Skip to main content
Log in

A metadata approach to documenting sex in phylum Rotifera: diapausing embryos, males, and hatchlings from sediments

  • ROTIFERA XIV
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We present a survey of the literature documenting sexuality in monogonont rotifers, including reports of diapausing embryos (DEs), males, and/or hatchlings from dry sediments. Of 30 families, 27 possess species with documented occurrences of sex. Information on DEs is lacking in 41 genera. Of ~300 species with evidence of sexuality (~20% of ~1500 monogononts), only 172 had direct observations of DEs; in the others, DE production was inferred from observations of males and/or hatchlings. DEs are sufficiently widespread to affirm that their presence is plesiomorphic, however few DE characteristics show a phylogenetic signature. They differ widely in volume (~0.11–100 × 105 µm3) and have a varied surface morphology (smooth to highly structured and ornamented). Some species retain DEs within their bodies; others carry them, deposit them on or attach them to surfaces, or release them free into the water. To better understand the evolutionary forces that influence monogonont sexuality and DE biology, a more comprehensive and uniform reporting scheme is needed. To enhance information dissemination, we propose that new and existing data on sex in monogonont rotifers (DEs, males, and hatchlings from dry sediments) be placed in an Internet-based repository.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Albritton, C. J. & D. S. White, 2004. Hatching of rotifer eggs from reservoir sediment. Southeastern Naturalist 3: 359–370.

    Article  Google Scholar 

  • Altermatt, F., S. Schreiber & M. Holyoak, 2011. Interactive effects of disturbance and dispersal directionality on species richness and composition in metacommunities. Ecology 92: 859–870.

    Article  PubMed  Google Scholar 

  • Alver, M. O. & A. Hagiwara, 2007. An individual-based population model for the prediction of rotifer population dynamics and resting egg production. Hydrobiologia 593: 19–26.

    Article  Google Scholar 

  • Angulo, O., J. C. López-Marcos & M. A. López-Marcos, 2004. A numerical simulation for the dynamics of the sexual phase of monogonont Rotifera. Comptes Rendus Biologies 327: 293–303.

    Article  PubMed  Google Scholar 

  • Aparici, E., M. J. Carmona & M. Serra, 2001. Variability for mixis initiation in Brachionus plicatilis. Hydrobiologia 446/447: 45–50.

    Article  Google Scholar 

  • Aparici, E., M. J. Carmona & M. Serra, 2002. Evidence for an even sex allocation in haplodiploid cyclical parthenogens. Journal of Evolutionary Biology 15: 65–73.

    Article  Google Scholar 

  • Arnemo, R., B. Berzins, B. Grönberg & I. Mellgren, 1968. The dispersal in Swedish waters of Kellicottia bostoniensis (Rousselet) (Rotatoria). Oikos 19: 351–358.

    Article  Google Scholar 

  • Bailey, S. A., I. C. Duggan, C. D. A. van Overdijk, P. T. Jenkins & H. J. MacIsaac, 2003. Viability of invertebrate diapausing eggs collected from residual ballast sediment. Limnology and Oceanography 48: 1701–1710.

    Article  Google Scholar 

  • Bailey, S. A., I. C. Duggan, C. D. A. Van Overdijk, T. H. Johengen, D. F. Reid & H. J. MacIsaac, 2004. Salinity tolerance of diapausing eggs of freshwater zooplankton. Freshwater Biology 49: 286–295.

    Article  Google Scholar 

  • Bailey, S. A., I. C. Duggan, P. T. Jenkins & H. J. MacIsaac, 2005a. Invertebrate resting stages in residual ballast sediment of transoceanic ships. Canadian Journal of Fisheries and Aquatic Sciences 62: 1090–1103.

    Article  Google Scholar 

  • Bailey, S. A., K. Nandakumar, I. C. Duggan, C. D. A. van Overdijk, T. H. Johengen, D. F. Reid & H. J. MacIsaac, 2005b. In situ hatching of invertebrate diapausing eggs from ships’ ballast sediment. Diversity and Distributions 11: 453–460.

    Article  Google Scholar 

  • Balompapuerng, M. D., N. Munuswamy, A. Hagiwara & K. Hirayama, 1997. Effect of disinfectants on the hatching of marine rotifer resting eggs Brachionus plicatilis Müller. Aquaculture Research 28: 559–565.

    Article  Google Scholar 

  • Battauz, Y. S., S. B. José de Paggi & J. C. Paggi, 2014. Passive zooplankton community in dry littoral sediment: reservoir of diversity and potential source of dispersal in a subtropical floodplain lake of the Middle Paraná River (Santa Fe, Argentina). International Review of Hydrobiology 99: 277–286.

    Article  Google Scholar 

  • Bennett, W. N. & M. E. Boraas, 1988. Isolation of a fast-growing strain of the rotifer Brachionus calyciflorus Pallas using turbidostat culture. Aquaculture 73: 27–36.

    Article  Google Scholar 

  • Bennett, W. N. & M. E. Boraas, 1989. A demographic profile of the fastest growing metazoan: a strain of Brachionus calyciflorus (Rotifera). Oikos 55: 365–369.

    Article  Google Scholar 

  • Bogoslovsky, A. S., 1963. Materials to the study of the resting eggs of rotifers. I. Biulleten’ Moskovskogo Obshchestva Ispytatelei Prirody Otdel Biologicheskii 68: 50–67. (In Russian with English summary; on Brachionus calyciflorus).

  • Boschetti, C., F. Leasi & C. Ricci, 2011. Developmental stages in diapausing eggs: an investigation across monogonont rotifer species. Hydrobiologia 662: 149–155.

    Article  CAS  Google Scholar 

  • Brendonck, L. & L. De Meester, 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491: 65–84.

    Article  Google Scholar 

  • Briski, E., M. E. Cristescu, S. A. Bailey & H. J. MacIsaac, 2010. Use of DNA barcoding to detect invertebrate invasive species from diapausing eggs. Biological Invasions 13: 1325–1340.

    Article  Google Scholar 

  • Buchner, H., 1987. Untersuchungen über die Bedingungen der heterogonen Fortpflanzungsarten bei den Rädertieren. III: Über den Verlust der miktischen potenz bei Brachionus urceolaris. Archiv fur Hydrobiologie 109: 333–354.

    Google Scholar 

  • Cáceres, C. E. & D. A. Soluk, 2002. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131: 402–408.

    Article  PubMed  Google Scholar 

  • Caprioli, M., A. Krabbe Katholm, G. Melone, H. Ramløv, C. Ricci & N. Santo, 2004. Trehalose in desiccated rotifers: a comparison between a bdelloid and a monogonont species. Comparative Biochemistry and Physiology, Part A 139: 527–532.

    Article  CAS  Google Scholar 

  • Carmona, M. J., N. Dimas-Flores, J. Montero-Pau & M. Serra, 2011. Effect of experimental methodology on estimation of density at sex initiation in cyclically parthenogenetic rotifers. Hydrobiologia 662: 131–139.

    Article  Google Scholar 

  • Champ, P. & R. Pourriot, 1977. Particularities biologiques et ecologiques du Rotifere Sinantherina socialis (Linne). Hydrobiologia 55: 55–64.

    Article  Google Scholar 

  • Chittapun, S., 2011. Fire and recovery of resting egg bank: an experimental study in paddy fields in Pathum Thani province, Thailand. Hydrobiologia 662: 163–170.

    Article  Google Scholar 

  • Chittapun, S., P. Pholpunthin & H. Segers, 2005. Restoration of tropical peat swamp rotifer communities after perturbation: an experimental study of recovery of rotifers from the resting egg bank. Hydrobiologia 546: 281–289.

    Article  Google Scholar 

  • Chittapun, S., P. Pholpunthin & L. Sanoamuang, 2009. Diversity and composition of zooplankton in rice fields during a crop cycle at Pathum Thani province, Thailand. Songklanakarin Journal of Science and Technology 31: 261–267.

    Google Scholar 

  • de Wit, R. & T. Bouvier, 2006. ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environmental Microbiology 8: 755–758.

    Article  PubMed  Google Scholar 

  • Denekamp, N. Y., M. A. S. Thorne, M. S. Clark, M. Kube, R. Reinhardt & E. Lubzens, 2009. Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics 10: 108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duggan, I. C., J. D. Green & R. J. Shiel, 2002. Rotifer resting egg densities in lakes of different trophic state, and their assessment using emergence and egg counts. Archiv für Hydrobiologie 153: 409–420.

    Article  Google Scholar 

  • Dumont, H. J., 1983. Biogeography of rotifers. Hydrobiologia 104: 19–30.

    Article  Google Scholar 

  • Edmondson, W. T., 1940. The sessile Rotatoria of Wisconsin. Transactions of the American Microscopical Society 59: 433–459.

    Article  Google Scholar 

  • Eloranta, P., 1988. Kellicottia bostoniensis (Rousellet), a planktonic rotifer species new to Finland. Annales Zoologici Fennici 25: 249–252.

    Google Scholar 

  • Epp, L. S., K. R. Stoof, M. H. Trauth & R. Tiedemann, 2010. Historical genetics on a sediment core from a Kenyan lake: intraspecific genotype turnover in a tropical rotifer is related to past environmental changes. Journal of Paleolimnology 43: 939–954.

    Article  Google Scholar 

  • Frisch, D., A. J. Green & J. Figuerola, 2007. High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds. Aquatic Sciences 69: 568–574.

    Article  Google Scholar 

  • Fussmann, G., S. P. Ellner & N. G. Hairston Jr., 2003. Evolution as a critical component of plankton dynamics. Proceedings of the Royal Society B 270: 1015–1022.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabaldón, C., J. Montero-Pau, M. J. Carmona & M. Serra, 2015. Life-history variation, environmental fluctuations and competition in ecologically similar species: modeling the case of rotifers. Journal of Plankton Research 37: 953–965.

    Article  Google Scholar 

  • Gaikwad, S. R., K. N. Ingle & S. R. Thorat, 2008. Study of zooplankton emergence pattern and resting egg diversity of recently dried waterbodies in North Maharashtra Region. Journal of Environmental Biology 29: 353–356.

    CAS  PubMed  Google Scholar 

  • García-Roger, E. M., X. Armengol-Díaz, M. J. Carmona & M. Serra, 2008. Assessing rotifer diapausing egg bank diversity and abundance in brackish temporary environments: an ex situ sediment incubation approach. Fundamental and Applied Limnology 173: 79–88.

    Article  Google Scholar 

  • García-Roger, E. M., M. J. Carmona & M. Serra, 2006. Hatching and viability of rotifer diapausing eggs collected from pond sediments. Freshwater Biology 51: 1351–1358.

    Article  Google Scholar 

  • García-Roger, E. M., M. Serra & M. J. Carmona, 2014. Bet-hedging in diapausing egg hatching of temporary rotifer populations - A review of models and new insights. International Review of Hydrobiology 99: 96–106.

    Article  Google Scholar 

  • Gilbert, J. J., 1974. Dormancy in rotifers. Transactions of the American Microscopical Society 93: 490–513.

    Article  Google Scholar 

  • Gilbert, J. J., 1977. Mictic-female production in monogonont rotifers. Archiv für Hydrobiologie, Beiheft 8: 142–155.

    Google Scholar 

  • Gilbert, J. J., 2004a. Females from resting eggs and parthenogenetic eggs in the rotifer Brachionus calyciflorus: lipid droplets, starvation resistance and reproduction. Freshwater Biology 49: 1505–1515.

    Article  Google Scholar 

  • Gilbert, J. J., 2004b. Population density, sexual reproduction and diapause in monogonont rotifers: new data for Brachionus and a review. Journal of Limnology 63(Suppl. 1): 32–36.

    Article  Google Scholar 

  • Gilbert, J. J., 2007. Induction of mictic females in the rotifer Brachionus: oocytes of amictic females respond individually to population-density signal only during oogenesis shortly before oviposition. Freshwater Biology 52: 1417–1426.

    Article  Google Scholar 

  • Gilbert, J. J., 2010. Effect of food concentration on the production and viability of resting eggs in the rotifer Brachionus: implications for the timing of sexual reproduction. Freshwater Biology 55: 2437–2446.

    Article  Google Scholar 

  • Gilbert, J. J. & D. K. Schreiber, 1995. Induction of diapausing amictic eggs in Synchaeta pectinata. Hydrobiologia 313/314: 345–350.

    Article  Google Scholar 

  • Gilbert, J. J. & D. K. Schreiber, 1998. Asexual diapause induced by food limitation in the rotifer Synchaeta pectinata. Ecology 79: 1371–1381.

    Article  Google Scholar 

  • Gilbert, J. J. & T. Schröder, 2004. Rotifers from diapausing, fertilized eggs: unique features and emergence. Limnology and Oceanography 49: 1341–1354.

    Article  Google Scholar 

  • Gilbert, J. J. & C. E. Williamson, 1983. Sexual dimorphism in zooplankton (Copepoda, Cladocera, and Rotifera). Annual Review of Ecology and Systematics 14: 1–33.

    Article  Google Scholar 

  • Gilbert, J. J. & E. S. Wurdak, 1978. Species-specific morphology of resting eggs in the rotifer Asplanchna. Transactions of the American Microscopical Society 97: 330–339.

    Article  Google Scholar 

  • Gómez, A., 2005. Molecular ecology of rotifers: from population differentiation to speciation. Hydrobiologia 546: 83–99.

    Article  CAS  Google Scholar 

  • Gómez, A. & G. R. Carvalho, 2000. Sex, parthenogenesis and genetic structure of rotifers: microsatellite analysis of contemporary and resting egg bank populations. Molecular Ecology 9: 203–214.

    Article  PubMed  Google Scholar 

  • Hagiwara, A., 1996. Appearance of floating resting eggs in the rotifers Brachionus plicatilis and B. rotundiformis. Bulletin of the Faculty of Fisheries, Nagasaki University 77: 111–115.

    Google Scholar 

  • Hagiwara, A. & A. Hino, 1989. Effect of incubation and preservation on resting egg hatching and mixis in the derived clones of the rotifer Brachionus plicatilis. Hydrobiologia 186/187: 415–421.

    Article  Google Scholar 

  • Hairston Jr, N. G., 1996. Zooplankton egg banks as biotic reservoirs in changing environments. Limnology and Oceanography 41: 1087–1092.

    Article  Google Scholar 

  • Hairston Jr, N. G., A. M. Hansen & W. R. Schaffner, 2000. The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshwater Biology 45: 133–145.

    Article  Google Scholar 

  • Hood, J., 1895. On the Rotifera of the County Mayo. Proceedings of the Royal Irish Academy: 664–706.

  • Jenkins, K. M. & A. J. Boulton, 2003. Connectivity in a dryland river: short-term aquatic microinvertebrate recruitment following floodplain inundation. Ecology 84: 2708–2723.

    Article  Google Scholar 

  • Jenkins, D. G. & M. O. Underwood, 1998. Zooplankton may not disperse readily in wind, rain, or waterfowl. Hydrobiologia 387/388: 15–21.

    Article  Google Scholar 

  • Jersabek, C. D. & M. F. Leitner, 2015. The Rotifer World Catalog. World Wide Web electronic publication. http://www.rotifera.hausdernatur.at/. Accessed 30 Jan 2016.

  • Jones, B. L., D. M. Schneider & T. W. Snell, 2012. Thermostable proteins in the diapausing eggs of Brachionus manjavacas (Rotifera). Comparative Biochemistry and Physiology, Part A 162: 193–199.

    Article  CAS  Google Scholar 

  • Kim, H.-J., K. Suga, B.-M. Kim, J.-S. Rhee, J.-S. Lee & A. Hagiwara, 2015. Light-dependent transcriptional events during resting egg hatching of the rotifer Brachionus manjavacas. Marine Genomics 20: 25–31.

    Article  PubMed  Google Scholar 

  • King, C. E. & T. W. Snell, 1977. Genetic basis of amphoteric reproduction in rotifers. Heredity 39: 361–364.

    Article  Google Scholar 

  • King, C. E. & L. Zhang, 1993. The impact of genetic structure on the dynamics of zooplankton populations. Limnética 9: 51–59.

    Google Scholar 

  • Koste, W., 1971. Das Rädertier-Porträt. Die Rädertiergattung Collotheca – Mitteleuropäische Arten mit besonders auffallenden Koronalfortsätzen. Mikrokosmos 6: 161–167.

    Google Scholar 

  • Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas, Vol. 2. Gebrüder Borntraeger, Stuttgart.

    Google Scholar 

  • Langley, J. M., R. J. Shiel, D. L. Nielsen & J. D. Green, 2001. Hatching from the sediment egg-bank, or aerial dispersing? – the use of mesocosms in assessing rotifer biodiversity. Hydrobiologia 446/447: 203–211.

    Article  Google Scholar 

  • Lehman, J. T., 1975. Reconstructing the rate of accumulation of lake sediment: the effect of sediment focusing. Quaternary Research 4: 541–550.

    Article  Google Scholar 

  • Liu, W. & C. J. Niu, 2010. Polymorphism in resting egg size and hatching strategy in the rotifer Brachionus calyciflorus Pallas. Zoological Science 27: 330–337.

    Article  PubMed  Google Scholar 

  • Lubzens, E., O. Zmora & Y. Barr, 2001. Biotechnology and aquaculture of rotifers. Hydrobiologia 446/447: 337–353.

    Article  Google Scholar 

  • Luo, Y., Q. Wang & H. Segers, 2012. A peculiar case of intraspecific variability in the Chinese Notholca dongtingensis (Rotifera: Monogononta: Brachionidae). Zootaxa 3532: 37–44.

    Google Scholar 

  • Marcus, N. H., R. Lutz, W. Burnett & P. Cable, 1994. Age, variability, and vertical distribution of zooplankton resting eggs from an anoxic basin: Evidence of an egg bank. Limnology and Oceanography 39: 154–158.

    Article  Google Scholar 

  • May, L., 1986. Rotifer sampling – a complete species list from one visit. Hydrobiologia 134: 117–120.

    Article  Google Scholar 

  • May, L., 1987. Effect of incubation temperature on the hatching of rotifer resting eggs collected from sediments. Hydrobiologia 147: 335–338.

    Article  Google Scholar 

  • Michaloudi, E., M. Moustaka-Gouni, K. Pantelidakis, M. Katsiapi & S. Genitsaris, 2012. Plankton succession in the temporary Lake Koronia after intermittent dry-out. International Review of Hydrobiology 97: 405–419.

    Article  Google Scholar 

  • Mills, S., 2006. Investigations of the Brachionus plicatilis species complex, with particular reference to southwest Western Australia. Ph.D., The University of Western Australia, p 224 + A96.

  • Munuswamy, N., A. Hagiwara, G. Murugan, K. Hirayama & H. J. Dumont, 1996. Structural differences between the resting eggs of Brachionus plicatilis and Brachionus rotundiformis (Rotifera, Brachionidae): an electron microscopic study. Hydrobiologia 318: 219–223.

    Article  Google Scholar 

  • Nielsen, D. L., F. J. Smith, T. J. Hillman & R. J. Shiel, 2000. Impact of water regime and fish predation on zooplankton resting egg production and emergence. Journal of Plankton Research 22: 433–446.

    Article  Google Scholar 

  • Nielsen, D. L., D. Smith & R. Petrie, 2012. Resting egg banks can facilitate recovery of zooplankton communities after extended exposure to saline conditions. Freshwater Biology 57: 1306–1314.

    Article  Google Scholar 

  • Nipkow, F., 1961. Die Rädertiere im Plankton des Zürichsees und ihre Entwicklungsphasen. Schweizerische Zeitschrift für Hydrobiologie 22: 398–461.

    Google Scholar 

  • Nogrady, T. & H. Segers (eds), 2002. Rotifera. Volume 6: Asplanchnidae, Gastropodidae, Lindiidae, Microcodidae, Synchaetidae, Trochosphaeridae and Filinia. SPB Academic Publishers BV, The Hague.

    Google Scholar 

  • Pajdak-Stós, A., E. Fiałkowska, W. Kocerba-Soroka, M. Sobczyk & J. Fyda, 2014. Why is sex so rare in Lecane inermis (Rotifera: Monogononta) in wastewater treatment plants? Invertebrate Biology 133: 128–135.

    Article  Google Scholar 

  • Piavaux, A., 1970. Origine de l’envelope chitineuse des oeufs de deux rotifères du genre Euchlanis Ehrenberg. Annales de al Society Royale Zoologique de Belgique 100: 129–137.

    Google Scholar 

  • Pourriot, R. & T. W. Snell, 1983. Resting eggs in rotifers. Hydrobiologia 104: 213–224.

    Article  Google Scholar 

  • Ricci, C., 2001. Dormancy patterns in rotifers. Hydrobiologia 446/447: 1–11.

    Article  Google Scholar 

  • Rico-Martínez, R. & E. J. Walsh, 2013. Sexual reproductive biology of a colonial rotifer Sinantherina socialis (Rotifera: Monogononta): do mating strategies vary between colonial and solitary rotifer species? Marine and Freshwater Behaviour and Physiology 46: 419–430.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rousselet, C. F., 1909. On the geographic distribution of the Rotifera. Journal of the Quekett Microscopical Club, Series 2 10: 465–470.

    Google Scholar 

  • Rumengan, l F M, V. Warouwl & A. Hagiwara, 1998. Morphometry and resting egg production potential of the tropical ultraminute rotifer Brachionus rotundiformis (Manado strain) fed different algae. Bulletin of the Faculty of Fisheries, Nagasaki University 79: 31–36.

    Google Scholar 

  • Ruttner-Kolisko, A., 1974. Planktonic rotifers: biology and taxonomy. Die Binnengewässer (Supplement) 26: 1–146.

    Google Scholar 

  • Ruttner-Kolisko, A., 1977. Amphoteric reproduction in a population of Asplanchna priodonta. Archiv für Hydrobiologie, Beiheft 8: 178–181.

    Google Scholar 

  • Scheuerl, T., S. Riss & C. P. Stelzer, 2011. Phenotypic effects of an allele causing obligate parthenogenesis in a rotifer. Journal of Heredity 102: 409–415.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schröder, T., 2001. Colonising strategies and diapause of planktonic rotifers (Monogononta, Rotifera) during aquatic and terrestrial phases in a floodplain (Lower Oder Valley, Germany). International Review of Hydrobiology 86: 635–660.

    Article  Google Scholar 

  • Schröder, T., 2005. Diapause in monogonont rotifers. Hydrobiologia 546: 291–306.

    Article  Google Scholar 

  • Schröder, T. & J. J. Gilbert, 2004. Transgenerational plasticity for sexual reproduction and diapause in the life cycle of monogonont rotifers: intraclonal, intraspecific and interspecific variation in the response to crowding. Functional Ecology 18: 458–466.

    Article  Google Scholar 

  • Schröder, T. & E. J. Walsh, 2010. Genetic differentiation, behavioural reproductive isolation and mixis cues in three sibling species of monogonont rotifers. Freshwater Biology 55: 2570–2584.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schröder, T., S. Howard, L. Arroyo & E. J. Walsh, 2007. Sexual reproduction and diapause of Hexarthra sp. (Rotifera) in short-lived Chihuahuan Desert ponds. Freshwater Biology 52: 1033–1042.

    Article  Google Scholar 

  • Segers, H., 1995. Rotifera. Volume 2: The Lecanidae (Monogononta). SPB Academic Publishing BV, Amsterdam.

    Google Scholar 

  • Segers, H., 1996. The biogeography of littoral Lecane Rotifera. Hydrobiologia 323: 169–197.

    Article  Google Scholar 

  • Segers, H., 2001. Zoogeography of the Southeast Asian Rotifera. Hydrobiologia 446/447: 233–246.

    Article  Google Scholar 

  • Segers, H., 2003. A biogeographical analysis of rotifers of the genus Trichocerca Lamarck, 1801 (Trichocercidae, Monogononta, Rotifera), with notes on taxonomy. Hydrobiologia 500: 103–114.

    Article  Google Scholar 

  • Segers, H., 2008. Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 595: 49–59.

    Article  Google Scholar 

  • Segers, H. & W. De Smet, 2008. Diversity and endemism in Rotifera: a review, and Keratella Bory de St Vincent. Biodiversity and Conservation 17: 303–316.

    Article  Google Scholar 

  • Serra, M. & T. W. Snell, 2009. Sex loss in monogonont rotifers. In Schön, I., K. Martens & P. van Dijk (eds), Lost Sex: The Evolutionary Biology of Parthenogenesis. Springer Science + Business Media B.V, Dordrecht: 281–294.

    Chapter  Google Scholar 

  • Serra, M., T. W. Snell & C. E. King, 2004. The timing of sex in cyclically parthenogenetic rotifers. In Moya, A. & E. Font (eds), Evolution from Molecules to Ecosystems. Oxford University Press, Oxford: 135–146.

    Google Scholar 

  • Serra, M., E. Aparici & M. J. Carmona, 2008. When to be sexual: sex allocation theory and population density-dependent induction of sex in cyclical parthenogens. Journal of Plankton Research 30: 1207–1214.

    Article  Google Scholar 

  • Serra, M., H. A. Smith, J. S. Weitz & T. W. Snell, 2011. Analysing threshold effects in the sexual dynamics of cyclically parthenogenetic rotifer populations. Hydrobiologia 662: 121–130.

    Article  CAS  Google Scholar 

  • Serrano, L., M. Serra & M. R. Miracle, 1989. Size variation in Brachionus plicatilis resting eggs. Hydrobiologia 186/187: 381–386.

    Article  Google Scholar 

  • Shiel, R. J., J. D. Green & L. W. Tan, 2001. Microfaunal and resting-stage heterogeneity in ephemeral pools, upper River Murray floodplain, Australia. Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie 27: 3738–3741.

    Google Scholar 

  • Smith, H. A. & T. W. Snell, 2012. Rapid evolution of sex frequency and dormancy as hydroperiod adaptations. Journal of Evolutionary Biology 25: 2501–2510.

    Article  CAS  PubMed  Google Scholar 

  • Snell, T. W., 2011. A review of the molecular mechanisms of monogonont rotifer reproduction. Hydrobiologia 662: 89–97.

    Article  CAS  Google Scholar 

  • Snell, T. W. & C. R. Janssen, 1995. Rotifers in ecotoxicology: a review. Hydrobiologia 313/314: 231–247.

    Article  CAS  Google Scholar 

  • Snell, T. W., B. E. Burke & S. D. Messur, 1983. Size and distribution of resting eggs in a natural population of the rotifer Brachionus plicatilis. Gulf Research Reports 7: 285–287.

    Article  Google Scholar 

  • Snell, T. W. & C. E. King, 1977. Amphoteric reproduction in Asplanchna girodi. Archiv für Hydrobiologie, Beiheft 8: 182–183.

    Google Scholar 

  • Snell, T. W., J. Kubanek, W. Carter, A. B. Payne, J. Kim, M. K. Hicks & C.-P. Stelzer, 2006. A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera). Marine Biology 149: 763–773.

    Article  CAS  Google Scholar 

  • Stelzer, C.-P., J. Schmidt, A. Wiedlroither & S. Riss, 2010. Loss of sexual reproduction and dwarfing in a small metazoan. PLoS One 5: e12854.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stemberger, R. S., 1976. Notholca laurentiae and N. michiganensis, new rotifers from the Laurentian Great Lakes region. Journal of the Fisheries Research Board of Canada 33: 2814–2818.

    Article  Google Scholar 

  • Van Geel, B., 1998. Are the resting eggs of the rotifer Hexarthra mira (Hudson 1871) the modern analogs of Schizosporis reticulatus Cookson and Dettmann 1959? Palynology 22: 83–87.

    Article  Google Scholar 

  • Vanschoenwinkel, B., S. Gielen, M. Seaman & L. Brendonck, 2008. Any way the wind blows - frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117: 125–134.

    Article  Google Scholar 

  • Wallace, R. L., 1977. Distribution of sessile rotifers in an acid bog pond. Archiv für Hydrobiologie 79: 478–505.

    Google Scholar 

  • Wallace, R. L., 2002. Rotifers: exquisite metazoans. Integrative and Comparative Biology 42: 660–667.

    Article  PubMed  Google Scholar 

  • Wallace, R. L., T. W. Snell, C. Ricci & T. Nogrady, 2006. Rotifera. Volume 1: Biology, Ecology and Systematics, 2nd ed. Backhuys Publishers, Leiden.

    Google Scholar 

  • Wallace, R. L., T. Snell & H. A. Smith, 2015. Phylum Rotifera. In Thorp, J. H. & D. C. Rogers (eds), Thorp and Covich’s Freshwater Invertebrates, Vol. I., Ecology and General Biology Elsevier, Waltham, MA: 225–271.

    Chapter  Google Scholar 

  • Walsh, E. J., H. A. Smith & R. L. Wallace, 2014. Rotifers of temporary waters. International Review of Hydrobiology 99: 3–19.

    Article  Google Scholar 

  • Weisse, T., 2006. Biodiversity of freshwater microorganisms – achievement, problems, and perspectives. Polish Journal of Ecology 54: 633–652.

    Google Scholar 

  • Wesenberg-Lund, C., 1930. Contributions to the biology of the Rotifera. II. Periodicity and sexual periods. Mémoires de l’Académie Royale des Sciences et des Lettres de Danemark, Copenhagen, 9, Ser. II: 1–230.

  • Wurdak, E., J. J. Gilbert & R. Jagles, 1977. Resting egg ultrastructure and formation of the shell in Asplanchna sieboldi and Brachionus calyciflorus. Archiv für Hydrobiologia, Beiheft 8: 298–302.

    Google Scholar 

  • Wurdak, E., J. J. Gilbert & R. Jagles, 1978. Fine structure of the resting eggs of the rotifers Brachionus calyciflorus and Asplanchna sieboidi. Transactions of the American Microscopical Society 97: 49–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded in part by the US National Science Foundation, DEB 0516032 and DEB 1257068 (E. J. Walsh), DEB 1257116 (R. L. Wallace), grant 2G12MD007592 from the National Institutes on Minority Health and Health Disparities (NIMHD), a component of the National Institutes of Health (NIH), and the Natural Environment Research Council, UK (L. May). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Wallace.

Additional information

Guest editors: M. Devetter, D. Fontaneto, C. D. Jersabek, D. B. Mark Welch, L. May & E. J. Walsh / Evolving rotifers, evolving science

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, E.J., May, L. & Wallace, R.L. A metadata approach to documenting sex in phylum Rotifera: diapausing embryos, males, and hatchlings from sediments. Hydrobiologia 796, 265–276 (2017). https://doi.org/10.1007/s10750-016-2712-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2712-z

Keywords

Navigation