Skip to main content
Log in

Neuroinflammatory responses in Parkinson’s disease: relevance of Ibuprofen in therapeutics

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) pathogenesis inevitably involves neuroinflammatory responses attained through contribution of both neuron and glial cells. Investigation done in both experimental models of PD and in samples of PD patients suggested the involvement of both central and peripheral inflammatory responses during PD pathogenesis. Such neuroinflammatory responses could be regulated by neuron-glia interaction which is one of the recently focused areas in the field of disease diagnosis, pathogenesis and therapeutics. Such aggravated neuroinflammatory responses during PD are very well associated with augmented levels of cyclooxygenase (COX). An increased expression of cyclooxygenase (COX) with a concomitant increase in the prostaglandin E2 (PGE2) levels has been observed during PD pathology. Ibuprofen is one of the non-steroidal anti-inflammatory drugs (NSAID) and clinically being used for PD patients. This review focuses on the neuroinflammatory responses during PD pathology as well as the effect of ibuprofen on various disease related signaling factors and mechanisms involving nitrosative stress, neurotransmission, neuronal communication and peroxisome proliferator-activated receptor-γ. Such mechanistic effect of ibuprofen has been mostly reported in experimental models of PD and clinical investigations are still required. Since oxidative neuronal death is one of the major neurodegenerative mechanisms in PD, the antioxidant capacity of ibuprofen along with its antidepressant effects have also been discussed. This review will direct the readers towards fulfilling the existing gaps in the mechanistic aspect of ibuprofen and enhance its clinical relevance in PD therapeutics and probably in other age-related neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Code availability

Not applicable.

References

  • Aeberhard EE, Henderson SA, Arabolos NS, Griscavage JM, Castro FE, Barrett CT, Ignarro LJ (1995) Nonsteroidal anti-inflammatory drugs inhibit expression of the inducible nitric oxide synthase gene. Biochem Biophys Res Commun 208(3):1053–1059. https://doi.org/10.1006/bbrc.1995.1441

    Article  CAS  PubMed  Google Scholar 

  • Ajmone-Cat MA, Bernardo A, Greco A, Minghetti L (2010) Non-steroidal anti-inflammatory drugs and brain inflammation: effects on microglial functions. Pharmaceuticals (Basel) 3(6):1949–1965

    CAS  Google Scholar 

  • Ardestani MS (2010) Parkinson's disease, the inflammatory pathway and anti-inflammatory drug: an overview. J Med Sci 10(3):49–58

    CAS  Google Scholar 

  • Asanuma M, Miyazaki I (2007) Common anti-inflammatory drugs are potentially therapeutic for Parkinson’s disease? Exp Neurol 206(2):172–178

    CAS  PubMed  Google Scholar 

  • Bartels AL, Leenders KL (2010) Cyclooxygenase and neuroinflammation in Parkinson’s disease neurodegeneration. Curr Neuropharmacol 8:62–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Booth HDE, Hirst WD, Wade-Martins R (2017) The role of astrocyte dysfunction in Parkinson's disease pathogenesis. Trends Neurosci 40(6):358–370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bordet R, Ouk T, Petrault O, Gelé P, Gautier S, Laprais M, Deplanque D, Duriez P, Staels B, Fruchart JC, Bastide M (2006) PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. BiochemSoc Trans 34(Pt 6):1341–1346

    CAS  Google Scholar 

  • Bové J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson's disease. NeuroRx 2(3):484–494

    PubMed  PubMed Central  Google Scholar 

  • Bozyczko-Coyne D, Williams M (2007) Therapeutic areas I: central nervous system, pain, metabolic syndrome, urology, gastrointestinal and cardiovascular. Comprehen Med Chem 6:193–228

    Google Scholar 

  • Brück D, Wenning GK, Stefanova N, Fellner L (2016) Glia and alpha-synuclein in neurodegeneration: a complex interaction. Neurobiol Dis 85:262–274

    PubMed  Google Scholar 

  • Bushra R, Aslam N (2010) An overview of clinical pharmacology of Ibuprofen. Oman Med J 25(3):155–1661

    PubMed  PubMed Central  Google Scholar 

  • Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8(10):766–775

    CAS  PubMed  Google Scholar 

  • Carvalho KM, Winter E, Antunes AMDS (2015) Evaluation of development of R&D into Parkinson’s disease through technology monitoring using patent documents and scientific articles. Intern J Res Pharm Biosci 2(3):17–24

    Google Scholar 

  • Casper D, Yaparpalvi U, Rempel N, Werner P (2000) Ibuprofen protects dopaminergic neurons against glutamate toxicity in vitro. NeurosciLett 289:201–204

    CAS  Google Scholar 

  • Chao Y, Wong SC, Tan EK (2014) Evidence of inflammatory system involvement in Parkinson’s disease. Biomed Res Int 14:308654

    Google Scholar 

  • Chaturvedi RK, Beal MF (2008) PPAR: a therapeutic target in Parkinson’s disease. J Neurochem 106(2):506–518

    CAS  PubMed  Google Scholar 

  • Chen H, Zhang SM (2003) Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 60:1059–1064

    PubMed  Google Scholar 

  • Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE, Thun MJ, Ascherio A (2005) Nonsteroidal anti-inflammatory drug use and the risk for Parkinson's disease. Ann Neurol 58:963–967

    CAS  PubMed  Google Scholar 

  • Chen WW, Zhang X, Huang WJ (2016) Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep 13(4):3391–3396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi Y, Lee MK, Lim SY, Sung SH, Kim YC (2009) Inhibition of inducible NO synthase, cyclooxygenase-2 and interleukin-1beta by torilin is mediated by mitogen-activated protein kinases in microglial BV2 cells. Br J Pharmacol 156(6):933–940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colafrancesco V, Villoslada P (2011) Targeting NGF-pathway for developing neuroprotective therapies for multiple sclerosis and other neurological diseases. Arch Biol 149:183–192

    Google Scholar 

  • Contestabile A, Monti B, Polazzi E (2012) Neuronal-glial interactions define the role of nitric oxide in neural functional processes. Curr Neuropharmacol 10(4):303–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corwin C, Nikolopoulou A, Pan AL, Nunez-Santos M, Vallabhajosula S, Serrano P, Figueiredo-Pereira ME (2018) Prostaglandin D2/J2 signaling pathway in a rat model of neuroinflammation displaying progressive parkinsonian-like pathology: potential novel therapeutic targets. J Neuroinflam 15(1):272. https://doi.org/10.1186/s12974-018-1305-3

    Article  CAS  Google Scholar 

  • Croisier E, Moran LB, Dexter DT, Pearce RK, Graeber MB (2005) Microglial inflammation in the parkinsoniansubstantianigra: relationship to alpha-synuclein deposition. J Neuroinflam 3(2):14

    Google Scholar 

  • Członkowska A, Kurkowska-Jastrzebska I, Członkowski A, Peter D, Stefano GB (2002) Immune processes in the pathogenesis of Parkinson's disease - a potential role for microglia and nitric oxide. Med Sci Monitor Internat Med J Experiment Clin Res 8(8):165–177

    Google Scholar 

  • Dannoura A, Giraldo A, Pereira I, Gibbins JM, Dash PR, Bicknell KA, Brooks G (2014) Ibuprofen inhibits migration and proliferation of human coronary artery smooth muscle cells by inducing a differentiated phenotype: role of peroxisome proliferator-activated receptor γ. J Pharm Pharmacol 66(6):779–792. https://doi.org/10.1111/jphp.12203

    Article  CAS  PubMed  Google Scholar 

  • Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20(5):649–688

    CAS  PubMed  Google Scholar 

  • Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3(4):461–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit A, Srivastava G, Verma D, Mishra M, Singh PK, Prakash O, Singh MP (2013) Minocycline, levodopa and MnTMPyP induced changes in the mitochondrial proteome profile of MPTP and maneb and paraquat mice models of Parkinson's disease. Biochim Biophys Acta 1832(8):1227–1240

    CAS  PubMed  Google Scholar 

  • Dringen R, Pfeiffer B, Hamprecht B (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci Off Soc Neurosci 19(2):562–569. https://doi.org/10.1523/JNEUROSCI.19-02-00562.1999

    Article  CAS  Google Scholar 

  • Elsisi NS, Darling-Reed S, Lee EY, Oriaku ET, Soliman KF (2005) Ibuprofen and apigenin induce apoptosis and cell cycle arrest in activated microglia. Neurosci Lett 375(2):91–96. https://doi.org/10.1016/j.neulet.2004.10.087

    Article  CAS  PubMed  Google Scholar 

  • Esplugues JV (2002) NO as a signalling molecule in the nervous system. Br J Pharmacol 135(5):1079–1095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esposito E, Di Matteo V, Benigno A, Pierucci M, Crescimanno G, Di Giovanni G (2007) Non-steroidal anti-inflammatory drugs in Parkinson's disease. Exp Neurol 205(2):295–312

    CAS  PubMed  Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T (2007) Modulation of inflammation in brain: a matter of fat. J Neurochem 101(3):577–599

    CAS  PubMed  Google Scholar 

  • Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837

    PubMed  Google Scholar 

  • Fu R, Shen Q, Xu P, Luo JJ, Tang Y (2014) Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol 49(3):1422–1434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gagne JJ, Power MC (2010) Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology 74(12):995–1002. https://doi.org/10.1212/WNL.0b013e3181d5a4a3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Chen H, Schwarzschild MA, Ascherio A (2011) Use of ibuprofen and risk of Parkinson disease. Neurology 76(10):863–869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giráldez-Pérez R, Antolín-Vallespín M, Muñoz M, Sánchez-Capelo A (2014) Models of α-synuclein aggregation in Parkinson’s disease. Acta Neuropathol Commun 13(2):176

    Google Scholar 

  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graeber MB, Li W, Rodriguez ML (2011) Role of microglia in CNS inflammation. FEBSLett 585(23):3798–3805

    CAS  Google Scholar 

  • Griffiths MR, Gasque P, Neal JW (2010) The regulation of the CNS innate immune response is vital for the restoration of tissue homeostasis (repair) after acute brain injury: a brief review. Int J Inflam 9:151097

    Google Scholar 

  • Hartmann A (2004) Postmortem studies in Parkinson’s disease. Dialogues ClinNeurosci 6(3):281–293

    Google Scholar 

  • Hastings TG (1995) Enzymatic oxidation of dopamine: the role of prostaglandin H synthase. J Neurochem 64(2):919–924. https://doi.org/10.1046/j.1471-4159.1995.64020919.x

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT (2019) Microglia take centre stage in neurodegenerative disease. Nat Rev Immunol 19(2):79–80. https://doi.org/10.1038/s41577-018-0112-5

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Landreth GE (2007) PPARs in the brain. Biochim Biophys Acta 1771(8):1031–1045

    CAS  PubMed  Google Scholar 

  • Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Kuiperi C, O'Banion K, Klockgether T, Van Leuven F, Landreth GE (2005) Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1–42 levels in APPV717I transgenic mice. Brain j neurol 128(6):1442–1453. https://doi.org/10.1093/brain/awh452

    Article  Google Scholar 

  • Hernandez-Baltazar D, Zavala-Flores LM, Villanueva-Olivo A (2017) The 6-hydroxydopamine model and parkinsonian pathophysiology: novel findings in an older model. Neurología 32(8):533–539

    CAS  PubMed  Google Scholar 

  • Hsieh YC, Mounsey RB, Teismann P (2011) MPP(+)-induced toxicity in the presence of dopamine is mediated by COX-2 through oxidative stress. NaunynSchmiedebergs Arch Pharmacol 384(2):157–167

    CAS  Google Scholar 

  • Isacson O, Brundin P, Gage FH, Björklund A (1985) Neural grafting in a rat model of Huntington’s disease: progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting. Neuroscience 16(4):799–817. https://doi.org/10.1016/0306-4522(85)90095-8

    Article  CAS  PubMed  Google Scholar 

  • Jamali F, Brocks DR (2015) The Pharmacokinetics of Ibuprofen in Humans and Animals. In: Rainsford KD (ed) Ibuprofen: Discovery. Development and Therapeutics, First Edition, pp 81–130

    Google Scholar 

  • Jaradat MS, Wongsud B, Phornchirasilp S, Rangwala SM, Shams G, Sutton M, Romstedt KJ, Noonan DJ, Feller DR (2001) Activation of peroxisome proliferator-activated receptor isoforms and inhibition of prostaglandin H(2) synthases by ibuprofen, naproxen, and indomethacin. Biochem Pharmacol 62(12):1587–1595. https://doi.org/10.1016/s0006-2952(01)00822-x

    Article  CAS  PubMed  Google Scholar 

  • Jeong HK, Jou I, Joe EH (2010) Systemic LPS administration induces brain inflammation but not dopaminergic neuronal death in the substantianigra. ExpMol Med 42(12):823–832

    CAS  Google Scholar 

  • Joshi N, Singh S (2018) Updates on immunity and inflammation in Parkinson disease pathology. J Neurosci Res 96(3):379–390. https://doi.org/10.1002/jnr.24185

    Article  CAS  PubMed  Google Scholar 

  • Kapadia R, Yi JH, Vemuganti R (2008) Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci J Virt Lib 13:1813–1826. https://doi.org/10.2741/2802

    Article  CAS  Google Scholar 

  • Kaufmann WE, Worley PF, Pegg J, Bremer M, Isakson P (1996) COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc Natl Acad Sci U S A 93:2317–2321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Joh TH (2006) Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. ExpMol Med 38(4):333–347

    CAS  Google Scholar 

  • Knott AB, Bossy-Wetzel E (2009) Nitric oxide in health and disease of the nervous system. Antioxid Redox Signal 11(3):541–554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft AD, Harry GJ (2011) Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health 8(7):2980–3018

    PubMed  PubMed Central  Google Scholar 

  • Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring HarbPerspect Biol 1(6):a001651

    Google Scholar 

  • Lee JA, Song HY, Ju SM, Lee SJ, Kwon HJ, Eum WS, Jang SH, Choi SY, Park JS (2009) Differential regulation of inducible nitric oxide synthase and cyclooxygenase-2 expression by superoxide dismutase in lipopolysaccharide stimulated RAW 264.7 cells. Exp Mol Med 41(9):629–637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Longhena F, Faustini G, Missale C, Pizzi M, Spano P, Bellucci A (2017) The contribution of α-Synuclein spreading to Parkinson's DiseaseSynaptopathy. Neural Plast 2017:5012129

    PubMed  PubMed Central  Google Scholar 

  • Lull ME, Block ML (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7(4):354–365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal S, Mandal SD, Chuttani K, Sawant KK, Subudhi BB (2018) Preclinical study of ibuprofen loaded transnasal mucoadhesive microemulsion for neuroprotective effect in MPTP mice model. Iran J Pharma Res IJPR 17(1):23–38

    CAS  Google Scholar 

  • McGeer PL, McGeer EG (2004) Inflammation and neurodegeneration in Parkinson's disease. Parkinsonism Relat Disord 10(Suppl 1):S3–7

    PubMed  Google Scholar 

  • McGeer E, Yasojima K, McGeer LP (2001) Inflammation in the pathogenesis of Parkinson’s disease. BCMJ 3:138–141

    Google Scholar 

  • Menzel-Soglowek S, Geisslinger G, Brune K (1990) Stereoselective high-performance liquid chromatographic determination of ketoprofen, ibuprofen and fenoprofen in plasma using a chiral alpha 1-acid glycoprotein column. J Chromatogr 532(2):295–303. https://doi.org/10.1016/s0378-4347(00)83780-9

    Article  CAS  PubMed  Google Scholar 

  • Minghetti L (2004) Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol 63(9):901–910

    CAS  PubMed  Google Scholar 

  • Minghetti L, Nicolini A, Polazzi E, Créminon C, Maclouf J, Levi G (1997) Inducible nitric oxide synthase expression in activated rat microglial cultures is downregulated by exogenous prostaglandin E2 and by cyclooxygenase inhibitors. Glia 19(2):152–160

    CAS  PubMed  Google Scholar 

  • Moore AH, Bigbee MJ, Boynton GE, Wakeham CM, Rosenheim HM, Staral CJ, Morrissey JL, Hund AK (2010) Non-steroidal anti-inflammatory drugs in Alzheimer’s Disease and Parkinson's Disease: reconsidering the role of neuroinflammation. Pharmaceuticals (Basel) 3(6):1812–1841

    CAS  Google Scholar 

  • More SV, Kumar H, Kim IS, Song SY, Choi DK (2013) Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson's disease. Med Inflamm 2013:952375

    Google Scholar 

  • Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE (2006) Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clin Neuro sci Res 6(5):261–281

    CAS  Google Scholar 

  • Naeem S, Ikram R, Khan SS, Rao SS (2017) NSAIDs ameliorate cognitive and motor impairment in a model of parkinsonism induced by chlorpromazine. Pakistan J Pharma Sci 30(3):801–808

    CAS  Google Scholar 

  • Nikolic D, van Breemen RB (2001) DNA oxidation induced by cyclooxygenase-2. Chem Res Toxicol 14(4):351–354. https://doi.org/10.1021/tx010004x

    Article  CAS  PubMed  Google Scholar 

  • Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, Torizuka T (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57(2):168–175. https://doi.org/10.1002/ana.20338

    Article  CAS  PubMed  Google Scholar 

  • Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S (2014) Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 141(3):302–313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perry VH (2012) Innate inflammation in Parkinson’s disease. Cold Spring HarbPerspect Med 2(9):a009373

    Google Scholar 

  • Perry VH, Teeling J (2013) Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol 35(5):601–612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radtke FA, Chapman G, Hall J, Syed YA (2017) Modulating neuroinflammation to treat neuropsychiatric disorders. Biomed Res Int 2017:5071786. https://doi.org/10.1155/2017/5071786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rainsford KD (2012) Ibuprofen: Pharmacology. Therapeutics and Side Effects, Springer, Heidelberg New York Dordrecht London

    Google Scholar 

  • Ramazani E, Tayarani-Najaran Z, Fereidoni M (2019) Celecoxib, indomethacin, and ibuprofen prevent 6-hydroxydopamine-induced PC12 cell death through the inhibition of NFκB and SAPK/JNK pathways. Iran J Basic Med Sci 22(5):477–484. https://doi.org/10.22038/IJBMS.2019.34011.8091

    Article  PubMed  PubMed Central  Google Scholar 

  • Recasens A, Dehay B (2014) Alpha-synuclein spreading in Parkinson's disease. Front Neuroanat 18(8):159

    Google Scholar 

  • Ren L, Yi J, Yang J, Li P, Cheng X, Mao P (2018) Nonsteroidal anti-inflammatory drugs use and risk of Parkinson disease: A dose-response meta-analysis. Medicine 97(37):e12172. https://doi.org/10.1097/MD.0000000000012172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Throm Vasc Biol 31(5):986–1000

    CAS  Google Scholar 

  • Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK (2004) Role of microglia in central nervous system infections. ClinMicrobiol Rev 17(4):942–964

    CAS  Google Scholar 

  • Saha RN, Pahan K (2006) Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal 8(5–6):929–947

    CAS  PubMed  Google Scholar 

  • Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P (1993) Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 90(15):7240–7244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Pernaute R, Ferree A, Cooper O, Yu M, Brownell AL, Isacson O (2004) Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson's disease. J Neuroinflam 1(1):6. https://doi.org/10.1186/1742-2094-1-6

    Article  Google Scholar 

  • Schiefer J, Kampe K, Dodt HU, Zieglgänsberger W, Kreutzberg GW (1999) Microglial motility in the rat facial nucleus following peripheral axotomy. J Neurocytol 28(6):439–453. https://doi.org/10.1023/a:1007048903862

    Article  CAS  PubMed  Google Scholar 

  • Simmons DL, Botting RM, Hla T (2004) Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 56(3):387–437

    CAS  PubMed  Google Scholar 

  • Singh S, Swarnkar S, Goswami P, Nath C (2011) Astrocytes and microglia: responses to neuropathological conditions. Internat J Neurosci 121(11):589–597. https://doi.org/10.3109/00207454.2011.598981

    Article  Google Scholar 

  • Singh AK, Tiwari MN, Upadhyay G, Patel DK, Singh D, Prakash O, Singh MP (2012) Long term exposure to cypermethrin induces nigrostriatal dopaminergic neurodegeneration in adult rats: postnatal exposure enhances the susceptibility during adulthood. Neurobiol Aging 33:404–415

    CAS  PubMed  Google Scholar 

  • Singh A, Tripathi P, Prakash O, Singh MP (2016) Ibuprofen abates cypermethrin-induced expression of pro-inflammatory mediators and mitogen-activated protein kinases and averts the nigrostriatal dopaminergic neurodegeneration. MolNeurobiol 53:6849–6858

    CAS  Google Scholar 

  • Sochocka M, Diniz BS, Leszek J (2017) Inflammatory response in the CNS: friend or Foe? MolNeurobiol 54(10):8071–8089

    CAS  Google Scholar 

  • Srivastava G, Dixit A, Yadav S, Patel DK, Prakash O, Singh MP (2012) Resveratrol potentiates cytochrome P450 2 d22-mediated neuroprotection in maneb- and paraquat-induced parkinsonism in the mouse. Free RadicBiol Med 52(8):1294–1306

    CAS  Google Scholar 

  • Stefanis L (2012) α-Synuclein in Parkinson's disease. Cold Spring HarbPerspect Med 2(2):a009399

    Google Scholar 

  • Stratman NC, Carter DB, Sethy VH (1997) Ibuprofen: effect on inducible nitric oxide synthase. Brain Res Mol Brain Res 50(1–2):107–112. https://doi.org/10.1016/s0169-328x(97)00168-x

    Article  CAS  PubMed  Google Scholar 

  • Straus DS, Glass CK (2001) Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med Res Rev 21:185–210

    CAS  PubMed  Google Scholar 

  • Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ (2008) Synuclein activates microglia in a model of Parkinson's disease. Neurobiol Aging 29(11):1690–1701

    CAS  PubMed  Google Scholar 

  • Takeuchi H, Mizuno T, Zhang G, Wang J, Kawanokuchi J, Kuno R, Suzumura A (2005) Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport. J Biol Chem 280(11):10444–10454. https://doi.org/10.1074/jbc.M413863200

    Article  CAS  PubMed  Google Scholar 

  • Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37(3):510–518

    CAS  PubMed  Google Scholar 

  • Teismann P (2012) COX-2 in the neurodegenerative process of Parkinson’s disease. BioFactors (Oxford, England) 38(6):395–397. https://doi.org/10.1002/biof.1035

    Article  CAS  Google Scholar 

  • Theodore S, Cao S, McLean PJ, Standaert DG (2008) Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J Neuropathol Exp Neurol 67(12):1149–1158

    CAS  PubMed  Google Scholar 

  • Tripathi P, Singh A, Bala L, Patel DK, Singh MP (2018) Ibuprofen protects from cypermethrin-induced changes in the striatal dendritic length and Spine Density. MolNeurobiol MolNeurobiol 55(3):2333–2339

    CAS  Google Scholar 

  • Tsuji T, Asanuma M, Miyazaki I, Miyoshi K, Ogawa N (2009) Reduction of nuclear peroxisome proliferator-activated receptor gamma expression in methamphetamine-induced neurotoxicity and neuroprotective effects of ibuprofen. Neurochem Res 34:764–774

    CAS  PubMed  Google Scholar 

  • Tufekci KU, Genc S, Genc K (2011) The endotoxin-induced neuroinflammation model of Parkinson’s disease. Parkinsons Dis 18:487–450

    Google Scholar 

  • Tuteja N, Chandra M, Tuteja R, Misra MK (2004) Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J Biomed Biotechnol 4:227–237

    Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Antwerpen P, Nève J (2004) In vitro comparative assessment of the scavenging activity against three reactive oxygen species of non-steroidal anti-inflammatory drugs from the oxicam and sulfoanilide families. Eur J Pharmacol 496(1–3):55–61. https://doi.org/10.1016/j.ejphar.2004.06.017

    Article  CAS  PubMed  Google Scholar 

  • Vijitruth R, Liu M, Choi DY, Nguyen XV, Hunter RL, Bing G (2006) Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. J Neuroinflam 3:6. https://doi.org/10.1186/1742-2094-3-6

    Article  CAS  Google Scholar 

  • Volpe BT, Wildmann J, Altar CA (1998) Brain-derived neurotrophic factor prevents the loss of nigral neurons induced by excitotoxic striatal-pallidal lesions. Neuroscience 83(3):741–748. https://doi.org/10.1016/s0306-4522(97)00424-7

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Liu Y, Zhou J (2015) Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegen 12(4):19

    CAS  Google Scholar 

  • Wilkinson BL, Landreth GE (2006) The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease. J Neuroinflam 9(3):30

    Google Scholar 

  • Wnuk A, Kajta M (2017) Steroid and xenobiotic receptor signalling in apoptosis and autophagy of the nervous system. Int J Mol Sci 18(11):E2394

    PubMed  Google Scholar 

  • Wu KK (2010) peroxisome proliferator-activated receptors protect against apoptosis via 14-3-3. PPAR Res 2:417646

    Google Scholar 

  • Yadav S, Dixit A, Agrawal S, Singh A, Srivastava G, Singh AK, Srivastava PK, Prakash O, Singh MP (2012) Rodent models and contemporary molecular techniques: notable feats yet incomplete explanations of Parkinson's disease pathogenesis. MolNeurobiol 46(2):495–512

    CAS  Google Scholar 

  • Yan J, Fu Q, Cheng L, Zhai M, Wu W, Huang L, Du G (2014) Inflammatory response in Parkinson’s disease (Review). Mol Med Rep 10(5):2223–2233

    CAS  PubMed  Google Scholar 

  • Yonutas HM, Sullivan PG (2013) Targeting PPAR isoforms following CNS injury. Curr Drug Targets 14(7):733–742. https://doi.org/10.2174/1389450111314070003

    Article  CAS  PubMed  Google Scholar 

  • Zaminelli T, Gradowski RW, Bassani TB, Barbiero JK, Santiago RM, Maria-Ferreira D, Baggio CH, Vital MA (2014) Antidepressant and antioxidative effect of Ibuprofen in the rotenone model of Parkinson’s disease. Neurotox Res 26(4):351–362

    CAS  PubMed  Google Scholar 

  • Zawada WM, Banninger GP, Thornton J, Marriott B, Cantu D, Rachubinski AL, Das M, Griffin WS, Jones SM (2011) Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave. Cascade J Neuroinflam 8:129

    CAS  Google Scholar 

Download references

Funding

Authors acknowledge Science and Engineering Research Board for sanctioning the fellowship grant (PDF/2017/000984) to support financially. We would like to acknowledge Indian Council of Medical Research for financial support (2016-0264/CMB/ADHOC-BMS).

Author information

Authors and Affiliations

Authors

Contributions

AS wrote and designed the manuscript, PT wrote the manuscript. SS designed and critically reviewed the manuscript.

Corresponding author

Correspondence to Sarika Singh.

Ethics declarations

Conflicts of interest

Authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Tripathi, P. & Singh, S. Neuroinflammatory responses in Parkinson’s disease: relevance of Ibuprofen in therapeutics. Inflammopharmacol 29, 5–14 (2021). https://doi.org/10.1007/s10787-020-00764-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-020-00764-w

Keywords

Navigation