Skip to main content
Log in

Interactive effects of phosphorus and zooplankton grazing on cyanobacterial blooms in a shallow temperate lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Cyanobacterial blooms are becoming increasingly common worldwide. These blooms can be moderated by grazing and/or nutrient availability, but the interactive effects of these processes are not well understood. We examined the interactive effects of phosphate and copepods on growth of phytoplankton (algae and cyanobacteria) in a shallow temperate lake. Field sampling of nutrient and chlorophyll a concentrations was conducted weekly from May through October, 2013. Five two-factorial experiments, spanning pre-, mid-, and post-bloom periods, were conducted with unfiltered lake water incubated with amended copepods, phosphate, or both. Changes in chlorophyll a concentration were used to calculate net phytoplankton biomass growth rates, and cell counts were performed on selected experiments to calculate growth rates of six microplanktonic taxonomic groups. Field data revealed cyanobacterial bloom development in July and decline in September. Experimental results indicated that phytoplankton growth increased with added phosphate pre-bloom, and decreased with added copepod grazers post-bloom, but that a more complex interactive (phosphorus x copepods) effect was observed immediately prior to and during peak bloom times. More specifically, the addition of phosphate and copepods enhanced ciliate growth pre-bloom, while selective grazing by copepods reduced dinoflagellate growth mid-bloom, possibly enhancing cyanobacterial growth and bloom duration via trophic cascade effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adrian, R. & T. M. Frost, 1993. Omnivory in cyclopoid copepods: comparisons of algae and invertebrates as food for three, differently sized species. Journal of Plankton Research 15: 643–658.

    Article  Google Scholar 

  • American Public Health Association (APHA), American Water Works Association, Water Environment Federation, 2012. Standard Methods for the Examination of Water and Wastewater, 22nd ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Anderson, D. M., P. M. Glibert & J. M. Burkholder, 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25: 704–726.

    Article  Google Scholar 

  • Azad, H. S. & J. A. Borchardt, 1970. Variations in phosphorus uptake by algae. Environmental Science & Technology 4: 737–743.

    Article  Google Scholar 

  • Begon, M., S. M. Sait & D. J. Thompson, 1996. Predator–prey cycles with period shifts between 2-species and 3-species systems. Nature 381: 311–315.

    Article  CAS  Google Scholar 

  • Bollens, S. M. & G. C. Rollwagen-Bollens, 2009. Biological Assessment of the Plankton in Vancouver Lake. Washington State University, Vancouver, WA.

    Google Scholar 

  • Boyer, J., G. Rollwagen-Bollens & S. M. Bollens, 2011. Microzooplankton grazing before, during and after a cyanobacterial bloom in Vancouver Lake, Washington, USA. Aquatic Microbial Ecology 64: 163–174.

    Article  Google Scholar 

  • Brandl, Z., 2005. Freshwater copepods and rotifers: predators and their prey. Hydrobiologia 546: 475–489.

    Article  Google Scholar 

  • Burns, C. W. & B. Hegarty, 1994. Diet selection by copepods in the presence of cyanobacteria. Journal of Plankton Research 16: 1671–1690.

    Article  Google Scholar 

  • Calbet, A. & M. R. Landry, 1999. Mesozooplankton influences on the microbial food web: direct and indirect trophic interactions in the oligotrophic open ocean. Limnology and Oceanography 44: 1370–1380.

    Article  Google Scholar 

  • Canter, H. M., S. I. Heaney & J. W. G. Lund, 1990. The ecological significance of grazing on planktonic populations of cyanobacteria by the ciliate Nassula. New Phytologist 114: 247–263.

    Article  Google Scholar 

  • Carmichael, W. W., 2001. Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Human and Ecological Risk Assessment 7: 1393–1407.

    Article  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.

    Article  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer, X. He & C. N. von Ende, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.

    Article  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, K. L. Cottingham, D. E. Schindler, D. L. Christense, D. M. Post & N. Voichick, 1996. Chlorophyll variability, nutrient input, and grazing: evidence from whole-lake experiments. Ecology 77: 725–735.

    Article  Google Scholar 

  • Chan, F., M. L. Pace, R. W. Howarth & R. M. Marino, 2004. Bloom formation in heterocystic nitrogen-fixing cyanobacteria: the dependence on colony size and zooplankton grazing. Limnology and Oceanography 49: 2171–2178.

    Article  Google Scholar 

  • Chorus, E. I. & J. Bartram (eds), 1999. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. Spon Press, London.

    Google Scholar 

  • Chu, S. P., 1946. The utilization of organic phosphorus by phytoplankton. Journal of the Marine Biological Association, U. K. 26: 285–295.

    Article  CAS  Google Scholar 

  • Conley, D. J., H. W. Paerl, R. W. Howarth, D. F. Boesch, S. P. Seitzinger, K. E. Havens, C. Lancelot & G. E. Likens, 2009. Controlling eutrophication: nitrogen and phosphorus. Science 323: 1014–1015.

    Article  CAS  PubMed  Google Scholar 

  • Cowles, T. J., R. J. Olson & S. W. Chisholm, 1988. Food selection by copepods: discrimination on the basis of food quality. Marine Biology 100: 41–49.

    Article  Google Scholar 

  • Dam, H. G. & W. T. Peterson, 1988. The effect of temperature on the gut clearance rate constant of planktonic copepods. Journal of Experimental Marine Biology and Ecology 123: 1–14.

    Article  Google Scholar 

  • Davis, T. W., F. Koch, M. A. Marcoval, S. W. Wilhelm & C. J. Gobler, 2012. Mesozooplankton and microzooplankton grazing during cyanobacterial blooms in the western basin of Lake Erie. Harmful Algae 15: 26–35.

    Article  Google Scholar 

  • DeMott, W. R., 1986. The role of taste in food selection by freshwater zooplankton. Oecologia 69: 334–340.

    Article  Google Scholar 

  • Dryden, R. C. & S. J. L. Wright, 1987. Predation of cyanobacteria by protozoa. Canadian Journal of Microbiology 33: 471–482.

    Article  Google Scholar 

  • Epp, G. T., 1996. Grazing on filamentous cyanobacteria by Daphnia pulicaria. Limnology and Oceanography 41: 560–567.

    Article  Google Scholar 

  • Fessenden, L. & T. J. Cowles, 1994. Copepod predation on phagotrophic ciliates in Oregon coastal waters. Marine Ecology Progress Series 107: 103–111.

    Article  Google Scholar 

  • Frost, B. W., 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnology and Oceanography 17: 805–815.

    Article  Google Scholar 

  • Ger, K. A., L. A. Hansson & M. Lürling, 2014. Understanding cyanobacteria–zooplankton interactions in a more eutrophic world. Freshwater Biology 59: 1783–1798.

    Article  Google Scholar 

  • Gifford, S. M., G. Rollwagen-Bollens & S. M. Bollens, 2007. Mesozooplankton omnivory in the upper San Francisco Estuary. Marine Ecology Progress Series 348: 33–46.

    Article  CAS  Google Scholar 

  • Glibert, P. M., D. M. Anderson, P. Gentien, E. Graneli & K. G. Sellner, 2005. The global, complex phenomena of harmful algal blooms. Oceanography 18: 130–141.

    Google Scholar 

  • Gobler, C. J., T. W. Davis, K. J. Coyne & G. L. Boyer, 2007. Interactive influences of nutrient loading, zooplankton grazing, and microcystin synthetase gene expression on cyanobacterial bloom dynamics in a eutrophic New York lake. Harmful Algae 6: 119–133.

    Article  CAS  Google Scholar 

  • Grobbelaar, J. U., 2004. Algal nutrition: mineral nutrition. In Richmond, A. (ed.), Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell, Oxford: 95–115.

    Google Scholar 

  • Hambright, K. D., T. Zohary, J. Easton, B. Azoulay & T. Fishbein, 2001. Effects of zooplankton grazing and nutrients on the bloom-forming, N2-fixing cyanobacterium Aphanizomenon in Lake Kinneret. Journal of Plankton Research 23: 165–174.

    Article  Google Scholar 

  • Hansson, L. A., S. Gustafsson, K. Rengefors & L. Bomark, 2007. Cyanobacterial chemical warfare affects zooplankton community composition. Freshwater Biology 52: 1290–1301.

    Article  CAS  Google Scholar 

  • Hopp, U. & G. Maier, 2005. Implication of the feeding limb morphology for herbivorous feeding in some freshwater cyclopoid copepods. Freshwater Biology 50: 742–747.

    Article  Google Scholar 

  • Irigoien, X., R. Head, U. Klenke, B. Meyer-Harms, D. Harbour, B. Niehoff, H. J. Hirche & R. Harris, 1998. A high frequency time series at weathership M, Norwegian Sea, during the 1997 spring bloom: feeding of adult female Calanus finmarchicus. Marine Ecology Progress Series 172: 127–137.

    Article  Google Scholar 

  • Jeong, H. J., J. Y. Park, J. H. Nho, M. O. Park, J. H. Ha, K. A. Seong, C. Jeng, C. N. Seong, K. Y. Lee & W. H. Yih, 2005. Feeding by the red-tide dinoflagellates on the cyanobacterium Synechococcus. Aquatic Microbial Ecology 41: 131–143.

    Article  Google Scholar 

  • Kâ, S., J. M. Mendoza-Vera, M. Bouvy, G. Champalbert, R. N’Gom-Kâ & M. Pagano, 2011. Can tropical freshwater zooplankton graze efficiently on cyanobacteria? Hydrobiologia 679: 119–138.

    Article  Google Scholar 

  • Kirchman, D. L., 1993. Statistical analysis of direct counts of microbial abundance. In Kemp, P. F., J. J. Cole, B. F. Sherr & E. B. Sherr (eds), Handbook of Methods in Aquatic Microbial Ecology. CRC Press LLC, Washington, DC: 117–119.

    Google Scholar 

  • Kirk, K. L. & J. J. Gilbert, 1992. Variation in herbivore response to chemical defenses: zooplankton foraging on toxic cyanobacteria. Ecology 73: 2208–2217.

    Article  Google Scholar 

  • Knisley, K. & W. Geller, 1986. Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia 69: 86–94.

    Article  Google Scholar 

  • Landsberg, J. H., 2002. The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science 10: 113–390.

    Article  Google Scholar 

  • Lee, T. A., G. Rollwagen-Bollens & S. M. Bollens, 2015a. The influence of water quality variables on cyanobacterial blooms and phytoplankton community composition in a shallow temperate lake. Environmental Monitoring and Assessment 187: 315.

    Article  PubMed  Google Scholar 

  • Lee, T. A., G. Rollwagen-Bollens, S. M. Bollens & J. Faber-Hammond, 2015b. Environmental influence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake. Ecotoxicology and Environmental Safety 114: 318–325.

    Article  CAS  PubMed  Google Scholar 

  • Lee, T. A., S. M. Bollens, G. Rollwagen-Bollens & J. E. Emerson, 2016. The effects of eutrophication and invasive species on zooplankton community dynamics in a shallow temperate eutrophic lake. Fundamental and Applied Limnology 188: 215–231.

    Article  Google Scholar 

  • Leising, A. W., J. J. Pierson, C. Halsband-Lenk, R. Horner & J. Postel, 2005. Copepod grazing during spring blooms: can Pseudocalanus newmani induce trophic cascades? Progress in Oceanography 67: 406–421.

    Article  Google Scholar 

  • Litchman, E., C. A. Klausmeier & P. Bossard, 2004. Phytoplankton nutrient competition under dynamic light regimes. Limnology and Oceanography 49: 1457–1462.

    Article  Google Scholar 

  • Moore, S. K., V. L. Trainer, N. J. Mantua, M. S. Parker, E. A. Laws, L. C. Backer & L. E. Fleming, 2008. Impacts of climate variability and future climate change on harmful algal blooms and human health. Environmental Health 7: S4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura, Y. & M. M. Watanabe, 1983. Nitrate and phosphate uptake kinetics of Chattonella antiqua grown in light/dark cycles. Journal of the Oceanographical Society of Japan 39: 167–170.

    Article  Google Scholar 

  • Nejstgaard, J. C., L. J. Naustvoll & A. Sazhin, 2001. Correcting for underestimation of microzooplankton grazing in bottle incubation experiments with mesozooplankton. Marine Ecology Progress Series 221: 59–75.

    Article  Google Scholar 

  • Oberhaus, L., M. Gélinas, B. Pinel-Alloul, A. Ghadouani & J. F. Humbert, 2007. Grazing of two toxic Planktothrix species by Daphnia pulicaria: potential for bloom control and transfer of microcystins. Journal of Plankton Research 29: 827–838.

    Article  CAS  Google Scholar 

  • Olson, M., E. J. Lessard, C. H. J. Wong & M. J. Bernhardt, 2006. Copepod feeding selectivity on microplankton, including the toxigenic diatoms Pseudo-nitzschia spp., in the coastal Pacific Northwest. Marine Ecology Progress Series 326: 207–220.

    Article  Google Scholar 

  • Paerl, H. W., N. S. Hall & E. S. Calandrino, 2011. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment 409: 1739–1745.

    Article  CAS  PubMed  Google Scholar 

  • Panosso, R. & M. Lurling, 2010. Daphnia magna feeding on Cylindrospermopsis raciborskii: the role of food composition, filament length and body size. Journal of Plankton Research 32: 1393–1404.

    Article  CAS  Google Scholar 

  • Patterson, D. J., 1992. Free-Living Freshwater Protozoa: A Color Guide. ASM Press, Washington, D.C.

    Google Scholar 

  • Perry, M. J. & R. W. Eppley, 1981. Phosphate uptake by phytoplankton in the central NorthPacific Ocean. Deep-Sea Research, Part A 28: 39–49.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Rivkin, R. B. & E. Swift, 1982. Phosphate uptake by the oceanic dinoflagellates Pyrocystisnoctiluca. Journal of Phycology 18: 113–120.

    Article  CAS  Google Scholar 

  • Rollwagen-Bollens, G. C. & D. L. Penry, 2003. Feeding dynamics of Acartia spp. copepods in a large, temperate estuary (San Francisco Bay, CA). Marine Ecology Progress Series 257: 139–158.

    Article  Google Scholar 

  • Rollwagen-Bollens, G., S. M. Bollens, A. Gonzalez, J. Zimmerman, T. Lee & J. Emerson, 2013. Feeding dynamics of the copepod Diacyclops thomasi before, during and following filamentous cyanobacteria blooms in a large, shallow temperate lake. Hydrobiologia 705: 101–118.

    Article  CAS  Google Scholar 

  • Schindler, D. W., R. E. Hecky, D. L. Findlay, M. P. Stainton, B. R. Parker, M. J. Paterson, K. G. Beaty, M. Lyng & S. E. M. Kasian, 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of United States of America 105: 11254–11258.

    Article  CAS  Google Scholar 

  • Schnetzer, A. & D. A. Caron, 2005. Copepod grazing impact on the trophic structure of the microbial assemblage of the San Pedro Channel, California. Journal of Plankton Research 27: 959–971.

    Article  Google Scholar 

  • Scott, J. T. & J. M. McCarthy, 2010. Nitrogen fixation may not balance the nitrogen pool in lakes over timescales relevant to eutrophication management. Limnology and Oceanography 55: 1265–1270.

    Article  CAS  Google Scholar 

  • Sheibley, R. W., J. R. Foreman, C. A. Marshall & W. B. Welch, 2014. Water and nutrient budgets for Vancouver Lake, Vancouver, WA, October 2010–October 2012. No. 2014-5201. US Geological Survey.

  • Sherr, E. B. & B. F. Sherr, 1994. Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microbial Ecology 28: 223–235.

    Article  CAS  PubMed  Google Scholar 

  • Sigee, D. C., R. Glenn, M. J. Andrews, E. G. Bellinger, R. D. Butler, H. A. S. Epton & R. D. Hendry, 1999. Biological control of cyanobacteria: principles and possibilities. Hydrobiologia 395: 161–172.

    Article  Google Scholar 

  • Sommer, U. & F. Sommer, 2006. Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia 147: 183–194.

    Article  PubMed  Google Scholar 

  • Stibor, H., O. Vadstein, S. Diehl, A. Gelzleichter, T. Hansen, F. Hantzsche, A. Katechakis, B. Lippert, K. Løseth, C. Peters, W. Roederer, M. Sandow, L. Sundt-Hansen & Y. Olsen, 2004. Copepods act as a switch between alternative trophic cascades in marine pelagic food webs. Ecology Letters 7: 321–328.

    Article  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A Practical Manual for Seawater Analysis, 2nd ed. Fisheries Research Board of Canada, Ottawa.

    Google Scholar 

  • Teegarden, G. J., 1999. Copepod grazing selection and particle discrimination on the basis of PSP toxin content. Marine Ecology Progress Series 181: 163–176.

    Article  CAS  Google Scholar 

  • Tijdens, M., D. B. Van de Waal, H. Slovackova, H. L. Hoogveld & H. J. Gons, 2008. Estimates of bacterial and phytoplankton mortality caused by viral lysis and microzooplankton grazing in a shallow eutrophic lake. Freshwater Biology 53: 1126–1141.

    Article  Google Scholar 

  • Wehr, J. D. & R. G. Sheath (eds), 2002. Freshwater Algae of North America: Ecology and Classification. Academic Press, San Diego, CA.

    Google Scholar 

  • Wetzel, R. G., 1992. Uptake of dissolved inorganic and organic phosphorus compounds by phytoplankton and bacterioplankton. Limnology and Oceanography 37: 232–243.

    Article  Google Scholar 

  • With, J. S. & D. I. Wright, 1984. Lake restoration by biomanipulation: round Lake, Minnesota, the first two years. Freshwater Biology 14: 371–383.

    Article  Google Scholar 

  • Work, K. A. & K. E. Havens, 2003. Zooplankton grazing on bacteria and cyanobacteria in a eutrophic lake. Journal of Plankton Research 25: 1301–1306.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Washington State University (WSU) College of Arts and Sciences. The authors would like to thank the Vancouver Lake Sailing Club for allowing us lake access.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Rose.

Additional information

Handling editor: Karl E. Havens

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rose, V., Rollwagen-Bollens, G. & Bollens, S.M. Interactive effects of phosphorus and zooplankton grazing on cyanobacterial blooms in a shallow temperate lake. Hydrobiologia 788, 345–359 (2017). https://doi.org/10.1007/s10750-016-3011-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3011-4

Keywords

Navigation