Skip to main content

Advertisement

Log in

Ongoing ecological shifts in a large lake are driven by climate change and eutrophication: evidences from a three-decade study in Lake Garda

  • LARGE AND DEEP PERIALPINE LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The long-term research carried out since the 1970s in the deep perialpine Lake Garda documented more than a threefold increase of total phosphorus (TP) in the whole water column until mid-2000s and a continuous warming. We evaluated the impact of these changes on phytoplankton, assessing similarities and peculiarities compared with other lakes. The increase of TP favoured cyanobacteria (microcystins producer Planktothrix rubescens (De Candolle ex Gomont) Anagnostidis & Komárek) and large diatoms. The warming of the lake caused a decrease in the frequency of full mixing episodes, which stopped completely after 2006, and a lower supply of nutrients to the upper layers. This “climate warming-induced oligotrophication” was mediated by the physiographic characteristics typical of deep lakes. The decrease of nutrients in the upper layers induced by the long period of incomplete mixing caused a decline of the mesotrophic P. rubescens, which was partially replaced by anatoxins producer Tychonema bourrellyi (J.W.G. Lund) Anagnostidis & Komárek. Lake warming favoured a higher development of mixotrophic dinoflagellates and cryptophytes. Many dinoflagellates are adapted to grow in warm and low nutrient lakes, therefore it is likely that the development of selected species will increase in large (meso-)oligotrophic lakes because of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Anisimova, M., & O. Gascuel, 2006. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Systematic biology 55: 539–552 [available on internet at http://sysbio.oxfordjournals.org/content/55/4/539.long].

    Article  Google Scholar 

  • Anneville, O., S. Souissi, S. Gammeter & D. Straile, 2004. Seasonal and inter-annual scales of variability in phytoplankton assemblages: comparison of phytoplankton dynamics in three peri-alpine lakes over a period of 28 years. Freshwater Biology Blackwell Science Ltd 49: 98–115.

    Article  Google Scholar 

  • APHA-AWWA-WPCF, 1998. Standard methods for the Examination of Water and Wastewater. Washington.

  • Boscaini, A., 2009. Natural and anthropogenic loads of nutrients. In Bertin, F. & A. Bortoli (eds), Environmental issues in Lake Garda: insights and proposals for restoration [in Italian]. ANSAC, Roma: 51–63.

    Google Scholar 

  • Capelli, C., A. Ballot, L. Cerasino, A. Papini, & N. Salmaso, 2017. Biogeography of bloom-forming microcystin producing and non-toxigenic populations of Dolichospermum lemmermannii (Cyanobacteria). Harmful Algae 67: 1–12, [available on internet at http://linkinghub.elsevier.com/retrieve/pii/S1568988316303663].

    Article  CAS  Google Scholar 

  • Chorus, I., & J. Bartram (eds), 1999. Toxic Cyanobacteria in Water: a guide to their public health consequences, monitoring and management. Retrieved March. Published on behalf of UNESCO, WHO and UNEP by E&FN Spon, London, [available on internet at http://www.who.int/water_sanitation_health/resources/toxicyanbact/en/].

  • Cohen, A. S., E. L. Gergurich, B. M. Kraemer, M. M. McGlue, P. B. McIntyre, J. M. Russell, J. D. Simmons, & P. W. Swarzenski, 2016. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems. National Academy of Sciences of the United States of America National Academy of Sciences proceedings 113: 9563–9568 [available on internet at http://www.ncbi.nlm.nih.gov/pubmed/27503877].

    Article  CAS  Google Scholar 

  • Deng, J., Y. Zhang, B. Qin, X. Yao, & Y. Deng, 2017. Trends of publications related to climate change and lake research from 1991 to 2015. Journal of Limnology [available on internet at http://jlimnol.it/index.php/jlimnol/article/view/jlimnol.2017.1612].

  • Di Giuseppe, G. & F. Dini, 2004. Identità dei dinoflagellati proliferanti in strutture sperimentali in situ nel Lago di Tovel (Nord Italia). Studi Trentini Scienze Naturali, Acta Biologica 81: 427–438.

    Google Scholar 

  • Fastner, J., S. Abella, A. Litt, G. Morabito, L. Vörös, K. Pálffy, D. Straile, R. Kümmerlin, D. Matthews, M. G. Phillips & I. Chorus, 2015. Combating cyanobacterial proliferation by avoiding or treating inflows with high P load – experiences from eight case studies. Aquatic Ecology. https://doi.org/10.1007/s10452-015-9558-8.

    Article  Google Scholar 

  • Francis, T. B., E. M. Wolkovich, M. D. Scheuerell, S. L. Katz, E. E. Holmes & S. E. Hampton, 2014. Shifting Regimes and changing interactions in the Lake Washington, USA., plankton community from 1962 to 1994. PLoS ONE Public Library of Science 9: e110363. https://doi.org/10.1371/journal.pone.0110363

    Article  CAS  Google Scholar 

  • Garbini, A., 1897. Alcune notizie fisiche sulle acque del Benaco. Rivista Geografica Italiana IV: 23–29.

  • Goldman, C. R. & A. Jassby, 1990. Spring mixing depth as a determinant of annual primary production in lakes. In Tilzer, M. M. & C. Serruya (eds), Large Lakes. Ecological Structure and Function, Springer, New York: 125–132.

    Chapter  Google Scholar 

  • Graham, L. E., M. J. Graham & L. W. Wilcox, 2009. Algae. Benjamin Cummings, San Francisco.

    Google Scholar 

  • Guindon, S., J.-F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, & O. Gascuel, 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic biology 59: 307–321 [available on internet at http://sysbio.oxfordjournals.org/content/59/3/307.long].

    Article  CAS  Google Scholar 

  • Guindon, S., & O. Gascuel, 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic biology 52: 696–704 [available on internet at http://www.ncbi.nlm.nih.gov/pubmed/14530136].

    Article  Google Scholar 

  • Guiry, M. D., & G. M. Guiry, 2016. AlgaeBase. World-wide electronic publication - National University of Ireland, Galway. [available on internet at http://www.algaebase.org].

  • Hamilton, D. P., N. Salmaso & H. W. Paerl, 2016. Mitigating harmful cyanobacterial blooms: strategies for control of nitrogen and phosphorus loads. Aquatic Ecology Springer, Netherlands 50: 351–366.

    Article  CAS  Google Scholar 

  • Hansen, G., & G. Flaim, 2007. Dinoflagellates of the Trentino Province, Italy. Journal of Limnology 66: 107–141 [available on internet at http://jlimnol.it/index.php/jlimnol/article/view/jlimnol.2007.107].

    Article  Google Scholar 

  • Hansen, G., N. Daugbjerg & P. Henriksen, 2007. Baldinia anauniensis gen. et sp. nov.: a “new” dinoflagellate from Lake Tovel. N. Italy. Phycologia International Phycological Society 46: 86–108.

    Google Scholar 

  • Hayes, N. M., M. J. Vanni, M. J. Horgan & W. H. Renwick, 2015. Climate and land use interactively affect lake phytoplankton nutrient limitation status. Ecology Ecological Society of America 96: 392–402.

    Google Scholar 

  • Heathcote, A. J., J. M. Ramstack Hobbs, N. J. Anderson, P. Frings, D. R. Engstrom & J. A. Downing, 2015. Diatom floristic change and lake paleoproduction as evidence of recent eutrophication in shallow lakes of the midwestern USA. Journal of Paleolimnology Springer, Netherlands 53: 17–34.

    Article  Google Scholar 

  • Hovel, R. A., S. M. Carlson & T. P. Quinn, 2016. Climate change alters the reproductive phenology and investment of a lacustrine fish, the three-spine stickleback. Global Change Biology. https://doi.org/10.1111/gcb.13531.

    Article  PubMed  Google Scholar 

  • Jenny, J.-P., F. Arnaud, B. Alric, J.-M. Dorioz, P. Sabatier, M. Meybeck & M.-E. Perga, 2014. Inherited hypoxia: a new challenge for reoligotrophicated lakes under global warming. Global Biogeochemical Cycles 28: 1413–1423. https://doi.org/10.1002/2014GB004932

    Article  CAS  Google Scholar 

  • Jones, H., 1997. A classification of mixotrophic protists based on their behaviour. Freshwater Biology Blackwell Science Ltd 37: 35–43. https://doi.org/10.1046/j.1365-2427.1997.00138.x

    Article  Google Scholar 

  • Jones, R. I., 2000. Mixotrophy in planktonic protists: an overview. Freshwater Biology Blackwell Science Ltd 45: 219–226. https://doi.org/10.1046/j.1365-2427.2000.00672.x

    Article  Google Scholar 

  • Kawabata, Z. & D. Banba, 1993. Effect of water temperature on the excystment of the dinoflagellate Ceratium hirundinella (O. F. Müller) Bergh. Hydrobiologia Kluwer Academic Publishers 257: 17–20. https://doi.org/10.1007/BF00013992

    Article  Google Scholar 

  • Killick, R., & I. A. Eckley, 2014. changepoint: an R package for changepoint analysis. Journal of Statistical Software 58: 1–19 [available on internet at http://www.jstatsoft.org/v58/i03/].

  • Kirk, J. T. O., 2011. Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kleiber, C. & A. Zeileis, 2008. Applied Econometrics with R. Springer, New York, New York, NY, https://doi.org/10.1007/978-0-387-77318-6.

    Article  Google Scholar 

  • Kokociński, M., R. Akçaalan, N. Salmaso, M. P. Stoyneva-Gärtner, & A. Sukenik, 2016. Expansion of Alien and Invasive Cyanobacteria. In Meriluoto, J., L. Spoof, & G. A. Codd (eds), Handbook on Cyanobacterial Monitoring and Cyanotoxin Analysis. Wiley: 28–39.

  • Lin, S., H. Zhang, Y. Hou, L. Miranda, & D. Bhattacharya, 2006. Development of a dinoflagellate-oriented PCR primer set leads to detection of picoplanktonic dinoflagellates from Long Island Sound. Applied and environmental microbiology American Society for Microbiology (ASM) 72: 5626–5630 [available on internet at http://www.ncbi.nlm.nih.gov/pubmed/16885319].

    Article  CAS  Google Scholar 

  • Lin, S., H. Zhang, Y. Zhuang, B. Tran & J. Gill, 2010. Spliced leader-based metatranscriptomic analyses lead to recognition of hidden genomic features in dinoflagellates. Proceedings of the National Academy of Sciences 107: 20033–20038.

    Article  CAS  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Lürling, M., F. Eshetu, E. J. Faassen, S. Kosten & V. L. M. Huszar, 2013. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biology 58: 552–559.

    Article  Google Scholar 

  • Manca, M., M. Rogora, & N. Salmaso, 2014. Inter-annual climate variability and zooplankton: applying teleconnection indices to two deep subalpine lakes in Italy. Journal of Limnology 74(1) [available on internet at http://www.jlimnol.it/index.php/jlimnol/article/view/jlimnol.2014.1014].

  • Meriluoto, J., L. Spoof & G. A. Codd (eds), 2016. Handbook on Cyanobacterial Monitoring and Cyanotoxin Analysis. Wiley, New York.

    Google Scholar 

  • Milan, M., C. Bigler, N. Salmaso, G. Guella, & M. Tolotti, 2015. Multiproxy reconstruction of a large and deep subalpine lake’s ecological history since the middle ages. Journal of Great Lakes Research 41: 982–994 [available on internet at http://www.sciencedirect.com/science/article/pii/S0380133015001744].

    Article  CAS  Google Scholar 

  • Misof, B., & K. Misof, 2009. A Monte Carlo approach successfully identifies randomness in multiple sequence alignments: a more objective means of data exclusion. Systematic biology 58: 21–34 [availablr on internet at http://www.ncbi.nlm.nih.gov/pubmed/20525566].

    Article  CAS  Google Scholar 

  • Mosello, R., A. Calderoni & R. de Bernardi, 1997. Le indagini sulla evoluzione dei laghi profondi sudalpini svolte dal C.N.R. Istituto italiano di Idrobiologia. Documenta Istituto italiano di Idrobiologia 61: 19–32.

    Google Scholar 

  • Mosello, R., W. Ambrosetti, S. Arisci, R. Bettinetti, F. Buzzi, A. Calderoni, E. Carrara, R. De Bernardi, S. Galassi, L. Garibaldi, B. Leoni, M. Manca, A. Marchetto, G. Morabito, A. Oggioni, R. Pagnotta, D. Ricci, M. Rogora, N. Salmaso, M. Simona, G. Tartari, M. Veronesi & P. Volta, 2010. Evoluzione recente della qualità delle acque dei laghi profondi sudalpini (Maggiore, Lugano, Como, Iseo e Garda) in risposta alle pressioni antropiche e alle variazioni climatiche. Biologia Ambientale 24: 167–177.

    Google Scholar 

  • Naselli-Flores, L. & J. Padisák, 2016. Blowing in the wind: how many roads can a phytoplanktont walk down? A synthesis on phytoplankton biogeography and spatial processes. Hydrobiologia Springer International Publishing 764: 303–313.

    Google Scholar 

  • O’Reilly, C. M., S. Sharma, D. K. Gray, S. E. Hampton, J. S. Read, R. J. Rowley, P. Schneider, J. D. Lenters, P. B. McIntyre, B. M. Kraemer, G. A. Weyhenmeyer, D. Straile, B. Dong, R. Adrian, M. G. Allan, O. Anneville, L. Arvola, J. Austin, J. L. Bailey, J. S. Baron, J. D. Brookes, E. de Eyto, M. T. Dokulil, D. P. Hamilton, K. Havens, A. L. Hetherington, S. N. Higgins, S. Hook, L. R. Izmest’Eva, K. D. Joehnk, K. Kangur, P. Kasprzak, M. Kumagai, E. Kuusisto, G. Leshkevich, D. M. Livingstone, S. MacIntyre, L. May, J. M. Melack, D. C. Mueller-Navarra, M. Naumenko, P. Noges, T. Noges, R. P. North, P.-D. Plisnier, A. Rigosi, A. Rimmer, M. Rogora, L. G. Rudstam, J. A. Rusak, N. Salmaso, N. R. Samal, D. E. Schindler, S. G. G. Schladow, M. Schmid, S. R. Schmidt, E. Silow, M. E. E. Soylu, K. Teubner, P. Verburg, A. Voutilainen, A. Watkinson, C. E. Williamson & G. Zhang, 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters. https://doi.org/10.1002/2015GL066235.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, & H. Wagner, 2016. vegan: Community Ecology Package., 285 [available on internet at https://cran.r-project.org/package=vegan].

  • Padisák, J., 2004. Phytoplankton. In O’Sullivan, P. E. & C. S. Reynolds (eds), The Lakes Handbook. Volume 1 Limnology and Limnetic Ecology. Blackwell Science Ltd, Hoboken: 251–308.

    Google Scholar 

  • Padisák, J., É. Soróczki-Pintér & Z. Rezner, 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton – an experimental study. Hydrobiologia 500: 243–257.

    Article  Google Scholar 

  • Paerl, H. W., & J. Huisman, 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental microbiology reports 1: 27–37 [available on internet at http://www.ncbi.nlm.nih.gov/pubmed/23765717].

    Article  CAS  Google Scholar 

  • Paerl, H. W., & V. J. Paul, 2012. Climate change: links to global expansion of harmful cyanobacteria. Water research 46: 1349–1363 [available on internet at http://www.sciencedirect.com/science/article/pii/S0043135411004386].

    Article  CAS  Google Scholar 

  • Pandeirada, M. S., S. C. Craveiro, N. Daugbjerg, Ø. Moestrup & A. J. Calado, 2014. Studies on woloszynskioid dinoflagellates VI: description of Tovellia aveirensis sp. nov. (Dinophyceae), a new species of Tovelliaceae with spiny cysts. European Journal of Phycology Taylor & Francis 49: 230–243.

    Article  Google Scholar 

  • Paradis, E., 2012. Analysis of Phylogenetics and Evolution with R. Springer, NY.

    Book  Google Scholar 

  • Pareeth, S., M. Bresciani, F. Buzzi, B. Leoni, F. Lepori, A. Ludovisi, G. Morabito, R. Adrian, M. Neteler & N. Salmaso, 2017. Warming trends of perialpine lakes from homogenised time series of historical satellite and in situ data. Science of The Total Environment 578: 417–426.

    Article  CAS  Google Scholar 

  • R Core Team, 2017. R: A language and environment for statistical computing (v. 3.4.1). R Foundation for Statistical Computing, Vienna, Austria. URL [available on internet at https://www.R-project.org/].

  • Reynolds, C. S., 2006. The ecology of phytoplankton. Ecology. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores, & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428 [available on internet at http://plankt.oxfordjournals.org/content/24/5/417.abstract].

    Article  Google Scholar 

  • Rigosi, A., C. C. Carey, B. W. Ibelings & J. D. Brookes, 2014. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnology and Oceanography 59: 99–114.

    Article  Google Scholar 

  • Rott, E., N. Salmaso & E. Hoehn, 2007. Quality control of Utermöhl-based phytoplankton counting and biovolume estimates – an easy task or a Gordian knot? Hydrobiologia 578: 141–146.

    Article  Google Scholar 

  • Rühland, K. M., A. M. Paterson & J. P. Smol, 2015. Lake diatom responses to warming: reviewing the evidence. Journal of Paleolimnology Springer, Netherlands 54: 1–35.

    Article  Google Scholar 

  • Rühland, K., A. M. Paterson & J. P. Smol, 2008. Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Global Change Biology Blackwell Publishing Ltd 14: 2740–2754.

    Google Scholar 

  • Salmaso, N., 2010. Long-term phytoplankton community changes in a deep subalpine lake: responses to nutrient availability and climatic fluctuations. Freshwater Biology 55: 825–846.

    Article  Google Scholar 

  • Salmaso, N., 2012. Influence of atmospheric modes of variability on a deep lake south of the Alps. Climate Research 51: 125–133 [available on internet at http://www.int-res.com/abstracts/cr/v51/n2/p125-133/].

    Article  Google Scholar 

  • Salmaso, N. & L. Cerasino, 2012. Long-term trends and fine year-to-year tuning of phytoplankton in large lakes are ruled by eutrophication and atmospheric modes of variability. Hydrobiologia 698: 17–28.

    Article  CAS  Google Scholar 

  • Salmaso, N., F. Buzzi, L. Cerasino, L. Garibaldi, B. Leoni, G. Morabito, M. Rogora & M. Simona, 2014. Influence of atmospheric modes of variability on the limnological characteristics of large lakes south of the Alps: a new emerging paradigm. Hydrobiologia 731: 31–48.

    Article  CAS  Google Scholar 

  • Salmaso, N., C. Capelli, S. Shams, & L. Cerasino, 2015. Expansion of bloom-forming Dolichospermum lemmermannii (Nostocales, Cyanobacteria) to the deep lakes south of the Alps: Colonization patterns, driving forces and implications for water use. Harmful Algae 50: 76–87 [available on internet at http://www.sciencedirect.com/science/article/pii/S1568988315300561].

    Article  CAS  Google Scholar 

  • Salmaso, N., L. Cerasino, A. Boscaini, & C. Capelli, 2016. Planktic Tychonema (Cyanobacteria) in the large lakes south of the Alps: Phylogenetic assessment and toxigenic potential. FEMS Microbiology Ecology 92(10):fiw155 [available on internet at http://www.ncbi.nlm.nih.gov/pubmed/27402712].

    Article  Google Scholar 

  • Sauro, U., 2001. Indagini sul Lago di Garda: lineamenti geografici e geologici. In Sauro, U., C. Simoni, E. Turri, & G. M. Varanini (eds), Il lago di Garda.

  • Shams, S., C. Capelli, L. Cerasino, A. Ballot, D. R. Dietrich, K. Sivonen & N. Salmaso, 2015. Anatoxin-a producing Tychonema (Cyanobacteria) in European waterbodies. Water research 69: 68–79.

    Article  CAS  Google Scholar 

  • Shams, S., L. Cerasino, N. Salmaso, & D. R. Dietrich, 2014. Experimental models of microcystin accumulation in Daphnia magna grazing on Planktothrix rubescens: implications for water management. Aquatic toxicology (Amsterdam, Netherlands) 148: 9–15 [available on internet at http://www.sciencedirect.com/science/article/pii/S0166445X13003706].

    Article  CAS  Google Scholar 

  • Sharma, S., D. K. Gray, J. S. Read, C. M. O’Reilly, P. Schneider, A. Qudrat, C. Gries, S. Stefanoff, S. E. Hampton, S. Hook, J. D. Lenters, D. M. Livingstone, P. B. McIntyre, R. Adrian, M. G. Allan, O. Anneville, L. Arvola, J. Austin, J. Bailey, J. S. Baron, J. Brookes, Y. Chen, R. Daly, M. Dokulil, B. Dong, K. Ewing, E. de Eyto, D. Hamilton, K. Havens, S. Haydon, H. Hetzenauer, J. Heneberry, A. L. Hetherington, S. N. Higgins, E. Hixson, L. R. Izmest’eva, B. M. Jones, K. Kangur, P. Kasprzak, O. Köster, B. M. Kraemer, M. Kumagai, E. Kuusisto, G. Leshkevich, L. May, S. MacIntyre, D. Müller-Navarra, M. Naumenko, P. Noges, T. Noges, P. Niederhauser, R. P. North, A. M. Paterson, P.-D. Plisnier, A. Rigosi, A. Rimmer, M. Rogora, L. Rudstam, J. A. Rusak, N. Salmaso, N. R. Samal, D. E. Schindler, G. Schladow, S. R. Schmidt, T. Schultz, E. A. Silow, D. Straile, K. Teubner, P. Verburg, A. Voutilainen, A. Watkinson, G. A. Weyhenmeyer, C. E. Williamson, & K. H. Woo, 2015. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Scientific Data Nature Publishing Group 2: 150008 [available on internet at http://www.nature.com/articles/sdata20158].

  • Stoks, R., A. N. Geerts & L. De Meester, 2014. Evolutionary and plastic responses of freshwater invertebrates to climate change: realized patterns and future potential. Evolutionary Applications 7: 42–55.

    Article  Google Scholar 

  • Strecker, A. L., T. P. Cobb & R. D. Vinebrooke, 2004. Effects of experimental greenhouse warming on phytoplankton and zooplankton communities in fishless alpine ponds. Limnology and Oceanography 49: 1182–1190.

    Article  CAS  Google Scholar 

  • Sukenik, A., O. Hadas, A. Kaplan, & A. Quesada, 2012. Invasion of Nostocales (cyanobacteria) to Subtropical and Temperate Freshwater Lakes - Physiological, Regional, and Global Driving Forces. Frontiers in Microbiology 3: 86 [available on internet at http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3297820&tool=pmcentrez&rendertype=abstract].

  • Sukenik, A., A. Quesada & N. Salmaso, 2015. Global expansion of toxic and non-toxic cyanobacteria: effect on ecosystem functioning. Biodiversity and Conservation 24: 889–908.

    Article  Google Scholar 

  • Walsby, A. E., 2005. Stratification by cyanobacteria in lakes: a dynamic buoyancy model indicates size limitations met by Planktothrix rubescens filaments. The New phytologist 168: 365–376 [available on internet at http://www.ncbi.nlm.nih.gov/pubmed/16219076].

    Article  Google Scholar 

  • Walsby, A. E., F. Schanz & M. Schmid, 2006. The Burgundy-blood phenomenon: a model of buoyancy change explains autumnal waterblooms by Planktothrix rubescens in Lake Zürich. The New phytologist 169: 109–122.

    Article  Google Scholar 

  • Ward, B. A., S. Dutkiewicz, A. D. Barton & M. J. Follows, 2011. Biophysical aspects of resource acquisition and competition in algal mixotrophs. The American Naturalist 178: 98–112.

    Article  Google Scholar 

  • Watson, S. B., E. McCauley & J. A. Downing, 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnology and Oceanography 42: 487–495.

    Article  Google Scholar 

  • Wiedner, C., & B. Nixdorf, 1998. Success of chrysophytes, cryptophytes and dinoflagellates over blue-greens (cyanobacteria) during an extreme winter (1995/96) in eutrophic shallow lakes Phytoplankton and Trophic Gradients. Springer Netherlands, Dordrecht: 229–235 [available on internet at https://doi.org/10.1007/978-94-017-2668-9_19].

    Chapter  Google Scholar 

  • Winder, M., J. E. Reuter, & S. G. Schladow, 2009. Lake warming favours small-sized planktonic diatom species. Proceedings of the Royal Society of London B: Biological Sciences 276 [available on internet at http://rspb.royalsocietypublishing.org/content/276/1656/427.short].

    Article  Google Scholar 

  • Winder, M. & U. Sommer, 2012. Phytoplankton response to a changing climate. Hydrobiologia 698: 5–16.

    Article  Google Scholar 

  • Wood, S., 2006. Generalized Additive Models: An Introduction with R - CRC Press Book. Taylor & Francis, Boca Raton [available on internet at https://www.crcpress.com/Generalized-Additive-Models-An-Introduction-with-R/Wood/9781584884743].

    Book  Google Scholar 

  • Yue, S., P. Pilon, B. Phinney & G. Cavadias, 2002. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes John Wiley & Sons, Ltd. 16: 1807–1829.

    Article  Google Scholar 

  • Zhang, H., D. Bhattacharya, & S. Lin, 2005. Phylogeny of dinoflagellates based on mitochondrial cytochrome b and nuclear small subunit rDNA sequence comparisons Journal of Phycology Blackwell Science Inc 41: 411–420

    Article  CAS  Google Scholar 

  • Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.

    Book  Google Scholar 

Download references

Acknowledgements

Investigations were carried out in the framework of the LTER (Long-Term Ecological Research) Italian network, site ‘‘Southern Alpine lakes’’, IT08-000-A (http://www.lteritalia.it/), with the support of the ARPA Veneto (G. Franzini and collaborators). We are grateful to our colleagues in FEM, in particular L. Ress, M. Tarter and A. Zampedri, for their support in the field and/or laboratory activities. Special thanks are due to G. Pellegrini of the Environmental Agency of Trento (APPA) for providing samples collected during the dinoflagellate blooms in summer 2015, and to G. Flaim (FEM), for providing help in the identification of Baldinia, and fruitful discussions on the taxonomy and distribution of dinoflagellates in N-Italy. The activity was supported by a PhD fellowship (FIRS > T) to C. Capelli from the E. Mach Foundation—Istituto Agrario di S. Michele all’Adige. We are grateful to two anonymous reviewers for valuable comments and suggestions on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Salmaso.

Additional information

Guest editors: Nico Salmaso, Orlane Anneville, Dietmar Straile & Pierluigi Viaroli / Large and deep perialpine lakes: ecological functions and resource management

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2017_3402_MOESM1_ESM.tiff

Supplementary material 1 (TIFF 98 kb). Supplementary Fig. 1. Long-term changes of the mean winter values (from December to February) of the East Atlantic pattern from 1951 to 2017. The years refer to the months of January and February, e.g. the 1951 average was computed including the EA values recorded in December 1950, and January and February 1951. The dashed-blue curve and the continuous-red line indicate the LOESS smoothing and the linear trend (Sen’s slope), respectively. The mean monthly East Atlantic pattern values were obtained from NOAA-CPC (www.cpc.ncep.noaa.gov)

10750_2017_3402_MOESM2_ESM.tiff

Supplementary material 2 (TIFF 92 kb). Supplementary Fig. 2. Secchi disk depths measurements carried out in the shallower (maximum depth ca. 80 m) SE basin by Garbini (1897) between 1894 and 1896; measurements were made in correspondence of the villages of Peschiera, Garda and Sirmione, whereas in September (the single hollow blue circle) measurements were made in the deeper NW basin (Assenza); the values in March, July, August, September and December were obtained by averaging several measurements made by Garbini (1897) in the same month. By comparison, the graph reports corresponding measurements made at the station of Bardolino (located at the centre of the SE basin) in 2007 and 2008. Average ± SD of the three series of measurements are included in the legend

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmaso, N., Boscaini, A., Capelli, C. et al. Ongoing ecological shifts in a large lake are driven by climate change and eutrophication: evidences from a three-decade study in Lake Garda. Hydrobiologia 824, 177–195 (2018). https://doi.org/10.1007/s10750-017-3402-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3402-1

Keywords

Navigation