Skip to main content
Log in

Rehabilitation and management of a moderately deep-stratifying reservoir by the use of nutrient reduction and food-web management

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

As expected from its short renewal time, the hypertrophic Lingese Reservoir responded rapidly but incompletely to external nutrient reduction in 1993. Although there was a sudden decline in lake phosphorus and chlorophyll concentrations, the ‘turbid regime’ revealed resistance in this weakly stratified reservoir of intermediate depth. Draining the reservoir in autumn 1995 provided an unprecedented opportunity for sediment treatment—the phosphorus-rich surface layer was inverted and covered with deeper nutrient-poor layers—and removal of the dense cyprinid fish stock which had not responded to sewage diversion, at least in the short term. Commencing with refilling in 1999, a new fish stock was built up from 2000 by only stocking predators (fingerlings of pike, pike-perch and larger specimens of rainbow-trout in the first years) in combination with catch restrictions. Concomitantly, with the appearance of daphnids in 1999, a ‘clear water regime’ was established and lake water phosphorus concentrations decreased at unchanged external loading. Reduced zooplanktivory as well as reduced fish-mediated phosphorus release from the sediments were driving mechanisms behind successful reduction of internal loading and achievement of a ‘clear water regime’. Hence, phosphorus concentrations were revealed to be a response variable not only to input management but also to food-web management. As the development of cyprinid dominance was prevented in the long-term, there is ample evidence that the fish community responded to the applied management measures as expected featuring successful food-web management. Overall, the biological structure was revealed to be of major importance for lake phosphorus availability and turbidity as in shallow lakes, without, however, the establishment of macrophyte dominance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson, G., H. Berggren, G. Cronberg & C. Gelin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.

    Article  CAS  Google Scholar 

  • Andersson, G., W. Graneli & J. Stenson, 1988. The influence of animals on phosphorus cycling in lake ecosystems. Hydrobiologia 170: 267–284.

    CAS  Google Scholar 

  • Appelberg, M., S. Ridderborg & U. Beier, 2000. Swedish standard methods for sampling freshwater fish with multi-mesh gillnets. Fiskeriverket Information 2000:1. National Board of Fisheries, Göteborg.

  • Benndorf, J., 1987. Food-web control without nutrient control: a useful strategy in lake restoration? Schweizerische Zeitschrift für Hydrologie 49: 237–248.

    Article  CAS  Google Scholar 

  • Benndorf, J., W. Böing, J. Koop & I. Neubauer, 2002. Top down control of phytoplankton: the role of time, scale, lake depth and trophic state. Freshwater Biology 47: 2282–2295.

    Article  Google Scholar 

  • Bergman, E., L. A. Hanson, A. Persson, J. A. Strand, P. Romane, M. Enell, W. Graneli, J. M. Svensson, S. F. Hamrin, G. Cronberg, G. Andersson & E. Bergstrand, 1999. Synthesis of theoretical and empirical experiences from nutrient and cyprinid reductions in Lake Ringsjön. Hydrobiologia 404: 145–156.

    Article  Google Scholar 

  • Bergstrand, E., 1990. Changes in the fish and zooplankton communities of Ringsjön, a Swedish lake undergoing man-made eutrophication. Hydrobiologia 191: 57–66.

    Article  Google Scholar 

  • Bloesch, J., 2004. Sedimentation and lake sediment formation. In O’Sullvian, P. E. & C. S. Reynolds (eds), The Lakes Handbook, Vol. 1. Blackwell-Science, Oxford: 197–222.

    Google Scholar 

  • Botrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hilbricht-Ilkowska, H. Kursawa, P. Larsson & T. Wegelenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.

    Google Scholar 

  • Braband, A. & B. Faafeng, 1993. Habitat shift in roach induced by pikeperch introduction; predation risk versus pelagic behaviour. Oecologia 95: 38–46.

    Google Scholar 

  • Braband, A., B. Faafeng & J. P. Nilsson, 1990. Relative importance of phosphorus supply to phytoplankton: fish excretion versus external loading. Canadian Journal of Fisheries and Aquatic Sciences 47: 364–372.

    Article  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.

    Article  Google Scholar 

  • Clasen, J., 1981. The reservoir project. Zeitschrift für Wasser- und Abwasserforschung 14: 80–87.

    Google Scholar 

  • Cooke, G. D., E. B. Welch, S. A. Peterson & P. R. Newroth, 2005. Restoration and Management of Lakes and Reservoirs. Taylor & Francis, Boca Raton: 548 pp.

    Book  Google Scholar 

  • Deelder, C. L., 1951. A contribution to the knowledge of the stunted growth of perch in Holland. Hydrobiologia 3: 357–378.

    Google Scholar 

  • Duncan, A., 1990. A review: limnological management and biomanipulation in the London reservoirs. Hydrobiolgia 200(201): 541–548.

    Article  Google Scholar 

  • Einsele, W., 1936. Über die Beziehungen des Eisenkreislaufs zum Phosphorkreislauf im eutrophen See. Archiv für Hydrobiologie 29: 664–686.

    CAS  Google Scholar 

  • Elser, J. J., R. W. Sterner, A. E. Galford, T. H. Chrzanowski, D. L. Findlay, K. H. Mills, M. J. Paterson, M. P. Stainton & D. W. Schindler, 2000. Pelagic C:N:P stoichiometry in a eutrophied lake: response to a whole-lake food-web manipulation. Ecosystems 3: 293–307.

    Article  Google Scholar 

  • Gächter, R. & D. M. Imboden, 1985. Lake restoration. In Stumm, W. (ed.), Chemical Processes in Lakes. John Wiley & Sons, New York.

    Google Scholar 

  • Gächter, R. & B. Müller, 2003. Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to the surface. Limnology and Oceanography 48: 929–933.

    Article  Google Scholar 

  • Genkai-Kato, M. & S. R. Carpenter, 2005. Eutrophication due to phosphorus recycling in relation to lakes morphometry, temperature and macrophytes. Ecology 86: 210–219.

    Article  Google Scholar 

  • Gesellschaft deutscher Chemiker, 2004. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung. Wiley-VCH, Berlin.

    Google Scholar 

  • Gliwicz, Z. M., 2004. Zooplankton. In O’Sullivan, P. E. & C. S. Reynolds (eds), The Lakes Handbook, Vol. 1. Blackwell, Oxford.

    Google Scholar 

  • Güde, H., H. Rossknecht & G. Wagner, 1998. Anthropogenic impacts on the trophic state of Lake Constance during the 20th century. Archiv für Hydrobiologie/Advances in Limnology 53: 85–108.

    Google Scholar 

  • Hanson, J. M. & W. C. Legett, 1982. Empirical prediction of fish biomass and yield. Canadian Journal of Fisheries and Aquatic Sciences 39: 257–263.

    Article  Google Scholar 

  • Henrikson, L., H. G. Nyman, H. G. Oscarson & J. A. Stenson, 1980. Trophic changes, without changes in the external nutrient loading. Hydrobiologia 68: 257–263.

    Article  CAS  Google Scholar 

  • Horppila, J. & T. Kairesalo, 1992. Impacts of bleak and roach on water quality, sedimentation and internal nutrient loading. Hydrobiologia 243(244): 323–331.

    Article  Google Scholar 

  • Hupfer, M. & J. Lewandowski, 2008. Oxygen controls the phosphorus release from lake sediments – a long-lasting paradigm in limnology. Internationale Revue der Hydrobiologie 93: 415–432.

    Article  CAS  Google Scholar 

  • Jeppesen, E., J. P. Jensen, P. Kristensen, M. Söndergaard, E. Mortensen, O. Sortkjär & K. Orlik, 1990. Fish manipulation as a restoration tool in shallow, eutrophic temperature lakes: the role of nutrient stage, submerged macrophytes and water depth. Hydrobiologia 342/343: 151–164.

    Article  Google Scholar 

  • Jeppesen, E., M. Söndergaard, J. P. Jensen & T. L. Lauridsen, 2003. Recovery from eutrophication. In Kumagai, M. & M. F. Vincent (eds), Freshwater Management: Global Versus Local Perspectives. Springer, Tokio.

    Google Scholar 

  • Kahl, U. & R. J. Radke, 2006. Habitat and food resource use of perch and roach in a deep mesotrophic reservoir: enough space to avoid competition. Ecology of Freshwater Fish 15: 48–56.

    Article  Google Scholar 

  • Kubecka, J., 1993. Succession of fish communities in reservoirs of central and eastern Europe. In Straskraba, M., J. G. Tundidis & A. Duncan (eds), Comparative Reservoir Limnology and Water Quality Management. Kluwer Academic Publishers, Dordrecht: 153–168.

    Google Scholar 

  • Lampert, W., 1987. Laboratory studies on zooplankton cyanobacteria interactions. New Zealand Journal of Marine Freshwater Research 21: 483–490.

    Article  Google Scholar 

  • Lyche, A., T. Andersen, K. Christoffersen, D. O. Hessen, P. H. Berger Hansen & A. Klysner, 1996. Mesocosm tracer studies. 1. Zooplankton as sources and sinks in the pelagic phosphorus cycle of a mesotrophic lake. Limnology and Oceanography 41: 460–474.

    CAS  Google Scholar 

  • Manugistics, 1998. Statgraphics Plus. Manugistics, Rockville, USA.

    Google Scholar 

  • Mazumder, A., D. J. McQueen, W. D. Taylor & D. R. S. Lean, 1988. Effects of fertilisation and planktivorous fish predation on size distribution of particulate phosphorus and phosphate: large enclosure experiments. Limnology and Oceanography 33: 421–430.

    Article  CAS  Google Scholar 

  • Mehner, T., M. Diekmann, U. Brämik & R. Lemke, 2005. Composition of the fish communities in German lakes related to lake morphology, trophic state, store structure and human-use intensity. Freshwater Biology 50: 70–85.

    Article  CAS  Google Scholar 

  • Mehner, T., M. Diekmann, T. Gonsiorczyk, P. Kasprzak, R. Koschel, L. Krienitz, M. Rumpf, M. Schulz & G. Wauer, 2008. Rapid recovery from eutrophication of a stratified lake by disruption of internal nutrient loading. Ecosystems 11: 1142–1156.

    Article  CAS  Google Scholar 

  • Ohle, W., 1955. Beiträge zur Produktionsbiologie der Gewässer. Archiv für Hydrobiologie, Supplement 22: 456–479.

    Google Scholar 

  • Persson, L., 1987. Competition-induced switch in YOY perch, Perca fluviatilis: an experimental test of resource limitation. Environmental Biology of Fishes 19: 235–239.

    Article  Google Scholar 

  • Persson, A., 1997. Phosphorus release by fish in relation to external and internal load in a eutrophic lake. Limnology and Oceanography 42: 577–583.

    Article  CAS  Google Scholar 

  • Persson, L. & P. Eklöv, 1995. Prey refuges affecting interactions between piscivorous perch and juvenile prech and roach. Ecology 76: 70–81.

    Article  Google Scholar 

  • Persson, L., S. Diehl, L. Johanson, G. Andersson & S. F. Hamrin, 1991. Shifts in fish communites along the productivity gradient in temperate lakes – patterns and the importance of size-structured interactions. Journal of Fish Biology 38: 281–293.

    Article  Google Scholar 

  • Persson, L., A. M. DeRoos, D. Claessen, P. Byström, J. Lövgren, S. Sjögren, R. Svanbäck, E. Wahlström & E. Westman, 2003. Gigantic cannibals driving a whole-lake trophic cascade. Proceedings of the National Academy of Sciences USA 100: 4035–4039.

    Article  CAS  Google Scholar 

  • Persson, L., D. Claessen, A. M. DeRoos, P. Byström, S. Sjögren, R. Svanbäck, E. Wahlström & E. Westman, 2004. Cannibalism in a size-structured population: energy extraction and control. Ecological Monographs 74: 135–157.

    Article  Google Scholar 

  • Poister, D. & D. E. Armstrong, 2003. Seasonal sedimentation trends in a mesotrophic lake: influence of diatoms and implications for phosphorus dynamics. Biogeochemistry 65: 1–13.

    Article  CAS  Google Scholar 

  • Prairie, Y. T., C. de Montigny & P. A. DelGiorgio, 2001. Anaerobic phosphorus release from sediments: a paradigm revisited. Verhandlungen der Internationalen Vereinigung für Limnologie 27: 4013–4020.

    CAS  Google Scholar 

  • Psenner, R., B. Boström, M. Dinka, K. Petterson, R. Pucsko & M. Sager, 1988. Fractionation of phosphorus in suspended matter and sediment. Archiv für Hydrobiologie, Beihefte Ergebnisse der Limnologie 30: 98–110.

    Google Scholar 

  • Radke, R. J. & A. Gaupisch, 2005. Effects of phytoplankton-induced turbidity on predation success of piscivorous European perch: possible implications for fish community structure in lakes. Naturwissenschaften 92: 91–94.

    Article  CAS  PubMed  Google Scholar 

  • Recknagel, F., M. Hosomi, T. Fukushima & D.-S. Kong, 1995. Short and long-term control of external and internal phosphorus loads in lake: a scenario analysis. Water Research 29: 1767–1779.

    Article  CAS  Google Scholar 

  • Rothaupt, K. O., 1992. Stimulation of phosphorus-limited phytoplankton by bacterivorous flagellates in laboratory experiments. Limnology and Oceanography 37: 750–759.

    Article  Google Scholar 

  • Salonen, K., R. I. Jones & L. Arvola, 2006. Hypolimnetic phosphorus retrieval by diel vertical migrations of Lake Phytoplankton. Freshwater Biology 14: 431–438.

    Article  Google Scholar 

  • Sas, H., 1989. Lake restoration by reduction of nutrient loading. Academia, St. Augustin: 497 pp.

    Google Scholar 

  • Scharf, W., 1999. Restoration of the highly eutrophic Lingese Reservoir. Hydrobiologia 416: 85–96.

    Article  CAS  Google Scholar 

  • Scharf, W., 2007. Biomanipulation as a useful water quality management tool in deep stratifying reservoirs. Hydrobiologia 583: 21–42.

    Article  Google Scholar 

  • Scharf, W., 2008a. The use of nutrient reduction and food-web management to improve water quality in the deep stratifying Wupper Reservoir, Germany. Hyrobiologia 603: 105–115.

    Article  CAS  Google Scholar 

  • Scharf, W., 2008b. Development of the fish stock and its manageability in the deep, stratifying Wupper Reservoir. Limnologica 38: 248–257.

    Google Scholar 

  • Scheffer, M., 2001. Alternative attractors of shallow lakes. The Scientific World 1: 254–263.

    CAS  Google Scholar 

  • Schindler, D. W., 1977. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184: 897–899.

    Article  Google Scholar 

  • Seda, J. & J. Kubecka, 1997. Long term biomanipulation of Rimov Reservoir. Hydrobiologia 345: 95–108.

    Article  Google Scholar 

  • Söndergaard, M., J. P. Jensen & E. Jeppesen, 2001. Retention and internal loading of phosphorus in shallow, eutrophic lakes. The Scientific World 1: 427–442.

    Google Scholar 

  • Soranno, P. A., S. R. Carpenter & R. C. Lathrop, 1997. Internal phosphorus loading in Lake Mendota: response to external loads and weather. Canadian Journal of Fisheries and Aquatic Sciences 54: 1883–1893.

    Article  CAS  Google Scholar 

  • Tarvainen, M., J. Sarvala & H. Helminen, 2002. The role of phosphorus release by roach in the water quality changes of a biomanipulated lake. Freshwater Biology 47: 2325–2336.

    Article  CAS  Google Scholar 

  • Vollenweider, R. A., 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters with particular reference to nitrogen and phosphorus as factors in eutrophication. DAS/CSI 68.27, OECD, Paris.

  • Vostradovsky, J., J. Krizek, O. Albertova, L. Ruzicka & M. Vostradovsky, 1989. The changes of fish communities and biomanipulation in water supply reservoirs. Archiv für Hydrobiologie, Beihefte Ergebnisse der Limnologie 33: 587–594.

    Google Scholar 

  • Weisse, T., 2004. Pelagic microbes – protozoa and the microbial food web. In O’Sullivan, P. E. & C. S. Reynolds (eds), The Lakes Handbook, Vol. 1. Blackwell, Oxford.

    Google Scholar 

Download references

Acknowledgement

Thanks to both referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Scharf.

Additional information

Handling editor: K. E. Havens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scharf, W. Rehabilitation and management of a moderately deep-stratifying reservoir by the use of nutrient reduction and food-web management. Hydrobiologia 649, 77–94 (2010). https://doi.org/10.1007/s10750-010-0195-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0195-x

Keywords

Navigation