening activity. ChemMedChem 14(9):952–964

    CAS  PubMed  Google Scholar 

  8. Beitollahi H, Karimi-Maleh H, Khabazzadeh H (2008) Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3, 4 dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal Chem 80(24):9848–9851

    CAS  PubMed  Google Scholar 

  9. Tajik S, Taher MA, Beitollahi H (2014) Mangiferin DNA biosensor using double-stranded DNA modified pencil graphite electrode based on guanine and adenine signals. J Electroanal Chem 720:134–138

    Google Scholar 

  10. Soltani H, Beitollahi H, Hatefi-Mehrjardi AH, Tajik S, Torkzadeh-Mahani M (2014) Voltammetric determination of glutathione using a modified single walled carbon nanotubes paste electrode. Anal Bioanal Electrochem 6(1):67–79

    CAS  Google Scholar 

  11. Beitollahi H, Tajik S, Parvan H, Soltani H, Akbari A, Asadi MH (2014) Nanostructured based electrochemical sensor for voltammetric determination of ascorbic acid in pharmaceutical and biological samples. Anal Bioanal Electrochem 6(1):54–66

    CAS  Google Scholar 

  12. Motaghi MM, Beitollahi H, Tajik S, Hosseinzadeh R (2016) Nanostructure electrochemical sensor for voltammetric determination of vitamin C in the presence of vitamin B6: application to real sample analysis. Int J Electrochem Sci 11(9):7849–7860

    CAS  Google Scholar 

  13. Ganjali MR, Dourandish Z, Beitollahi H, Tajik S, Hajiaghababaei L, Larijani B (2018) Highly sensitive determination of theophylline based on graphene quantum dots modified electrode. Int J Electrochem Sci 13(3):2448–2461

    CAS  Google Scholar 

  14. Baghbamidi SE, Beitollahi H, Tajik S, Hosseinzadeh R (2016) Voltammetric sensor based on 1-benzyl-4-ferrocenyl-1H-[1, 2, 3]-triazole/carbon nanotube modified glassy carbon electrode; detection of hydrochlorothiazide in the presence of propranolol. Int J Electrochem Sci 11(12):10874–10883

    CAS  Google Scholar 

  15. Singh K, Nowotny J, Thangadurai V (2013) Amphoteric oxide semiconductors for energy conversion devices: a tutorial review. Chem Soc Rev 42(5):1961–1972

    CAS  PubMed  Google Scholar 

  16. Nuraje N, Asmatulu R, Kudaibergenov S (2012) Metal oxide-based functional materials for solar energy conversion: a review. Curr Inorg Chem 2(2):124–146

    CAS  Google Scholar 

  17. Ren Y, Ma Z, Bruce PG (2012) Ordered mesoporous metal oxides: synthesis and applications. Chem Soc Rev 41(14):4909–4927

    CAS  PubMed  Google Scholar 

  18. Tschöpe A, Sommer E, Birringer R (2001) Grain size-dependent electrical conductivity of polycrystalline cerium oxide: I: Experiments. Solid State Ionics 139(3–4):255–265

    Google Scholar 

  19. Wei Y, Li M, Fang B (2007) Fabrication of CeO2 nanoparticle modified glassy carbon electrode for ultrasensitive determination of trace amounts of uric acid in urine. Chin J Chem 25(11):1622–1626

    CAS  Google Scholar 

  20. Zhang D-E, Chen A-M, Wang M-Y, Gong J-Y, Zhang X-B, Li S-Z, Han G-Q, Ying A-L, Tong Z-W (2011) Solvothermal preparation of Ceo2 nanocubes and their catalytic properties. Funct Mater Lett 4(1):97–100

    CAS  Google Scholar 

  21. Wei Y, Li M, Jiao S, Huang Q, Wang G, Fang B (2006) Fabrication of CeO2 nanoparticles modified glassy carbon electrode and its application for electrochemical determination of UA and AA simultaneously. Electrochim Acta 52(3):766–772

    CAS  Google Scholar 

  22. Ansari S, Ansari MS, Dev N, Satsangee SP (2019) CeO2 nanoparticles based electrochemical sensor for an anti-anginal drug. Mater Today Proc 18(3):1210–1219

    CAS  Google Scholar 

  23. Peng H, Zhang L, Soeller C, Travas-Sejdic J (2009) Conducting polymers for electrochemical DNA sensing. Biomaterials 30(11):2132–2148

    CAS  PubMed  Google Scholar 

  24. Vidal JC, Garcia-Ruiz E, Castillo JR (2003) Recent advances in electropolymerized conducting polymers in amperometric biosensors. Microchim Acta 143(2–3):93–111

    CAS  Google Scholar 

  25. Nambiar S, Yeow JTW (2011) Conductive polymer-based sensors for biomedical applications. Biosens Bioelectron 26(5):1825–1832

    CAS  PubMed  Google Scholar 

  26. Xia L, Wei Z, Wan M (2010) Conducting polymer nanostructures and their application in biosensors. J Colloid Interface Sci 341(1):1–11

    CAS  PubMed  Google Scholar 

  27. Ates M, Sarac AS (2009) Conducting polymer coated carbon surfaces and biosensor applications. Prog Org Coat 66(4):337–358

    CAS  Google Scholar 

  28. Hatchett DW, Josowicz M (2008) Composites of intrinsically conducting polymers as sensing nanomaterials Chem. Chem Rev 108(2):746–769

    CAS  PubMed  Google Scholar 

  29. Trojanowicz M (2003) Application of conducting polymers in chemical analysis. Microchim Acta 143(2–3):75–91

    CAS  Google Scholar 

  30. Lange U, Roznyatovskaya NV, Mirsky VM (2008) Conducting polymers in chemical sensors and arrays. Anal Chim Acta 614(1):1–26

    CAS  PubMed  Google Scholar 

  31. Li J, Wei W, Luo S (2010) A novel one-step electrochemical codeposition of carbon nanotubes-DNA hybrids and tiron doped polypyrrole for selective and sensitive determination of dopamine. Microchim Acta 171(1):109–116

    CAS  Google Scholar 

  32. Şen S, Gök A, Gülce H (2007) Novel Ni/polypyrrole and Cu/polypyrrole composites prepared in the presence of different acids: synthesis and investigation of thermal stability. J Appl Polym Sci 106(6):3852–3860

    Google Scholar 

  33. Rodriguez J (1997) Grande Hand Otero TF, Handbook of organic conducting molecules and polymers, vol 2. Wiley, Chichester, pp 415–468

    Google Scholar 

  34. Armes SP (1998) Colloidal dispersions of conducting polymers. In: Skotheim TA, Elsenbamer RL, Reynolds JR (eds) Handbook of conducting polymers, 2nd edn. Marcel Dekker Inc., New York, pp 423–435 [Chapter 17]

    Google Scholar 

  35. Sun D, Zhang Y, Wang F, Wu K, Chen J, Zhou Y (2009) Electrochemical sensor for simultaneous detection of ascorbic acid, uric acid and xanthine based on the surface enhancement effect of mesoporous silica. Sens Actuators B 141(2):641–645

    CAS  Google Scholar 

  36. Zhang ZH, Hu YF, Zhang HB, Luo LJ, Yao SZ (2010) Electrochemical layer-by-layer modified imprinted sensor based on multi-walled carbon nanotubes and sol–gel materials for sensitive determination of thymidine. J Electroanal Chem 644(1):7–12

    CAS  Google Scholar 

  37. Jain R, Sinha A, Khan AL (2016) Polyaniline–graphene oxide nanocomposite sensor for quantification of calcium channel blocker levamlodipine. Mater Sci Eng C 65(1):205–214

    CAS  Google Scholar 

  38. Jain R, Sinha A, Kumari N, Khan AL (2016) A polyaniline/graphene oxide nanocomposite as a voltammetric sensor for electroanalytical detection of clonazepam. Anal Methods 8(15):3034–3045

    CAS  Google Scholar 

  39. Jain R, Khan AL, Karolia P (2016) Electrocatalytic quantification of pantaprazole. J Electrochem Soc 163(8):H633–H638

    CAS  Google Scholar 

  40. Wooster TJ, Bond AM (2003) Ion selectivity obtained under voltammetric conditions when a TCNQ chemically modified electrode is presented with aqueous solutions containing tetraalkylammonium cations. Analyst 128(11):1386–1390

    CAS  PubMed  Google Scholar 

  41. Wooster TJ, Bond AM, Honeychurch MJ (2003) An analogy of an ion-selective electrode sensor based on the voltammetry of microcrystals of tetracyanoquinodimethane or tetrathiafulvalene adhered to an electrode surface. Anal Chem 75(3):586–592

    CAS  PubMed  Google Scholar 

  42. Cano M, Rodriguez-Amaro R, Romero AJF (2008) Use of Butler-Volmer treatment to assess the capability of the voltammetric ion sensors: application to a PPy/DBS film for cations detection. Electrochem Commun 10(2):190–194

    CAS  Google Scholar 

  43. Cano M, Rodriguez-Amaro R, Romero AJF (2008) A new method based on the Butler−Volmer formalism to evaluate voltammetric cation and anion sensors. J. Phys. Chem. B 112(49):5596–15603

    Google Scholar 

  44. Bora C, Dolui SK (2014) Interfacial synthesis of polypyrrole/graphene composites and investigation of their optical, electrical and electrochemical properties. Polym Int 63(8):1439–1446

    CAS  Google Scholar 

  45. Khan AL, Jain R (2018) Polypyrrole/titanium dioxide nanocomposite sensor for the electrocatalytic quantification of sulfamoxole. Ionics 24(8):2473–2488

    CAS  Google Scholar 

  46. Sultan A, Anwer T, Ahmad S, Mohammad F (2016) Preparation, characterization, and dynamic adsorption–desorption studies on polypyrrole encapsulated TiO2 nanoparticles. J Appl Polym Sci 133(20):43411

    Google Scholar 

  47. Saravanan C, Shekhar RC, Palaniappan S (2006) Synthesis of polypyrrole using benzoyl peroxide as a novel oxidizing agent. Macromol Chem Phys 207(3):342–348

    CAS  Google Scholar 

  48. Su PG, Huang LN (2007) Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films Sens. Sens Actuators B 123(1):501–507

    CAS  Google Scholar 

  49. Ho C, Yu JC, Kwang T, Mak AC, Lai S (2005) Morphology-controllable synthesis of mesoporous CeO2 nano- and microstructures. Chem Mater 17(17):4514–4522

    CAS  Google Scholar 

  50. Farahmandjou M, Zarinkamar M, Firoozabadi TP (2016) Synthesis of cerium oxide (CeO2) nanoparticles using simple CO-precipitation method. Rev Mex Fis 62(5):496–499

    Google Scholar 

  51. Niu F, Zhang D, Shi L, He X, LiHMai H, Yan T (2009) Facile synthesis, characterization and low-temperature catalytic performance of Au/CeO2 nanorods. Mater Lett 63(24–25):2132–2135

    CAS  Google Scholar 

  52. Palard M, Balencie J, Maguer A, Hochepied JF (2010) Effect of hydrothermal ripening on the photoluminescence properties of pure and doped cerium oxide nanoparticles. Mater Chem Phys 120(1):79–88

    CAS  Google Scholar 

  53. Huang CL, Matijevic E (1995) Coating of uniform inorganic particles with polymers: III. Polypyrrole on different metal oxides. J Mater Res 10(5):1327–1336

    CAS  Google Scholar 

  54. Heydarnezhad HR, Pourabbas B (2013) One-step synthesis of conductive ceria/polypyrrole nanocomposite particles via photo-induced polymerization method. J Mater Sci Mater Electron 24(11):4378–4385

    CAS  Google Scholar 

  55. Rezaei B, Damiri S (2008) Voltammetric behavior of multi-walled carbon nanotubes modified electrode-hexacyanoferrate(II) electrocatalyst system as a sensor for determination of captopril. Sens Actuator B 134(1):324–331

    CAS  Google Scholar 

  56. Nambiar SR, Aneesh PK, Rao TP (2013) Ultrasensitive voltammetric determination of catechol at a gold atomic cluster/poly(3,4-ethylenedioxythiophene) nanocomposite electrode. Analyst 138(17):5031–5038

    CAS  PubMed  Google Scholar 

  57. Sun JY, Huang KJ, Zhao SF, Fan Y, Wu ZW (2011) Direct electrochemistry and electrocatalysis of hemoglobin on chitosan-room temperature ionic liquid-TiO2-graphene nanocomposite film modified electrode. Bioelectrochemistry 82(2):125–130

    CAS  PubMed  Google Scholar 

  58. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  59. Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37(11):1351–1355

    CAS  Google Scholar 

  60. Brownson DAC, Kelly PJ, Banks CE (2015) In situ electrochemical characterisation of graphene and various carbon-based electrode materials: an internal standard approach. RSC Adv 5(47):37281–37286

    CAS  Google Scholar 

  61. Brownson DAC, Varey SA, Hussain F, Haigh SJ, Banks CE (2014) Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene. Nanoscale 6(3):1607–1621

    CAS  PubMed  Google Scholar 

  62. Banks CE, Compton RG, Fisher AC, Henley IE (2004) The transport limited currents at insonated electrodes. Phys Chem Chem Phys 6(12):3147–3152

    CAS  Google Scholar 

  63. Brownson DAC, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41(21):6944–6976

    CAS  PubMed  Google Scholar 

  64. Brownson DAC, Banks CE (2014) The handbook of graphene electrochemistry. Springer, London

    Google Scholar 

  65. Lavagnini I, Antiochia R, Magno F (2004) An extended method for the practical evaluation of the standard rate constant from cyclic voltammetric data. Electroanalysis 16(6):505–506

    CAS  Google Scholar 

  66. Griffiths K, Dale C, Hedley J, Kowal MD, Kaner RB, Keegan N (2014) Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensors. Nanoscale 6(22):13613–13622

    CAS  PubMed  Google Scholar 

  67. McCreery RL, McDermott MT (2012) Comment on electrochemical kinetics at ordered graphite electrodes. Anal Chem 84(5):2602–2605

    CAS  PubMed  Google Scholar 

  68. Bosch-Navarro C, Laker ZPL, Rourkeb JP, Wilson NR (2015) Reproducible, stable and fast electrochemical activity from easy to make graphene on copper electrodes. Phys Chem Chem Phys 17(44):29628–29636

    CAS  PubMed  Google Scholar 

  69. Zoski CG (2007) Handbook of electrochemistry. Elsevier, New York

    Google Scholar 

  70. Randviir EP (2018) A cross examination of electron transfer rate constants for carbon screen-printed electrodes using electrochemical impedance spectroscopy and cyclic voltammetry. Electrochim Acta 286:179–186

    CAS  Google Scholar 

  71. Guan H, Fan LZ, Zhang H, Qu X (2010) Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors. Electrochim Acta 56(2):964–968

    CAS  Google Scholar 

  72. Lien TTN, Lam TD, An VTH, Hoang TV, Quang DT, Khieu DQ, Tsukahara T, Lee YH, Kim JS (2010) Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor for label-free detection of genetically modified organisms by QCM and EIS. Talanta 80(3):1164–1169

    CAS  Google Scholar 

  73. Zhu J, Chen M, Qu H, Zhang X, Wei H, Luo Z, Colorado HA, Wei S, Guo Z (2012) Interfacial polymerized polyaniline/graphite oxide nanocomposites toward electrochemical energy storage. Polymer 53(25):5953–5964

    CAS  Google Scholar 

  74. Wei H, Zhu J, Wu S, Wei S, Guo Z (2013) Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer 54(7):1820–1831

    CAS  Google Scholar 

  75. Nicholson RS, Shain I (1964) Theory of stationary electrode polarography single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 36(4):706–723

    CAS  Google Scholar 

  76. Compton RG, Batchelor-McAuley C, Dickinson EJF (2012) Understanding voltammetry: problems and solutions. Imperial College Press, London

    Google Scholar 

  77. Zanello P, Nervi C, de Biani FF (2011) Inorganic electrochemistry: theory, practice and application. Royal Society of Chemistry Publishing, Cambridge

    Google Scholar 

  78. Kissinger PT, Heineman WH (1996) Laboratory techniques in electroanalytical chemistry, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  79. Chrzescijanska E, Wudarska E, Kusmierek E, Rynkowski J (2014) Study of acetylsalicylic acid electroreduction behavior at platinum electrode. J Electroanal Chem 713:17–21

    CAS  Google Scholar 

  80. Timbola AK, Souza CD, Pizzolatti SC, Spinelli A (2007) Electro-oxidation of rutin in the presence of p-toluenesulfinic acid. J Appl Electrochem 37(5):617–624

    CAS  Google Scholar 

  81. Abrams SML, Baker LRI, Crome P, White AST, Johnston A, Ankier SI, Warrington SJ, Turner P, Niebch G (1988) Pharmacokinetics of flupirtine in elderly volunteers and inpatients with moderate renal impairment. Postgrad Med J 64:361–363

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kathirvel S, Sujatha R, Pandit MR, Suneetha A (2013) Stress Degradation studies on flupirtine maleate using stability-indicating RP-HPLC method. Chromatogr Res Int 2013:1–6

    Google Scholar 

  83. Zhao YM, Zheng ZB, Li S (2016) Quantification of flupirtine maleate polymorphs using X-ray powder diffraction. Chin Chem Lett 27(11):1666–1672

    Google Scholar 

  84. Hofstetter RK, Hasan M, Fassauer GM, Bock C, Surur AS, Behnisch S, Grathwol CW, Potlitz F, Oergel T, Siegmund W, Link A (2019) Simultaneous quantification of acidic and basic flupirtine metabolites by supercritical fluid chromatography according to European Medicines Agency validation. J Chromatogr A. https://doi.org/10.1016/j.chroma.2019.04.067

    Article  PubMed  Google Scholar 

  85. Shah U, Kavad M, Raval M (2013) Development and validation of spectrofluorimetric method for the estimation of Flupirtine maleate in bulk drug and pharmaceutical dosage form. Anal Chem 13(3):102–106

    CAS  Google Scholar 

  86. Krasnykh LM, Rodina TA, Melnikov ES, Vasilenko GF, Smirnov VV, Sokolov AV, Arkhipov VV (2018) Flupirtine determination in human blood plasma by HPLC with mass-spectrometric detection and its application to pharmacokinetic studies. Pharm Chem J 51(12):1123–1128

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to the school of studies in chemistry Jiwaji University Gwalior to provide us all the essential services.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ab Lateef Khan or Rajeev Jain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.L., Dhanjai & Jain, R. Fabrication and optimization of polypyrrole/cerium oxide/glassy carbon sensing platform for the electrochemical detection of flupirtine. J Appl Electrochem 50, 655–672 (2020). https://doi.org/10.1007/s10800-020-01418-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01418-z

Keywords

Navigation