Skip to main content

Advertisement

Log in

Biomarkers in cancer therapy related cardiac dysfunction (CTRCD)

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Biomarkers are at the cornerstone of preventive measures and contribute to the screening process. More recently, biomarkers have been used to gauge the biological response to the employed therapies. Since it is ubiquitously used to detect subclinical disease process, biomarkers also have found its place in cancer therapy related cardiac dysfunction (CTRCD). The aim of this review is to comprehensively present up-to-date knowledge of biomarkers in CTRCD and highlight some of the future biomedical technologies that may strengthen the screening process, and/or provide new insight in pathological mechanisms behind CTRCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (1957) Chronic illness in the United States: Volume I. Prevention of chronic illness. Harvard University, Cambridge

  2. Wilson JMG, Jungner G (1968) Principles and practice of screening for disease. World Health Organization (WHO), Geneva

    Google Scholar 

  3. Morrow DA, de Lemos JA (2007) Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation 115(8):949–952. https://doi.org/10.1161/CIRCULATIONAHA.106.683110

    Article  PubMed  Google Scholar 

  4. Braunwald E (2008) Biomarkers in heart failure. N Engl J Med 358(20):2148–2159. https://doi.org/10.1056/NEJMra0800239

    Article  CAS  PubMed  Google Scholar 

  5. Germanakis I, Anagnostatou N, Kalmanti M (2008) Troponins and natriuretic peptides in the monitoring of anthracycline cardiotoxicity. Pediatr Blood Cancer 51(3):327–333. https://doi.org/10.1002/pbc.21633

    Article  PubMed  Google Scholar 

  6. Mavinkurve-Groothuis AM, Kapusta L, Nir A, Groot-Loonen J (2008) The role of biomarkers in the early detection of anthracycline-induced cardiotoxicity in children: a review of the literature. Pediatr Hematol Oncol 25(7):655–664. https://doi.org/10.1080/08880010802244001

    Article  CAS  PubMed  Google Scholar 

  7. Cardinale D, Sandri MT, Martinoni A et al (2000) Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol 36(2):517–522. https://doi.org/10.1016/S0735-1097(00)00748-8

    Article  CAS  PubMed  Google Scholar 

  8. Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, Civelli M, Peccatori F, Martinelli G, Fiorentini C, Cipolla CM (2004) Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 109(22):2749–2754. https://doi.org/10.1161/01.CIR.0000130926.51766.CC

    Article  CAS  PubMed  Google Scholar 

  9. Feola M, Garrone O, Occelli M, Francini A, Biggi A, Visconti G, Albrile F, Bobbio M, Merlano M (2011) Cardiotoxicity after anthracycline chemotherapy in breast carcinoma: effects on left ventricular ejection fraction, troponin I and brain natriuretic peptide. Int J Cardiol 148(2):194–198. https://doi.org/10.1016/j.ijcard.2009.09.564

    Article  PubMed  Google Scholar 

  10. Keefe DL (2002) Trastuzumab-associated cardiotoxicity. Cancer 95(7):1592–1600. https://doi.org/10.1002/cncr.10854

    Article  CAS  PubMed  Google Scholar 

  11. Dodos F, Halbsguth T, Erdmann E, Hoppe UC (2008) Usefulness of myocardial performance index and biochemical markers for early detection of anthracycline-induced cardiotoxicity in adults. Clin Res Cardiol 97(5):318–326. https://doi.org/10.1007/s00392-007-0633-6

    Article  PubMed  Google Scholar 

  12. Kismet E, Varan A, Ayabakan C, Alehan D, Portakal O, Buyukpamukcu M (2004) Serum troponin T levels and echocardiographic evaluation in children treated with doxorubicin. Pediatr Blood Cancer 42(3):220–224. https://doi.org/10.1002/pbc.10368

    Article  PubMed  Google Scholar 

  13. Koseoglu V, Berberoglu S, Karademir S et al (2005) Cardiac troponin I: is it a marker to detect cardiotoxicity in children treated with doxorubicin? Turk J Pediatr 47(1):17–22

    PubMed  Google Scholar 

  14. Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, Tian G, Kirkpatrick ID, Singal PK, Krahn M, Grenier D, Jassal DS (2011) The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol 57(22):2263–2270. https://doi.org/10.1016/j.jacc.2010.11.063

    Article  CAS  PubMed  Google Scholar 

  15. Goel S, Simes RJ, Beith JM (2011) Exploratory analysis of cardiac biomarkers in women with normal cardiac function receiving trastuzumab for breast cancer. Asia Pac J Clin Oncol 7(3):276–280. https://doi.org/10.1111/j.1743-7563.2011.01422.x

    Article  PubMed  Google Scholar 

  16. Stachowiak P, Kornacewicz-Jach Z, Safranow K (2014) Prognostic role of troponin and natriuretic peptides as biomarkers for deterioration of left ventricular ejection fraction after chemotherapy. Arch Med Sci 10(5):1007–1018. https://doi.org/10.5114/aoms.2013.34987

    Article  CAS  PubMed  Google Scholar 

  17. Institute. NC. Common Terminology Criteria for Adverse Events v.3.0and v.4.03 (CTCAE). Available at: http://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf

  18. Broeyer FJ, Osanto S, Ritsema van Eck HJ et al (2008) Evaluation of biomarkers for cardiotoxicity of anthracyclin-based chemotherapy. J Cancer Res Clin Oncol 134(9):961–968. https://doi.org/10.1007/s00432-008-0372-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee HS, Son CB, Shin SH, Kim YS (2008) Clinical correlation between brain natriutetic peptide and anthracyclin-induced cardiac toxicity. Cancer Res Treat 40(3):121–126. https://doi.org/10.4143/crt.2008.40.3.121

    Article  PubMed  PubMed Central  Google Scholar 

  20. Suzuki T, Hayashi D, Yamazaki T, Mizuno T, Kanda Y, Komuro I, Kurabayashi M, Yamaoki K, Mitani K, Hirai H, Nagai R, Yazaki Y (1998) Elevated B-type natriuretic peptide levels after anthracycline administration. Am Heart J 136(2):362–363. https://doi.org/10.1053/hj.1998.v136.89908

    Article  CAS  PubMed  Google Scholar 

  21. Sandri MT, Salvatici M, Cardinale D, Zorzino L, Passerini R, Lentati P, Leon M, Civelli M, Martinelli G, Cipolla CM (2005) N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: a marker predictive of cardiac dysfunction? Clin Chem 51(8):1405–1410. https://doi.org/10.1373/clinchem.2005.050153

    Article  CAS  PubMed  Google Scholar 

  22. Skovgaard D, Hasbak P, Kjaer A (2014) BNP predicts chemotherapy-related cardiotoxicity and death: comparison with gated equilibrium radionuclide ventriculography. PLoS One 9(5):e96736. https://doi.org/10.1371/journal.pone.0096736

    Article  PubMed  PubMed Central  Google Scholar 

  23. Okumura H, Iuchi K, Yoshida T, Nakamura S, Takeshima M, Takamatsu H, Ikeno A, Usuda K, Ishikawa T, Ohtake S, Matsuda T (2000) Brain natriuretic peptide is a predictor of anthracycline-induced cardiotoxicity. Acta Haematol 104(4):158–163. https://doi.org/10.1159/000046508

    Article  CAS  PubMed  Google Scholar 

  24. Snowden JA, Hill GR, Hunt P, Carnoutsos S, Spearing RL, Espiner E, Hart DNJ (2000) Assessment of cardiotoxicity during haemopoietic stem cell transplantation with plasma brain natriuretic peptide. Bone Marrow Transplant 26(3):309–313. https://doi.org/10.1038/sj.bmt.1702507

    Article  CAS  PubMed  Google Scholar 

  25. Nousiainen T, Vanninen E, Jantunen E, Puustinen J, Remes J, Rantala A, Vuolteenaho O, Hartikainen J (2002) Natriuretic peptides during the development of doxorubicin-induced left ventricular diastolic dysfunction. J Intern Med 251(3):228–234. https://doi.org/10.1046/j.1365-2796.2002.00951.x

    Article  CAS  PubMed  Google Scholar 

  26. Daugaard G, Lassen U, Bie P, Pedersen EB, Jensen KT, Abildgaard U, Hesse B, Kjaer A (2005) Natriuretic peptides in the monitoring of anthracycline induced reduction in left ventricular ejection fraction. Eur J Heart Fail 7(1):87–93. https://doi.org/10.1016/j.ejheart.2004.03.009

    Article  CAS  PubMed  Google Scholar 

  27. Meinardi MT, van Veldhuisen DJ, Gietema JA, Dolsma WV, Boomsma F, van den Berg MP, Volkers C, Haaksma J, de Vries EGE, Sleijfer DT, van der Graaf WTA (2001) Prospective evaluation of early cardiac damage induced by epirubicin-containing adjuvant chemotherapy and locoregional radiotherapy in breast cancer patients. J Clin Oncol 19(10):2746–2753. https://doi.org/10.1200/JCO.2001.19.10.2746

    Article  CAS  PubMed  Google Scholar 

  28. Cil T, Kaplan AM, Altintas A, Akin AM, Alan S, Isikdogan A (2009) Use of N-terminal pro-brain natriuretic peptide to assess left ventricular function after adjuvant doxorubicin therapy in early breast cancer patients: a prospective series. Clin Drug Investig 29(2):131–137. https://doi.org/10.2165/0044011-200929020-00007

    Article  CAS  PubMed  Google Scholar 

  29. Tanindi A, Demirci U, Tacoy G, Buyukberber S, Alsancak Y, Coskun U, Yalcin R, Benekli M (2011) Assessment of right ventricular functions during cancer chemotherapy. Eur J Echocardiogr 12(11):834–840. https://doi.org/10.1093/ejechocard/jer142

    Article  PubMed  Google Scholar 

  30. Ekstein S, Nir A, Rein AJ et al (2007) N-terminal-proB-type natriuretic peptide as a marker for acute anthracycline cardiotoxicity in children. J Pediatr Hematol Oncol 29(7):440–444. https://doi.org/10.1097/MPH.0b013e3180640d42

    Article  CAS  PubMed  Google Scholar 

  31. Ky B, French B, Levy WC, Sweitzer NK, Fang JC, Wu AHB, Goldberg LR, Jessup M, Cappola TP (2012) Multiple biomarkers for risk prediction in chronic heart failure. Circ Heart Fail 5(2):183–190. https://doi.org/10.1161/CIRCHEARTFAILURE.111.965020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ky B, Putt M, Sawaya H, French B, Januzzi JL Jr, Sebag IA, Plana JC, Cohen V, Banchs J, Carver JR, Wiegers SE, Martin RP, Picard MH, Gerszten RE, Halpern EF, Passeri J, Kuter I, Scherrer-Crosbie M (2014) Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol 63(8):809–816. https://doi.org/10.1016/j.jacc.2013.10.061

    Article  CAS  PubMed  Google Scholar 

  33. Sun F, Qi X, Geng C, Li X (2015) Dexrazoxane protects breast cancer patients with diabetes from chemotherapy-induced cardiotoxicity. Am J Med Sci 349(5):406–412. https://doi.org/10.1097/MAJ.0000000000000432

    Article  PubMed  Google Scholar 

  34. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, Cohen V, Banchs J, Carver JR, Wiegers SE, Martin RP, Picard MH, Gerszten RE, Halpern EF, Passeri J, Kuter I, Scherrer-Crosbie M (2012) Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging 5(5):596–603. https://doi.org/10.1161/CIRCIMAGING.112.973321

    Article  PubMed  PubMed Central  Google Scholar 

  35. Feng YY, Yang ZJ (2015) Clinical application of the heart rate deceleration capacity test to predict Epirubicin-induced cardiotoxicity. J Cardiovasc Pharmacol 66(4):371–375. https://doi.org/10.1097/FJC.0000000000000289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shortt CR, Worster A, Hill SA, Kavsak PA (2013) Comparison of hs-cTnI, hs-cTnT, hFABP and GPBB for identifying early adverse cardiac events in patients presenting within six hours of chest pain-onset. Clin Chim Acta 419:39–41. https://doi.org/10.1016/j.cca.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  37. Horacek JM, Tichy M, Jebavy L, Ulrychova M, Pudil R (2007) Glycogen phosphorylase BB as a marker of cardiac toxicity during high-dose chemotherapy followed by hematopoietic cell transplantation. Ann Oncol 18(12):2041. https://doi.org/10.1093/annonc/mdm499

    Article  CAS  PubMed  Google Scholar 

  38. Reichlin T, Hochholzer W, Bassetti S, Steuer S, Stelzig C, Hartwiger S, Biedert S, Schaub N, Buerge C, Potocki M, Noveanu M, Breidthardt T, Twerenbold R, Winkler K, Bingisser R, Mueller C (2009) Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N Engl J Med 361(9):858–867. https://doi.org/10.1056/NEJMoa0900428

    Article  CAS  PubMed  Google Scholar 

  39. Tang WH, Francis GS, Morrow DA et al (2007) National Academy of Clinical Biochemistry Laboratory Medicine practice guidelines: clinical utilization of cardiac biomarker testing in heart failure. Circulation 116(5):e99–109. https://doi.org/10.1161/CIRCULATIONAHA.107.185267

    Article  CAS  PubMed  Google Scholar 

  40. Enroth S, Enroth SB, Johansson A, Gyllensten U (2015) Protein profiling reveals consequences of lifestyle choices on predicted biological aging. Sci Rep 5(1):17282. https://doi.org/10.1038/srep17282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martin JA, Phillips JA, Parekh P, Sefah K, Tan W (2011) Capturing cancer cells using aptamer-immobilized square capillary channels. Mol BioSyst 7(5):1720–1727. https://doi.org/10.1039/c0mb00311e

    Article  CAS  PubMed  Google Scholar 

  42. Bayrac AT, Sefah K, Parekh P, Bayrac C, Gulbakan B, Oktem HA, Tan W (2011) In vitro selection of DNA aptamers to glioblastoma multiforme. ACS Chem Neurosci 2(3):175–181. https://doi.org/10.1021/cn100114k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahmad KM, Oh SS, Kim S, McClellen FM, Xiao Y, Soh HT (2011) Probing the limits of aptamer affinity with a microfluidic SELEX platform. PLoS One 6(11):e27051. https://doi.org/10.1371/journal.pone.0027051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45(9):1628–1650

    CAS  PubMed  Google Scholar 

  45. Giannitsis E, Mueller-Hennessen M, Katus HA (2017) Aptamer-based proteomic profiling for prognostication in pulmonary arterial hypertension. Lancet Respir Med 5(9):671–672. https://doi.org/10.1016/S2213-2600(17)30209-6

    Article  PubMed  Google Scholar 

  46. Cho EJ, Collett JR, Szafranska AE, Ellington AD (2006) Optimization of aptamer microarray technology for multiple protein targets. Anal Chim Acta 564(1):82–90. https://doi.org/10.1016/j.aca.2005.12.038

    Article  CAS  PubMed  Google Scholar 

  47. Rhodes CJ, Wharton J, Ghataorhe P, Watson G, Girerd B, Howard LS, Gibbs JSR, Condliffe R, Elliot CA, Kiely DG, Simonneau G, Montani D, Sitbon O, Gall H, Schermuly RT, Ghofrani HA, Lawrie A, Humbert M, Wilkins MR (2017) Plasma proteome analysis in patients with pulmonary arterial hypertension: an observational cohort study. Lancet Respir Med 5(9):717–726. https://doi.org/10.1016/S2213-2600(17)30161-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ngo D, Sinha S, Shen D, Kuhn EW, Keyes MJ, Shi X, Benson MD, O’Sullivan JF, Keshishian H, Farrell LA, Fifer MA, Vasan RS, Sabatine MS, Larson MG, Carr SA, Wang TJ, Gerszten RE (2016) Aptamer-based proteomic profiling reveals novel candidate biomarkers and pathways in cardiovascular disease. Circulation 134(4):270–285. https://doi.org/10.1161/CIRCULATIONAHA.116.021803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Smith JG, Gerszten RE (2017) Emerging affinity-based proteomic technologies for large-scale plasma profiling in cardiovascular disease. Circulation 135(17):1651–1664. https://doi.org/10.1161/CIRCULATIONAHA.116.025446

    Article  CAS  PubMed  Google Scholar 

  50. Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5(11):845–856. https://doi.org/10.1038/nrc1739

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Moudgil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moudgil, R., Parekh, P.A. Biomarkers in cancer therapy related cardiac dysfunction (CTRCD). Heart Fail Rev 23, 255–259 (2018). https://doi.org/10.1007/s10741-018-9675-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-018-9675-2

Keywords

Navigation