Skip to main content
Log in

Manganese oxide nanoparticles supported nitrogen-doped graphene: a durable alkaline oxygen reduction electrocatalyst

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Manganese oxide-based nitrogen-doped reduced graphene oxide (MnO/N-rGO) electrocatalyst was developed by a simple sol–gel process with aqueous KMnO4 and sucrose by adding nitrogen-doped reduced graphene oxide. The physical characterizations were systematically evaluated by X-ray diffraction, field emission scanning electron microscope, transmission electron microscope, and X-ray photoelectron spectroscopy. The electrochemical and oxygen reduction properties of the electrocatalyst and support were studied by employing cyclic voltammetry and linear sweep voltammetry techniques on a rotating-disk electrode in alkaline (0.1 M KOH) solution and compared with commercial Pt/C catalysts. The synthesized catalyst possesses a high oxygen reduction activity and the rotating ring-disk electrode results illustrate a 3.8 e transfer process. Stability tests performed for 10,000 potential cycles exhibited that the MnO/N-rGO catalyst is more durable than Pt/C catalyst. MnO/N-rGO as cathode catalyst in a single alkaline fuel cell studies gave a peak power density of 44 mW cm− 2 at 40 °C. Durability by accelerated stress test (AST) in fuel cell mode demonstrated MnO/N-rGO as alternative hybrid cathode catalyst which has excellent stability and durability of 67% more than commercial Pt/C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chen Z, Higgins D, Tao H, Hsu RS, Chen Z (2009) Highly active nitrogen-doped carbon nanotubes for oxygen reduction reaction in fuel cell applications. J Phys Chem C 113:21008–21013. https://doi.org/10.1021/jp908067v

    Article  CAS  Google Scholar 

  2. Brocq ML, Job N, Eskenazi D, Pireaux JJ (2014) Pt/C catalyst for PEM fuel cells: control of Pt nanoparticles characteristics through a novel plasma deposition method. Appl Catal B 147:453–463. https://doi.org/10.1016/j.apcatb.2013.06.021

    Article  CAS  Google Scholar 

  3. Shi J, Zhou X, Xu P, Qiao J, Chen Z, Liu Y (2014) Nitrogen and sulfur co-doped mesoporous carbon materials as highly efficient electrocatalysts for oxygen reduction reaction. Electrochim Acta 145:259–269. https://doi.org/10.1016/j.electacta.2014.08.091

    Article  CAS  Google Scholar 

  4. Higgins DC, Wang R, Hoque MA, Zamani P, Abureden S, Chen Z (2014) Morphology and composition controlled platinum-cobalt alloy nanowires prepared by electrospinning as oxygen reduction catalyst. Nano Energy 10:135–143. https://doi.org/10.1016/j.nanoen.2014.09.013

    Article  CAS  Google Scholar 

  5. Pan J, Chen C, Zhuang L, Lu J (2012) Designing advanced alkaline polymer electrolytes for fuel cell applications. Acc Chem Res 45:471–483. https://doi.org/10.1021/ar200201x

    Article  CAS  Google Scholar 

  6. Chung H, Won J, Zelenay P (2013) Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat Commun 4:1922. https://doi.org/10.1038/ncomms2944

    Article  CAS  PubMed  Google Scholar 

  7. Gewirth AA, Thorum MS (2010) Electroreduction of dioxygen for fuel-cell applications materials challenges. Inorg Chem 49:3557. https://doi.org/10.1021/ic9022486

    Article  CAS  PubMed  Google Scholar 

  8. Morozan A, Jousselme B, Palacin S (2011) Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ Sci 4:1238. https://doi.org/10.1039/C0EE00601G

    Article  CAS  Google Scholar 

  9. Chen Y, Wang J, Liu H, Li R, Sun X, Ye S, Knights S (2009) Enhanced stability of Pt electrocatalysts by nitrogen doping in CNTs for PEM fuel cells. Electrochem Commun 11:2071–2076. https://doi.org/10.1016/j.elecom.2009.09.008

    Article  CAS  Google Scholar 

  10. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951. https://doi.org/10.1021/cr050182l

    Article  CAS  PubMed  Google Scholar 

  11. Lu Y, Jiang Y, Chen W (2013) PtPd porous nanorods with enhanced electrocatalytic activity and durability for oxygen reduction reaction. Nano Energy 2:836–844. https://doi.org/10.1016/j.nanoen.2013.02.006

    Article  CAS  Google Scholar 

  12. Zhang J, Guo C, Zhang L, Li L CM (2013) Direct growth of flower-like manganese oxide on reduced graphene oxide towards efficient oxygen reduction reaction. Chem Commun 49:6334. https://doi.org/10.1039/C3CC42127A

    Article  CAS  Google Scholar 

  13. Ominde N, Bartlett N, Yang XQ, Qu D (2010) Investigation of the oxygen reduction reaction on the carbon electrodes loaded with MnO2 catalyst. J Power Sources 195:3984. https://doi.org/10.1016/j.jpowsour.2009.12.128

    Article  CAS  Google Scholar 

  14. Cao S, Han N, Han J, Hu Y, Fan L, Zhou C, Guo R (2016) Mesoporous hybrid shells of carbonized polyaniline/Mn2O3 as non-precious efficient oxygen reduction reaction catalyst. ACS Appl Mater Interfaces 8:6040. https://doi.org/10.1021/acsami.5b11955

    Article  CAS  PubMed  Google Scholar 

  15. Wu KH, Zeng Q, Zhang B, Leng X, Su DS, Gentle IR, Wang DW (2015) Structural origin of the activity in Mn3O4–graphene oxide hybrid electrocatalysts for the oxygen reduction reaction. ChemSusChem 8:3331. https://doi.org/10.1002/cssc.201500372

    Article  CAS  PubMed  Google Scholar 

  16. Bag S, Roy K, Gopinath CS, Raj CR (2014) Facile single-step synthesis of nitrogen-doped reduced graphene oxide-Mn3O4 hybrid functional material for the electrocatalytic reduction of oxygen. ACS Appl Mater Interfaces 6:2692. https://doi.org/10.1021/am405213z

    Article  CAS  PubMed  Google Scholar 

  17. Wu ZS, Yang S, Sun Y, Parvez K, Feng X, Mullen K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134:9082. https://doi.org/10.1021/ja3030565

    Article  CAS  PubMed  Google Scholar 

  18. Guo S, Zhang S, Wu L, Sun S (2012) Co/CoO nanoparticles assembled on graphene for electrochemical reduction of oxygen. Angew Chem Int Ed 51:11770. https://doi.org/10.1002/ange.201206152

    Article  CAS  Google Scholar 

  19. Odedairo T, Yan X, Ma J, Jiao Y, Yao X, Du A, Zhu Z (2015) Nanosheets Co3O4 interleaved with graphene for highly efficient oxygen reduction. ACS Appl Mater Interfaces 7:21373. https://doi.org/10.1021/acsami.5b06063

    Article  CAS  PubMed  Google Scholar 

  20. Liu Z, Lin X, Lee J, Zhang W, Han M, Gan L (2002) Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir 18:4054–4060. https://doi.org/10.1021/la0116903

    Article  CAS  Google Scholar 

  21. Brock SL, Duan N, Tian ZR, Giraldo O, Zhou H, Suib SL (1998) A review of porous manganese oxide materials. Chem Mater 10:2619–2628. https://doi.org/10.1021/cm980227h

    Article  CAS  Google Scholar 

  22. Yuan F, Ryu H (2004) The synthesis, characterization, and performance of carbon nanotubes and carbon nanofibres with controlled size and morphology as a catalyst support material for a polymer electrolyte membrane fuel cell. Nanotechnology 15:596–602. https://doi.org/10.1088/0957-4484/15/10/017

    Article  CAS  Google Scholar 

  23. Steigerwalt E, Deluga G, Cliffel D, Lukehart C (2001) A Pt–Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst. J Phys Chem B 105:8097–8101. https://doi.org/10.1021/jp011633i

    Article  CAS  Google Scholar 

  24. Chai GS, Yoon SB, Kim JH, Yu J (2004) Spherical carbon capsules with hollow macroporous core and mesoporous shell structures as a highly efficient catalyst support in the direct methanol fuel cell. Chem Commun 23:2766–2767. https://doi.org/10.1039/B412747C

    Article  Google Scholar 

  25. Ding J, Chan K, Ren J, Xiao F (2005) Platinum and platinum–ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions. Electrochim Acta 50:3131–3141. https://doi.org/10.1016/j.electacta.2004.11.064

    Article  CAS  Google Scholar 

  26. Chai GS, Yoon SB, Yu JS (2005) Highly efficient anode electrode materials for direct methanol fuel cell prepared with ordered and disordered arrays of carbon nanofibers. Carbon 43:3028–3031. https://doi.org/10.1016/j.carbon.2005.05.041

    Article  CAS  Google Scholar 

  27. Benbow EM, Kelly SP, Zhao L, Reutenauer JW, Suib SL (2011) Oxygen reduction properties of bifunctional α-manganese oxide electrocatalysts in aqueous and organic electrolytes. J Phys Chem C 115:22009–22017. https://doi.org/10.1021/jp2055443

    Article  CAS  Google Scholar 

  28. Peng H, Liu F, Liu X, Liao S, You C, Tian X, Nan H, Luo F, Song H, Fu Z, Huang P (2014) Effect of transition metals on the structure and performance of the doped carbon catalysts derived from polyaniline and melamine for orr application. ACS Catal 4:3797–3805. https://doi.org/10.1021/cs500744x

    Article  CAS  Google Scholar 

  29. Chetty R, Kundu S, Xia W, Bron M, Schuhmann W, Chirila V, Brandl W, Reinecke T, Muhler M (2009) PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. Electrochim Acta 54:4208–4215. https://doi.org/10.1016/j.electacta.2009.02.073

    Article  CAS  Google Scholar 

  30. Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350. https://doi.org/10.1021/nn103584t

    Article  CAS  PubMed  Google Scholar 

  31. Gong KP, Du F, Xia ZH, Durstock M, Dai LM (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760. https://doi.org/10.1126/science.1168049

    Article  CAS  PubMed  Google Scholar 

  32. Feng J, Liang Y, Wang H, Li Y, Zhang B, Zhou J, Wang J, Regier T, Dai H (2012) Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Res 5(10):718–725. https://doi.org/10.1007/s12274-012-0256-8

    Article  CAS  Google Scholar 

  33. She X, Zhang X, Liu J, Li L, Yu X, Huang Z, Shang S (2015) Microwave-assisted synthesis of Mn3O4 nanoparticles@reduced graphene oxide nanocomposites for high performance supercapacitors. Mater Res Bull 70:945–950. https://doi.org/10.1016/j.materresbull.2015.06.044

    Article  CAS  Google Scholar 

  34. Li J, Ren Y, Wang S, Ren Z, Yu J (2016) Transition metal doped MnO2 nanosheets grown on internal surface of macroporous carbon for supercapacitors and oxygen reduction reaction electrocatalysts. Mater Today 3:63–72. https://doi.org/10.1016/j.apmt.2016.03.003

    Article  Google Scholar 

  35. Arunchander A, Vivekanantha M, Peera SG, Sahu AK (2016) MnO–nitrogen doped graphene as a durable non-precious hybrid catalyst for the oxygen reduction reaction in anion exchange membrane fuel cells. RSC Adv 6:95590–95600. https://doi.org/10.1039/C6RA20627A

    Article  CAS  Google Scholar 

  36. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  37. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28. https://doi.org/10.1002/adma.200903328

    Article  CAS  PubMed  Google Scholar 

  38. Peera SG, Arunchander A, Sahu AK (2016) Cumulative effect of transition metals on nitrogen and fluorine co-doped graphite nanofibers: an efficient and highly durable non-precious metal catalyst for the oxygen reduction reaction. Nanoscale 8:14650–14664. https://doi.org/10.1039/C6NR02263D

    Article  CAS  PubMed  Google Scholar 

  39. Wu Y, Liu S, Wang H, Wang X, Zhang X, Jin G (2013) A novel solvothermal synthesis of Mn3O4/graphene composites for supercapacitors. Electrochim Acta 90:210–218. https://doi.org/10.1016/j.electacta.2012.11.124

    Article  CAS  Google Scholar 

  40. Gautam RK, Bhattacharjee H, Mohan SV, Verma A (2016) Nitrogen doped graphene supported α-MnO2 nanorods for efficient ORR in a microbial fuel cell. RSC Adv 6:110091–110101. https://doi.org/10.1039/C6RA23392A

    Article  CAS  Google Scholar 

  41. Lv R, Cui T, Jun MS, Zhang Q, Cao A, Su DS, Zhang Z, Yoon SH, Miyawaki J, Mochida IF. Kang F (2011) Open-ended, N-doped carbon nanotube–graphene hybrid nanostructures as high-performance catalyst support. Adv Funct Mater 21:999–1006. https://doi.org/10.1002/adfm.201001602

    Article  CAS  Google Scholar 

  42. Park HW, Lee DU, Nazar LF, Chena Z (2013) Oxygen reduction reaction using MnO2 nanotubes/nitrogen-doped exfoliated graphene hybrid catalyst for Li-O2 battery applications. J Electrochem Soc 160(2):A344-A350. https://doi.org/10.1149/2.086302jes

    Article  CAS  Google Scholar 

  43. Meng Y, Song W, Huang H, Ren Z, Chen SY, Suib SL (2014) Structure–property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J Am Chem Soc 136:11452–11464. https://doi.org/10.1021/ja505186m

    Article  CAS  PubMed  Google Scholar 

  44. Tian LL, Yang J, Weng MY, Tan R, Zheng JX, Chen HB, Zhuang QC, Dai LM, Pan F (2017) Fast diffusion of O2 on nitrogen-doped graphene to enhance oxygen reduction and its application for high-rate Zn–air batteries. ACS Appl Mater Interfaces 9:7125–7130. https://doi.org/10.1021/acsami.6b15235

    Article  CAS  PubMed  Google Scholar 

  45. Wu J, Ma L, Yadav RM, Yang Y, Zhang X, Vajtai R, Lou J, Ajayan PM (2015) Nitrogen-doped graphene with pyridinic dominance as a highly active and stable electrocatalyst for oxygen reduction. ACS Appl Mater Interfaces 7:14763–14769. https://doi.org/10.1021/acsami.5b02902

    Article  CAS  PubMed  Google Scholar 

  46. Jin Z, Li P, Xiao D (2014) Enhanced electrocatalytic performance for oxygen reduction via active interfaces of layer-by-layered titanium nitride/titanium carbonitride structures. Sci Rep 4:6712–6719. https://doi.org/10.1038/srep06712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li X, Popov BN, Kawahara T, Yanagi H (2011) Non-precious metal catalysts synthesized from precursors of carbon, nitrogen, and transition metal for oxygen reduction in alkaline fuel cells. J Power Sources 196:1717–1722. https://doi.org/10.1016/j.jpowsour.2010.10.018

    Article  CAS  Google Scholar 

  48. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56:9–35. https://doi.org/10.1016/j.apcatb.2004.06.021

    Article  CAS  Google Scholar 

  49. Lefèvre M, Proietti E, Jaouen F, Dodelet JP (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324:71

    Article  CAS  PubMed  Google Scholar 

  50. Shao Y, Kou R, Wang J, Viswanathan VV, Kwak JH, Liu J, Wang Y, Lin Y (2008) The influence of the electrochemical stressing (potential step and potential-static holding) on the degradation of polymer electrolyte membrane fuel cell electrocatalysts. J Power Sources 185:280–286. https://doi.org/10.1016/j.jpowsour.2008.07.008

    Article  CAS  Google Scholar 

  51. Peera SG, Arunchander A, Sahu AK (2016) Platinum nanoparticles supported on nitrogen and fluorine co-doped graphite nanofibers as an excellent and durable oxygen reduction catalyst for polymer electrolyte fuel cells. Carbon 107:667–679. https://doi.org/10.1016/j.carbon.2016.06.021

    Article  CAS  Google Scholar 

  52. Knights SD, Colbow KM, Pierre JS, Wilkinson DP (2004) Aging mechanisms and lifetime of PEFC and DMFC. J Power Sources 127:127–134. https://doi.org/10.1016/j.jpowsour.2003.09.033

    Article  CAS  Google Scholar 

  53. Patterson TW, Darling RM (2006) Damage to the cathode catalyst of a PEM fuel cell caused by localized fuel starvation. Electrochem Solid State Lett 9:A183-A185. https://doi.org/10.1149/1.2167930

    Article  CAS  Google Scholar 

  54. Shao YY, Yin GP, Gao YZ, Shi PF (2006) Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. J Electrochem Soc 153:A1093-A1097. https://doi.org/10.1149/1.2191147

    Article  CAS  Google Scholar 

  55. Zadick A, Dubau L, Sergent N, Berthom´e G, Chatenet M (2015) Huge instability of Pt/C catalysts in alkaline medium. ACS Catal 5:4819. https://doi.org/10.1021/acscatal.5b01037

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghuram Chetty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 416 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, I.J.R., Peera, S.G. & Chetty, R. Manganese oxide nanoparticles supported nitrogen-doped graphene: a durable alkaline oxygen reduction electrocatalyst. J Appl Electrochem 48, 849–865 (2018). https://doi.org/10.1007/s10800-018-1207-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1207-1

Keywords

Navigation