Skip to main content
Log in

Element-specific downward fluxes impact the metabolism and vegetation of kettle holes

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Given that water-filled kettle holes are mostly undergo a wet–dry cycle, and are directly fuelled by terrigenous material, it was hypothesized that the downward flux of matter, including P and its binding partners, varies between and within kettle holes, and is closely coupled to the prevalent water regime. Sedimentation was studied in two kettle holes close to Rittgarten (RG) and Kraatz (KR), Uckermark, NE Germany. Pairs of cylindrical traps at three sites in each kettle hole were sampled biweekly (June 2013–July 2014). Mean fluxes decreased with decreasing water level. KR was Fe-dominated binding P, and had submersed macrophytes. RG was Ca dominated and had low Fe concentrations suggesting that both apatite and oxidized Fe compounds equilibrated P release, with finally a surplus in P. Thus, RG was covered by duck weed. The higher C flux fuelled the sulphate reduction at higher rates than in KR, as also favoured by oxygen deficits due to duck weed coverage. Thus, internal eutrophication, i.e. where sulphate reduction and Fe sulphide formation lead to a lower Fe availability for P binding, is an issue for kettle holes increasingly degrading their ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altenfelder, S., U. Raabe & H. Albrecht, 2014. Effects of water regime and agricultural land use on diversity and species compostion of vascular plants inhabiting temporary ponds in northeastern Germany. Tuexenia 34: 145–162.

    Google Scholar 

  • Asaeda, T., L. H. Nam, P. Hietz, N. Tanaka & S. Karunaratne, 2002. Seasonal fluctuations in live and dead biomass of Phragmites australis as described by a growth and decomposition model: implications of duration of aerobic conditions for litter mineralization and sedimentation. Aquatic Botany 73: 223–239.

    Article  Google Scholar 

  • Banas, D., G. Masson, L. Leglize & J. C. Pihan, 2002. Temporal variations of sedimentation in shallow freshwater systems. Archiv für Hydrobiologie 153: 623–634.

    Google Scholar 

  • Biddanda, B. A. & J. B. Cotner, 2002. Love handles in aquatic ecosystems: the role of dissolved organic carbon drawdown, resuspended sediments, and terrigenous inputs in the carbon balance of Lake Michigan. Ecosystems 5: 431–445.

    Article  CAS  Google Scholar 

  • Bloesch, J., 2004. Sedimentation and lake sediment formation. In O’Sullivan, P. E. & C. S. Reynolds (eds), The Lakes Handbook, Vol. 1. Blackwell Science, Oxford: 197–229.

    Google Scholar 

  • Bloesch, J. & N. M. Burns, 1980. A critical review of sedimentation trap techniques. Schweizerische Zeitschrift für Hydrologie 42: 15–55.

    Google Scholar 

  • Branco, B. F. & T. Torgersen, 2009. Diurnal sediment resuspension and settling: impact on the coupled physical and biogeochemical dynamics of dissolved oxygen and carbon in a shallow water body. Marine and Freshwater Research 60: 669–679.

    Article  CAS  Google Scholar 

  • Boix, D., J. Biggs, R. Céréghino, A. P. Hull, T. Kalettka & B. Oertli, 2012. Pond research and management in Europe: ‘‘Small is Beautiful’’. Hydrobiologia 689: 1–9.

    Article  Google Scholar 

  • Boros, G., M. Søndergaard, P. Takács, Á. Vári & I. Tátrai, 2011. Influence of submerged macrophytes, temperature, and nutrient loading on the development of redox potential around the sediment-water interface in lakes. Hydrobiologia 665: 117–127.

    Article  CAS  Google Scholar 

  • Campbell, P. & T. Torgersen, 1980. Maintenance of iron meromixis by iron redeposition in a rapidly flushed monimolimnion. Canadian Journal of Fishery and Aquatic Sciences 37: 1303–1313.

    Article  CAS  Google Scholar 

  • Carignan, R., D. Planas & C. Vis, 2000. Planktonic production and respiration in oligotrophic Shield lakes. Limnology and Oceanography 45: 189–199.

    Article  Google Scholar 

  • Davison, W., 1993. Iron and manganese in lakes. Earth-Science Reviews 34: 119–163.

    Article  CAS  Google Scholar 

  • Dellwig, O., T. Leipe, C. März, M. Glockzin, F. Pollehne, B. Schnetger, E. V. Yakushev, M. E. Böttcher & H.-J. Brumsack, 2010. A new particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins. Geochimica et Cosmochimica Acta 74: 7100–7115.

    Article  CAS  Google Scholar 

  • Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack & J. J. Middelburg, 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51: 2388–2397.

    Article  Google Scholar 

  • Effler, S. W., D. A. Matthews & C. A. Hurteau, 2012. Deposition signatures in Onondaga Lake, New York: observations from a 28-year sediment-trap study. Limnology and Oceanography 57: 1531–1543.

    Article  Google Scholar 

  • Frielinghaus, M. & W.-M. Vahrson, 1998. Soil translocation by water erosion from agricultural cropland into wet depressions (morainic kettle holes). Soil & Tillage Research 46: 23–30.

    Article  Google Scholar 

  • GeoBasis (2014) GeoBasis-DE/LGB, MIL Brandenburg, 6 July 2014, (http://luaplims01.brandenburg.de/invekos_internet/viewer.htm).

  • Gerke, H. H., S. Koszinski, T. Kalettka & M. Sommer, 2010. Structures and hydrologic function of soil landscapes with kettle holes using an integrated hydropedological approach. Journal of Hydrology 393: 123–132.

    Article  Google Scholar 

  • Golterman, H. L., 2004. The Chemistry of Phosphate and Nitrogen Compounds in Sediments. Kluwer Academic Publishers, Dordrecht/Boston/London: 251 p.

  • Gunnars, A., S. Blomqvist, P. Johansson & C. Andersson, 2002. Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium. Geochimica et Cosmochimica Acta 66: 745–758.

    Article  CAS  Google Scholar 

  • Hessen, D. O., 2006. Determinants of seston C: p-ratio in lakes. Freshwater Biology 51: 1560–1569.

    Article  CAS  Google Scholar 

  • Holmer, M. & P. Storkholm, 2001. Sulphate reduction and sulphur cycling in lake sediments: a review. Freshwater Biology 46: 431–451.

    Article  CAS  Google Scholar 

  • Horppila, J. & L. Nurminen, 2001. The effect of an emergent macrophyte (Typha angustifolia) on sediment resuspension in a shallow north temperate lake. Freshwater Biology 46: 1447–1455.

    Article  CAS  Google Scholar 

  • Horppila, J. & L. Nurminen, 2003. Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland). Water Research 37: 4468–4474.

    Article  PubMed  CAS  Google Scholar 

  • Hupfer, M. (unpubl.). Data from a sediment trap campaign in Lake Stechlin, 2008–2012, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.

  • James, W. F., J. W. Barko & M. G. Butler, 2004. Shear stress and sediment resuspension in relation to submersed macrophyte biomass. Hydrobiologia 515: 181–191.

    Article  Google Scholar 

  • Kalettka, T., C. Rudat & J. Quast, 2001. Potholes in Northeast German agro-landscapes: functions, land use impacts, and protection strategies. In Tenhunen, J. D., R. Lenz & R. Hantschel (eds), Ecosystem Approaches to Landscape Management in Central Europe Ecological Studies 147. Springer, Berlin: 291–298.

    Chapter  Google Scholar 

  • Kalettka, T. & C. Rudat, 2006. Hydrogeomorphic types of glacially created kettle holes in North-East Germany. Limnologica 36: 54–64.

    Article  Google Scholar 

  • Kleeberg, A., 2002. Phosphorus sedimentation in seasonal anoxic Lake Scharmützel, NE Germany. Hydrobiologia 472: 53–65.

    Article  CAS  Google Scholar 

  • Kleeberg, A., 2012. V-1.2.5. Eintrag und Wirkung von Sulfat in Oberflächengewässern. In Hupfer, M., W. Calmano, H. Fischer & H. Klapper (eds), Handbuch Angewandte Limnologie. 30 Ergänzungslieferung 12/12. Wiley-VCH, Weinheim: 1–33.

    Google Scholar 

  • Kleeberg, A., A. Sukhodolov, T. Sukhodolova & J. Köhler, 2010a. Effects of aquatic macrophytes on organic matter deposition, resuspension and phosphorus entrainment in a lowland river. Freshwater Biology 55: 326–345.

    Article  CAS  Google Scholar 

  • Kleeberg, A., C. Herzog, S. Jordan & M. Hupfer, 2010b. What drives the evolution of the sedimentary phosphorus cycle? Limnologica 40: 102–113.

    Article  CAS  Google Scholar 

  • Kleeberg, A., C. Herzog & M. Hupfer, 2013. Redox sensitivity of iron in phosphorus binding does not impede lake restoration. Water Research 47: 1491–1502.

    Article  PubMed  CAS  Google Scholar 

  • Lalonde, K., A. Mucci, A. Quellet & Y. Gélinas, 2012. Preservation of organic matter in sediments promoted by iron. Nature 483: 198–200.

    Article  PubMed  CAS  Google Scholar 

  • Lamers, L. P. M., S.-J. Falla, E. M. Samborska, I. A. R. van Dulken, G. van Henstum & J. G. M. Roelofs, 2002. Factors controlling the extent of eutrophication and toxicity in sulfat-polluted freshwater wetlands. Limnology and Oceanography 47: 585–593.

    Article  CAS  Google Scholar 

  • Lischeid, G. & T. Kalettka, 2012. Grasping the heterogeneity of kettle hole water quality in Northeast Germany. Hydrobiologia 689: 63–77.

    Article  CAS  Google Scholar 

  • Merbach, W., T. Kalettka, C. Rudat & J. Augustin, 2002. Trace gas emissions from riparian areas of small eutrophic inland waters in Northeast Germany. In Broll, G., W. Merbach & E.-M. Pfeiffer (eds), Wetlands in central Europe – Soil organisms, soil ecological processes and trace gas emissions. Springer-Verlag, Berlin Heidelberg, New York: 235–244.

    Google Scholar 

  • Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84.

    Article  Google Scholar 

  • Molot, L. A. & P. J. Dillon, 1996. Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere. Global Biogeochemical Cycles 10: 483–492.

    Article  CAS  Google Scholar 

  • Neyen, M., 2014. Depositional Characteristics of Glacial Kettle Holes at Kraatz and Rittgarten, NE Brandenburg, Germany. Bachelor of Science (BSc) Thesis, University of Potsdam, Institute of Earth- and Environmental Sciences: 1–47.

  • Ostrowsky, I. & Y. Z. Yacobi, 2010. Sedimentation flux in a large subtropical lake: spatiotemporal variations and relation to primary productivity. Limnology and Oceanography 55: 1918–1931.

    Article  Google Scholar 

  • Pätzig, M., T. Kalettka, M. Glemnitz & G. Berger, 2012. What governs macrophyte species richness in kettle hole types? A case study from Northeast Germany. Limnologica 42: 340–354.

    Article  Google Scholar 

  • Post, R. A., 2011. Determining lake sedimentation rates using radionuclide tracers. MS (Master of Science) thesis, University of Iowa: 1–67.

  • Preston, T. M., R. S. Sojda & R. A. Gleason, 2013. Sediment accretion rates and sediment composition in Prairie pothole wetlands under varying land use practices, Montana, United States. Journal of Soil and Water Conservation 68: 199–211.

    Article  Google Scholar 

  • Rabalais, N. N., R. J. Diaz, L. A. Levin, R. E. Turner, D. Gilbert & J. Zhang, 2010. Dynamics and distribution of natural and human-caused coastal hypoxia. Biogeosciences 19: 215–233.

    Google Scholar 

  • Sachs, L., 1988. Statistical Methods: Plannig and Evaluation. 8.1 Correlation and Regression. Springer-Verlag, Berlin: 118–126.

    Google Scholar 

  • Sahuquillo, M., M. R. Miracle, S. M. Morata & E. Vicente, 2012. Nutrient dynamics in water and sediment of Mediterranean ponds across a wide hydroperiod gradient. Limnologica 42: 282–290.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. Szabó, A. Gragnani, E. H. van Nes, S. Rinaldi, N. Kautsky, J. Norberg, R. M. M. Roijackers & R. J. M. Franken, 2003. Floating plant dominance as a stable state. Proceedings of the National Academy of Sciences of the United States of America 100: 4040–4045.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Smolders, A. J. P., L. P. M. Lamers, E. C. H. E. T. Lucassen, G. van der Velde & J. G. M. Roelofs, 2006. Internal eutrophication: how it works and what to do about it – a review. Chemistry and Ecology 22: 93–111.

    Article  CAS  Google Scholar 

  • Stallard, R. F., 1998. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Global Biogeochemical Cycles 12: 231–257.

    Article  CAS  Google Scholar 

  • Sterner, R. W., T. Andersen, J. J. Elser, D. O. Hessen, J. M. Hood, E. McCauley & J. Urabe, 2008. Scale-dependent carbon: nitrogen: phosphorus seston stoichiometry in marine and freshwaters. Limnology and Oceanography 53: 1169–1180.

    Article  CAS  Google Scholar 

  • Waldon, B., 2012. The conservation of small water reservoirs in the Krajenskie Lakeland (North-West Poland). Limnologica 42: 320–327.

    Article  Google Scholar 

  • Weilenmann, U., C. R. O’Melia & W. Stumm, 1989. Particle transport in lakes: models and measurements. Limnology and Oceanography 34: 1–18.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to all persons who have contributed to this study. Bernd Schwien built the sediment traps. Dorith Henning, Roswitha Schulz and Joachim Bartelt (†) regularly sampled the kettle holes. Rita Schwarz (†), Melitta Engel and Kristina Holz conducted most of the laboratory analysis. Sabine Fritsche and Ralph Tauschke provided the kettle hole morphometry. Gunnar Lischeid financially supported the study by institutional means (Leibniz Centre for Agricultural Landscape Research, ZALF). The present study was associated with the project LandScale (Connecting Processes and Structures Deriving the Landscape Carbon Dynamics over Scales by Arthur Gessler and Katrin Premke, ZALF). Climate data were drawn from the Climate Data Center (http://www.dwd.de, Deutscher Wetterdienst Germany). We thank the two anonymous reviewers for their comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kleeberg.

Additional information

Handling editor: Chris Joyce

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleeberg, A., Neyen, M. & Kalettka, T. Element-specific downward fluxes impact the metabolism and vegetation of kettle holes. Hydrobiologia 766, 261–274 (2016). https://doi.org/10.1007/s10750-015-2460-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2460-5

Keywords

Navigation