Skip to main content
Log in

Anti-inflammation Effects of Sophora flavescens Nanoparticles

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The roots of Sophora flavescens was reported to possess many pharmacological activities including anti-inflammatory, antiashmatic, antithelmintic, free radical scavenging and antimicrobial activities. However, the low saturated solubility and dissolution velocity of S. flavescens lead to poor bioavailability. The S. flavescens nanoparticles (SFNP) were prepared by a combination of ultrasound and hydrolysis developed by the authors. The drug dissolution profiles of SFNP in both pH 6.8 and pH 2 media showed complete dissolution within 30 min. The seropharmacology study showed that oral S. flavescens absorption in the SFNP was significantly increased. Anti-inflammation assay revealed the therapeutic efficiency of S. flavescens significantly enhanced upon nanoparticle formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yagi, A., M. Fukunaga, N. Okuzako, I. Mifuchi, and F. Kawamoto. 1989. Antifungal substances from Sophora flavescens. Shoyakugaku Zasshi 43: 343–347.

    CAS  Google Scholar 

  2. Kuroyanagi, M., T. Arakawa, Y. Hirayama, and T. Hayashi. 1999. Antibacterial and antiandrogen flavonoids from Sophora flavescens. Journal of Natural Products 62: 1595–1599.

    Article  PubMed  CAS  Google Scholar 

  3. Kim, D.W., Y.S. Chi, K.H. Son, H.W. Chang, J.S. Kim, S.S. Kang, and H.P. Kim. 2002. Effects of sophoraflavanone G, a prenylated flavonoid from Sophora flavescenes, on cyclooxygenase-2 and in vitro inflammatory response. Archives of Pharmacal Research 25: 329–335.

    Article  PubMed  CAS  Google Scholar 

  4. Hwang, J.S., S.A. Lee, S.S. Hong, K.S. Lee, M.K. Lee, B.Y. Hwang, and J.S. Ro. 2005. Monoamine oxidase inhibitory components from the roots of Sophora flavescens. Archives of Pharmacal Research 28: 190–194.

    Article  PubMed  CAS  Google Scholar 

  5. Jung, H.J., S.S. Kang, S.K. Hyun, and J.S. Choi. 2005. In vitro free radical and ONOO − scavengers from Sophora flavescens. Archives of Pharmacal Research 28: 534–540.

    Article  PubMed  CAS  Google Scholar 

  6. Tang, W., and G. Eisenbrand. 1992. Chinese drugs of plant origin, 931–994. Heidelberg: Springer.

    Book  Google Scholar 

  7. Mizoe, T., T. Ozeki, and H. Okada. 2007. Preparation of drug nanoparticle-containing microparticles using a4-fluid nozzle spray drier for oral, pulmonary and injection dosage forms. Journal of Controlled Release 122: 10–15.

    Article  PubMed  CAS  Google Scholar 

  8. Texter, J. 2001. Precipitation and condensation of organic particles. Journal of Dispersion Science and Technology 22: 499–527.

    Article  CAS  Google Scholar 

  9. Horn, D., and J. Rieger. 2001. Organic nanoparticles in the aqueous phase-theory, experiment and use. Angewandte Chemie (International Ed. in English) 40: 4330–4361.

    Article  CAS  Google Scholar 

  10. Bilgili, E., R. Hamey, and B. Scarlett. 2004. Production of pigment nanoparticles using a wet stirred media mill with polymeric media. China Part 2:93–100.

    Google Scholar 

  11. Bilgili, E., R. Hamey, and B. Scarlett. 2006. Nano-milling of pigment agglomerates using a wet stirred media mill: Elucidation of the kinetics and breakage mechanisms. Chemical Engineering Science 61: 149–157.

    Article  CAS  Google Scholar 

  12. Thiruvengadathan, R., Y. Levi-Kalisman, O. Regev, Ultrason. Sonochem. 2007. Synergetic effect of ultrasound and sodium dodecyl sulphate in the formation of CdS nanostructures in aqueous solution 14:398–404.

  13. Entezari, M.H., N. Ghows, and M. Chamsaz. 2005. Combination of ultrasound and discarded tire rubber: removal of Cr (III) from aqueous solution. Journal of Physical Chemistry A 109: 4638–4642.

    Article  CAS  Google Scholar 

  14. Entezari, M.H., N. Ghows, and M. Chamsaz. 2006. Ultrasound facilitates and improves removal of Cd (II) from aqueous solution by the discarded tire rubber. Journal of Hazardous Materials B 131: 84–89.

    Article  CAS  Google Scholar 

  15. Mason, T.J. 1990. Sonochemistry: The uses of ultrasound in chemistry, The Royal Society of Chemistry.

  16. Price, G.J. 1992. Current trends in sonochemistry, The Royal Society of Chemistry.

  17. Yu, J.C., J. Yu, W. Ho, and L. Zhang. 2001. Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chemical Communications 7: 1942–1943.

    Article  Google Scholar 

  18. Pérez, J., J. Muñoz-Dorado, T. De-la-Rubia, and J. Martínez. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology 5: 53–63.

    Article  PubMed  Google Scholar 

  19. Moure, A., P. Gullon, H. Domınguez, and J.C. Parajo. 2006. Advances in the manufacture, purification and applications of xylooligosaccharides as food additives and nutraceuticals. Process Biochemistry 41: 1913–1923.

    Article  CAS  Google Scholar 

  20. Merisko-Liversidge, E., P. Sarpotdar, J. Bruno, S. Hajj, L. Wei, N. Peltier, et al. 1996. Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharmaceutical Research 13: 272–278.

    Article  PubMed  CAS  Google Scholar 

  21. Merisko-Liversidge, E., G.G. Liversidge, and E.R. Cooper. 2003. Nanosizing: a formulation approach for poorly-water-soluble compounds. European Journal of Pharmaceutical Sciences 18: 113–120.

    Article  PubMed  CAS  Google Scholar 

  22. VanEerdenbrughB, Froyen.L., Blaton.N. MartensJA, P. Augustijns, M. Brewster, et al. 2007. Characterization of physico-chemical properties and pharmaceutical performance of sucrose co-freeze-dried solid nanoparticulate powders of the anti-HIV agent loviride prepared by media milling. International Journal of Pharmaceutics 338: 198–206.

    Article  Google Scholar 

  23. Van Eerdenbrugh, B., L. Froyen, J. Van Humbeeck, J.A. Martens, P. Augustijns, and G. Van den Mooter. 2008. Drying of crystalline drug nanosuspensions—the importance of surface hydrophobicity on dissolution behavior upon redispersion. European Journal of Pharmaceutical Sciences 35: 127–135.

    Article  PubMed  Google Scholar 

  24. Van Eerdenbrugh, B., L. Froyen, J. Van Humbeeck, J.A. Martens, P. Augustijns, and G. Van Den Mooter. 2008. Alternative matrix formers for nanosuspension solidification: dissolution performance and x-ray microanalysis as an evaluation tool for powder dispersion. European Journal of Pharmaceutical Sciences 35: 344–353.

    Article  PubMed  Google Scholar 

  25. Jacobs, C., and H. Müller. 2002. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharmaceutical Research 19: 189–194.

    Article  PubMed  CAS  Google Scholar 

  26. Hecq, J., M. Deleers, D. Fanara, H. Vranckx, P. Boulanger, S. Le Lamer, et al. 2006. Preparation and in vitro/in vivo evaluation of nano-sized crystals for dissolution rate enhancement of ucb-35440-3, a highly dosed poorly water-soluble weak base. European Journal of Pharmaceutics and Biopharmaceutics 64: 360–368.

    Article  PubMed  CAS  Google Scholar 

  27. Riddick, T. 1968. Control of colloid stability through zeta potential: with a closing chapter on its relationship to cardiovascular disease, Zeta-Meter, Inc.

  28. Grant, D.J.W., and H.G. Brittain. 1995. Solubility of pharmaceutical solids. In: Brittain HG, editor. Physical characterization of pharmaceutical solids, drugs and the pharmaceutical sciences. New York: Marcel Dekker.70: 321–86.

  29. McNeil, S.E. 2005. Nanotechnology for the biologist. Jounal of Leukocyte Biology 78: 585–592.

    Article  CAS  Google Scholar 

  30. Kesisoglou, F., S. Panmai, and Y. Wu. 2007. Nanosizing-oral formulation development and biopharmaceutical evaluation. Advanced Drug Delivery Reviews 59: 631–644.

    Article  PubMed  CAS  Google Scholar 

  31. Duchêne, D., and G. Ponchel. 1997. Bioadhesion of solid oral dosage forms, why and how? European Journal of Pharmaceutics and Biopharmaceutics 44: 15–23.

    Article  Google Scholar 

  32. Vasir, J.K., K. Tambwekar, and S. Garg. 2003. Bioadhesive microspheres as a controlled drug delivery system. International Journal of Pharmaceutics 255: 13–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by a project of Shandong Province Higher Educational Science and Technology Program (J08LH62).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingzi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, CC., Wang, Y. Anti-inflammation Effects of Sophora flavescens Nanoparticles. Inflammation 35, 1262–1268 (2012). https://doi.org/10.1007/s10753-012-9437-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-012-9437-6

KEY WORDS

Navigation