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Abstract

Inspiratory function is essential for alveolar ventilation and expulsive behaviors that promote 

airway clearance (e.g., coughing and sneezing). Current evidence demonstrates that inspiratory 

dysfunction occurs during healthy aging and is accentuated by chronic heart failure (CHF). This 

inspiratory dysfunction contributes to key aspects of CHF and aging cardiovascular and pulmonary 

pathophysiology including: i) impaired airway clearance and predisposition to pneumonia; ii) 

inability to sustain ventilation during physical activity; iii) shallow breathing pattern that limits 

alveolar ventilation and gas exchange; and iv) sympathetic activation that causes cardiac 

arrhythmias and tissue vasoconstriction. The diaphragm is the primary inspiratory muscle, hence, 

its neuromuscular integrity is a main determinant of the adequacy of inspiratory function. 

Mechanistic work within animal and cellular models has revealed specific factors that may be 

responsible for diaphragm neuromuscular abnormalities in CHF and aging. These include phrenic 

nerve and neuromuscular junction alterations as well as intrinsic myocyte abnormalities, such as 

changes in the quantity and quality of contractile proteins, accelerated fiber atrophy, and shifts in 

fiber type distribution. CHF, aging, or CHF in the presence of aging disturbs the dynamics of 

circulating factors (e.g., cytokines and angiotensin II) and cell signaling involving sphingolipids, 

reactive oxygen species, and proteolytic pathways, thus leading to the previously listed 

abnormalities. Exercise-based rehabilitation combined with pharmacological therapies targeting 

the pathways reviewed herein hold promise to treat diaphragm abnormalities and inspiratory 

muscle dysfunction in CHF and aging.
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1. Introduction

Inspiratory muscles are essential for ventilatory and non-ventilatory activities. Beyond being 

active during breathing, inspiratory muscles are recruited near-maximally during expulsive 

behaviors, e.g., sneezing or coughing [1–3]. Therefore, loss of inspiratory muscle function 

can compromise gas exchange and the health of the pulmonary system. Heart failure and 
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aging cause skeletal myopathy that affects both limb and inspiratory muscles. Although 

inspiratory muscles are also ‘skeletal muscles’, their structural, functional, and metabolic 

properties, and response to stressors or inactivity are strikingly different from limb muscles 

[4–8]. The diaphragm is the primary inspiratory muscle and, in CHF, abnormalities of the 

diaphragm occur earlier or to a greater extent than in limb muscles [9–13]. Similarly, aging 

causes diaphragm abnormalities [14–16,1]. The combined effects of aging and CHF are 

unclear because experimental models typically address each condition separately. We can 

deduce, from clinical measures of inspiratory function, that CHF accentuates aging-induced 

diaphragm abnormalities. Diaphragm dysfunction will contribute to decrease quality of life 

as well as enhance morbidity and mortality associated with CHF or aging. Therefore, it is 

imperative to understand the causes of inspiratory (or diaphragm) abnormalities to develop 

rational pharmacological and rehabilitation strategies that improve quality of life, reduce 

cardiovascular and pulmonary complications, and increase longevity in CHF patients and the 

elderly.

2. Evidence of inspiratory dysfunction – Heart Failure and Aging

In the clinical setting, inspiratory dysfunction is documented via ‘respiratory muscle tests’ 

such as maximal inspiratory pressure [17]. Considering that the diaphragm is the primary 

inspiratory muscle, investigators assume that abnormal outcomes of respiratory muscle tests 

reflect diaphragm muscle dysfunction. Because clinical tests are generally voluntary and 

measurements are performed mainly at the mouth or nostrils, we consider that clinical tests 

reflect abnormalities of the ‘inspiratory system’ (phrenic motor neurons, neuromuscular 

junction, and muscles). Thus, we refer to clinical measures as indicators of inspiratory 

(dys)function in the current review.

Inspiratory dysfunction has received greater attention in CHF than healthy aging, but 

evidence of inspiratory dysfunction in aging predates studies in CHF [18]. Specifically, 

results from the initial studies that optimized the technique to measure maximal inspiratory 

pressure and defined reference values were some of the first indications that aging impairs 

inspiratory function [19]. In a cross-sectional analysis, Black & Hyatt reported that age was 

inversely correlated with maximal inspiratory pressure (MIP). Ever since, age has been 

considered an important determinant of MIP and has been used in prediction equations to 

define normal values in healthy subjects [17]. Although the relationship between age and 

MIP has been considered linear, targeted analyses of older age groups have revealed a 

steeper decline in MIP for subjects older than 65 years of age. Individuals in age groups 

averaging 25 to 65 years of age demonstrate an approximate 30% decline in MIP with age 

[20], whereas MIP decreases by 60 to 70% in subjects 80 years of age and older [21,22]. 

These observations (illustrated in Fig. 1) and measurements of transdiaphragmatic pressure 

[23,24] are consistent with age-induced inspiratory dysfunction. Inspiratory dysfunction in 

aging may reflect overall neuromuscular abnormalities due to sarcopenia. Future studies will 

have to define whether aging affects diaphragm and limb muscles in a similar manner. 

Differences are likely to exist because of the lifelong activity of the diaphragm and aging-

specific changes in respiratory system mechanics.
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Chronic heart failure exacerbates the impairment in inspiratory function due to age. An early 

study by Hammond et al. [10] demonstrated that patients with severe biventricular CHF had 

a ~50% decrease in MIP. Several studies followed, which focused on more homogenous 

groups, and showed that CHF patients have decreased MIP [25–31]. Results from volitional 

as well as non-volitional tests using phrenic nerve stimulation have confirmed the decrease 

in inspiratory (mouth or transdiaphragmatic) pressure in CHF [31–33]. The inability to 

generate normal inspiratory pressure is independent of the etiology of disease [34,31,10,35]. 

Notably, the prevalence of this inspiratory dysfunction in CHF, defined arbitrarily as MIP < 

70% predicted [35,36], does appear to depend on age. In a general outpatient population of 

CHF patients (age 50–60 yrs and NYHA classes I to III), the prevalence of inspiratory 

dysfunction is 30–50% [36,35,37]. However, conservative estimates suggest that 

approximately 60% of CHF patients (Class II and III) with 67 ± 9 years of age have 

inspiratory dysfunction [38], whereas the prevalence was 70–75% for a group of older 

patients (75 ± 11 years of age) with acute exacerbation of heart failure [39].

An important aspect often overlooked is that the level and prevalence of inspiratory 

dysfunction in CHF depends on the stage of the disease. Patients with severe CHF (Class III 

or IV) are weaker than patients with mild CHF (Class I) [40,32,31]. This concept is 

illustrated in Fig 2A, showing a cross-sectional observation of progressively lower MIP in 

patients ranging from New York Heart Association Class I to IV. Measurements of trans-

diaphragmatic pressure with magnetic phrenic nerve stimulation have also added support to 

this notion of concurrent worsening of diaphragm weakness and disease severity [33]. In 

addition to lower maximal inspiratory pressure, the diminished ability to sustain submaximal 

efforts also characterizes respiratory dysfunction in CHF [35,41,42]. Specifically, the time to 

task-failure is substantially shorter when patients perform inspiratory efforts against a 

submaximal pressure-threshold load (Fig. 2B, and [35]) or isocapnic hyperpnoea [43]. In 

summary, inspiratory dysfunction is highly prevalent in older CHF patients or those in 

advanced stages of the disease.

3. Relevance of inspiratory muscle dysfunction to CHF and aging (Fig. 3)

A low percentage of the maximal inspiratory pressure is utilized during quiet breathing 

[15,2,44]. However, decreases in maximal inspiratory muscle function, such as those seen in 

aging and CHF, mandate that ventilatory behaviors occur at a higher percentage of the 

maximal value. Loss of submaximal diaphragm function must be compensated for by 

increases in motor unit firing frequency and recruitment [45], which implicates diaphragm 

work being performed at a higher percentage of maximal capacity and a mismatch between 

input (phrenic nerve activity) and output (diaphragm force). The net result of diminished 

maximal and submaximal inspiratory function is sensation of dyspnea, compromised ability 

to sustain elevated ventilation during physical activity, and exercise intolerance in CHF 

[46,42,47].

Compensatory adaptation to loss of inspiratory muscle function also includes changes in 

breathing pattern. The inability to generate force, coupled with diminished lung compliance, 

leads to minute ventilation being achieved with low tidal volume and high breathing rate. 

This ‘shallow breathing’ is a common characteristic of moderate and severe CHF [48–50]. A 
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consequence of a shallow breathing pattern is an increase in the ratio of dead space-to-tidal 

volume (VD/VT). Elevated VD/VT, which in CHF reflects an inefficient breathing pattern 

[48], compromises alveolar ventilation and gas exchange within the lungs. Importantly, 

markers of impaired gas exchange during exercise have greater prognostic value than 

VO2max in patients with CHF [51].

A shallow breathing pattern also elevates sympathetic activity, through the interaction of 

central respiratory and sympathetic neural circuits [52]. Additionally, sympathetic activity 

increases further because inspiratory muscle dysfunction promotes accumulation of 

metabolites which stimulate group IV phrenic afferent nerve fibers [53]. Stimulation of these 

fibers triggers reflex sympathetic activation [53,54]. Altogether, this enhanced sympathetic 

activity predisposes CHF patients to cardiac arrhythmias and a high risk of death [55] or 

vasoconstriction in limb muscles that limits whole-body exercise tolerance (relevant for CHF 

and aging) [53,56]. Accordingly, inspiratory muscle unloading reduces sympathetic nerve 

activity and increases exercise tolerance in CHF patients [57–59].

In the presence of diaphragm weakness, none of the aforementioned compensatory 

responses preserves cough, another expulsive behavior requiring near-maximal recruitment 

of inspiratory muscles [45,44]. Therefore, the inability to generate normal inspiratory 

pressures can impair airway clearance and predisposes individuals to pulmonary infections. 

Pneumonia is a common pulmonary complication with aging [60–62], and CHF patients 

have increased risk of hospitalization due to pneumonia [63,64]. While multiple factors will 

determine the higher incidence of pneumonia with aging and CHF, there is a likely 

contribution from the loss of inspiratory function.

The integrative observations presented in this section highlight the significance and impact 

of inspiratory (muscle) dysfunction in the health status and prognosis of elderly subjects and 

CHF patients. However, these observations are mainly of indirect nature. To establish 

causality, it is necessary to test the impact of therapies that specifically improve diaphragm 

function on clinically-relevant outcomes. Altogether, the aspects discussed above emphasize 

the importance of understanding the pathophysiological processes and the need for the 

development of new therapeutic strategies for inspiratory dysfunction. Inspiratory 

dysfunction in CHF does not correlate with markers of left ventricular function [65,39], is 

unaffected by acute decompensation of heart failure [39], and is not reversed by heart 

transplant [42]. These observations indicate that mechanisms beyond cardiac abnormalities 

per se are responsible for inspiratory dysfunction in CHF [12]. The findings of dysfunction 

using phrenic nerve stimulation are consistent with abnormalities in respiratory system 

mechanics, diaphragm neuromuscular transmission, excitation-contraction coupling, muscle 

fiber size, and the contractile apparatus.

4. Respiratory system mechanics

Chest wall compliance and lung elastic recoil decrease with aging (reviewed in [18]). The 

overall impact of these changes is diminished respiratory system compliance, and increased 

residual volume and functional residual capacity with age. The latter causes flattening of the 

diaphragm that diminishes its force-generating capacity. The effects of CHF on lung 
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volumes and mechanics are the opposite of aging. CHF decreases residual volume and 

functional residual capacity, e.g. [66]. The disease also increases lung stiffness [67,68]. 

These alterations will minimize diaphragm flattening and its impact on force generation, but 

will exacerbate the contribution of diminished respiratory system compliance to inspiratory 

dysfunction in older CHF patients. The net outcome of changes in respiratory system 

mechanics in CHF and aging is increased work of breathing [18,67], which is accentuated 

by physical activity in CHF [67].

5. Neuromuscular abnormalities

The impact of aging on diaphragm phrenic motor neuron and neuromuscular junction has 

been reviewed in detail recently [1]. Briefly, aging causes remodeling (enlargement and 

fragmentation) and loss of synaptic contact in individual neuromuscular junctions [69,70]. 

The associated decrease in neurotrophic factors due to denervation and neuromuscular 

junction abnormalities plays an important role on diaphragm dysfunction in aging [1]. The 

effect of CHF on diaphragm neuromuscular physiology is less clear. One study has shown 

that CHF causes expansion of the neuromuscular junction and enhanced expression of an 

embryonic-type subunit of nicotinic acetylcholine receptors [71]. Overall, the pattern of 

changes elicited by CHF in the diaphragm neuromuscular junction is consistent with 

neurodegeneration and denervation [1,72,73]. Therefore, the development of CHF in the 

elderly might accelerate the loss of innervation and associated neurotrophic factors and 

contribute to inspiratory dysfunction. Currently, it is unclear whether alterations in the 

neuromuscular junction precede (and cause) or are a consequence of intrinsic diaphragm 

muscle abnormalities in CHF.

6. Intrinsic diaphragm muscle abnormalities

6.1 - Isometric and isotonic contractile properties

Measurements of inspiratory muscle function in humans such as MIP and twitch 

transdiaphragmatic pressure reflect mostly isometric properties. Direct measurements of 

diaphragm muscle function in vitro and in situ show that isometric force normalized for 

cross-sectional area (‘specific force’) is depressed by 15–30% in heart failure [74–76,13,77–

79] as well as aging [16,15,14,80,81]. The decrease in isometric force is seen in both twitch 

and maximal tetanic contractions (e.g., Fig. 4) and is independent of the etiology of disease, 

being evident in models of dilated and ischemic CHF [74–76,13,77–79,82,83].

Respiratory muscle tests that represent isotonic properties in humans are available [84,85], 

but to our knowledge these have not been applied to determine aging or CHF effects. 

However, animal studies have shown that isotonic contractile properties are impaired by 

CHF or aging. CHF decreases maximal shortening velocity by 20–30% in rodents 

[86,78,74,83]. Hence, peak power output, which is the product of shortening velocity and 

specific force, displays the most pronounced degree of diaphragm contractile dysfunction: 

35–50% decrease in diaphragm peak power [83,74]. The effects of CHF on isotonic 

contractile properties are illustrated in Fig. 4B–C.

Kelley and Ferreira Page 5

Heart Fail Rev. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Aging studies have produced equivocal results for isotonic properties, but species-

differences may explain this variance. Old rats and mice (24 mo old, ~75% survival) show 

increases or no change in maximal shortening velocity or power measured in intact 

diaphragm bundles [87,88]. Conversely, in hamsters, aging decreased diaphragm maximal 

shortening velocity and peak power [89]. Ongoing studies by our group suggest that 

diaphragm bundles from mice in advanced stages of aging (30 mo old, <50% survival rate) 

also show decreases in maximal shortening velocity and peak power [90], which are 

consistent with those seen in limb muscles [91,92]. Thus, impairments in diaphragm isotonic 

contractile properties may have a delayed onset and be more relevant in very old age. We 

cannot exclude, however, that discrepant results reported among species reflect differences 

in protocols and analytical approaches to examine isotonic properties. Ideally, the effects of 

age on diaphragm isotonic contractile function would have to be resolved using skinned 

single fibers from human samples. This approach would allow the determination of changes 

in isotonic contractile function specific to each MHC isoform. Yet, testing of skinned fibers 

from diaphragm of healthy subjects is not a trivial task because collection of biopsies has to 

be performed during a medically prescribed surgery in the thoracic or abdominal 

compartment.

Decreases in shortening velocity and power are highly relevant because diaphragm activities 

require muscle shortening. For instance, inspiratory time diminishes during physical activity 

due to higher breathing frequency, while inspiratory pressure developed during each breath 

increases (i.e., becomes more negative) to achieve an elevated tidal volume. Additionally, 

reflex responses such as coughing and sneezing elicit a very rapid and deep inspiration. 

Hence, declines in isotonic function will compromises breathing during moderate-to-high 

intensity physical activity and expulsive behaviors that demand fast and powerful diaphragm 

contractions. Overall, the impairments in both isometric and isotonic contractile properties 

in electrically-stimulated bundles in vitro are the first line of evidence that aging and CHF 

disrupt diaphragm excitation-contraction coupling, the contractile apparatus, or both. A 

switch in fiber type distribution may also account for the functional changes seen in intact 

bundles. Fiber atrophy is another important component of the inability to generate normal 

absolute force and power. These aspects are discussed in detail below.

6.2 - Excitation-contraction coupling

Technical challenges in isolating intact single fibers of the diaphragm have prevented 

extensive analysis of E-C coupling. Based on findings reported in limb muscles of old [93] 

and CHF animals [94,95] and patients [96], it is reasonable to speculate that aging or CHF 

impairs diaphragm calcium release. In diaphragm preparations, CHF slows calcium 

reuptake, which appears to be caused by decreases in sarcoplasmic reticulum calcium-

ATPase expression [97–99]. Thus, abnormalities in E-C coupling may contribute to 

diaphragm dysfunction in CHF and aging.

6.3 - Contractile apparatus

Isometric and isotonic contraction dysfunction may also be explained at the level of the 

sarcomere. In permeabilized diaphragm single fibers, where calcium concentration is 

controlled externally, CHF decreases maximal specific force and Ca2+ sensitivity in all fiber 

Kelley and Ferreira Page 6

Heart Fail Rev. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



types [100,75]. Maximal specific force is determined by the total number of cross-bridges, 

the fraction of cross-bridges in the strongly bound force-generating state, and the force 

generated per cross-bridge [101,102]. The loss of maximal force in CHF is due to a decrease 

in the number of cross-bridges and force per cross bridge [103,78,79].

Modifications in myosin or thin-filament proteins may account for these effects of CHF on 

diaphragm single fiber contractile properties. CHF causes a proportional loss of diaphragm 

titin and myosin heavy chain (MHC) [75,104]. Loss of titin leads to wider myofilament 

lattice spacing and destabilization of the sarcomere that, respectively, lowers calcium 

sensitivity and maximal force [105,104,106]. The decrease in MHC content lessens the total 

number of available cross-bridges and contributes to diaphragm weakness [79,78,75]. 

Similarly, aging-induced decreases in myofibrillar protein content are associated with the 

specific force deficit in intact diaphragm bundles [80,14]. However, loss of MHC does not 

fully explain impairments in contractile function in CHF. The remaining myosin in 

diaphragm of CHF animals is abnormal as determined by in vitro motility assay showing 

~20% slower sliding velocity, which occurs without a clear shift in MHC or myosin light 

chain isoforms [86]. CHF also slows cross-bridge kinetics in all fiber types [75]. Slowed 

sliding (shortening) velocity might be caused by decreases in myosin ATPase activity 

[107,101], which have been shown in all fiber types from limb muscle of CHF patients 

[108]. The sluggish cross-bridge kinetics is most likely related to a diminished rate of 

transition from weak to strong-binding state. Thus, post-translational myofibrillar 

abnormalities appear to be a major contributor to decreases in specific force, shortening 

velocity, and power determined in intact diaphragm bundles.

6.4 - Fiber type distribution and myofibrillar protein isoforms

Aging and CHF cause modest shifts in diaphragm fiber type composition. The diaphragm of 

old rats have 5% more type I fibers [109,88] and 10–15% more type IIb fibers [81,88] than 

young animals, which occurs due to proportional decreases in type IIa [109,88] and IIx/d 

fibers [81,88]. In old mice, Greising et al. [14] found no change in the percentage of type I 

fibers, with a shift to increased type IIa and decreased type IIx/d fibers. The effects of CHF 

(in animal studies) are generally the opposite of those elicited by aging, but findings are 

inconsistent among studies. Some groups have reported increases in type I and IIa fibers 

accompanied by decreases in type IIx/d and IIb fibers [110,13,76,111], while other groups 

have found no difference in fiber type distribution [82,112,113]. Variable results are also 

seen in studies with human diaphragm biopsies. Tikunov et al [114] reported higher type I 

and lower type II fiber percentage in patients with severe CHF undergoing heart transplant 

or left ventricular assist device placement. In contrast, Lindsay et al. [9] observed no 

difference in fiber type distribution in a similar population of patients. With limited numbers 

of subjects (n = 7–12 per group) and wide age ranges, it is difficult to draw conclusions 

based on studies in patients. However, correlational analysis of age vs. MHC type IIb within 

CHF patients suggests that older CHF patients have fewer type IIb fibers [114]. Tikunov et 

al have also found a shift from fast to slow myosin light chain, tropomyosin, and troponin 

(C, I, and T) isoforms in CHF. Aging causes a decrease in the fast myosin light chain 3 

isoform in limb muscle that contributes to slow shortening velocity [115], and this may also 

occur in the diaphragm. Overall, MHC and thin-filament protein adaptations will 
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compromise diaphragm function during expulsive behaviors as fibers with slow myofibrillar 

protein isoforms have slower shortening velocity and lower peak power than fibers rich in 

fast isoforms.

6.5 - Diaphragm fiber Atrophy

Aging (sarcopenia) and CHF (cardiac cachexia) cause loss of muscle mass due to fiber 

atrophy. The diaphragm is highly susceptible to atrophy [5], and aging causes atrophy of 

type II fibers [14,69,116]. The effects of CHF on diaphragm fiber atrophy in animals seem 

dependent on animal model used (pressure- vs. volume overload), duration of CHF, and 

severity of disease. Pigs with CHF induced by supraventricular tachycardia have 20–40% 

lower cross-sectional area of type I, IIa, and IIB fibers [13]. In rats, CHF induced by 

myocardial infarction results in a 15% to 25% decrease in fiber cross-sectional area in some 

studies [11,117,97], but unchanged fiber cross-sectional area has been reported by our group 

[112] and others [75,111]. Similarly, there was no diaphragm atrophy in rats during late 

stages of CHF due to aortic stenosis [86]. The only study testing diaphragm atrophy in 

humans showed no change in fiber diameter for severe CHF (heart transplant) patients 

compared to controls, but participants had a wide age range (18 – 70 yrs) and were mostly 

males. We are currently working to define the effects of disease severity, age, and sex on 

diaphragm fiber atrophy in CHF. It is possible that diaphragm atrophy occurs in the early or 

mild-to-moderate stages of CHF that precede increased work of breathing. In the transition 

to severe CHF, the elevated work of breathing might restore fiber cross-sectional area to 

normal values. This pattern would mask fiber atrophy and the elevated catabolic state that is 

typical of severe CHF. Alternatively, the lack of diaphragm fiber hypertrophy with elevated 

work of breathing in CHF could reflect anabolic resistance [118]. Ultimately, diaphragm 

atrophy, when present, plays an important role in inspiratory dysfunction.

6.6 - Fatigue characteristics

Diaphragm abnormalities elicited by aging and CHF predispose the muscle to fatigue. 

Indeed, CHF accelerates isometric diaphragm fatigue in situ [77] and in vitro [82]. 

Conversely, in diaphragm of old animals, isometric fatigue resistance in vitro is unchanged 

or even increased [81,15]. It must be acknowledged that outcomes of isometric fatigue tested 

with standard protocols in vitro, in the presence of muscle weakness as occurs with aging 

and CHF, may not translate to the condition in vivo. Isometric fatigue is generally tested 

using matched stimulus frequency, i.e., mimicking a fixed phrenic motor neuron firing 

frequency and fully recruited motor units. Weakened muscles develop lower initial forces in 

matched-frequency protocols and, therefore, lower tension-time index that is a primary 

determinant of metabolic rate and fatigue in vitro [119]. Thus, it is common that weak 

muscles show attenuated rate of isometric fatigue in vitro [120–122,15,81]. However, the 

diaphragm force required to sustain breathing is unchanged (or even increased in CHF) in 

the presence of weakness. Therefore, a protocol using stimulus frequency adjusted to match 

initial specific force between conditions provides a better representation of the situation in 
vivo. The use of an ‘initial force-matched’ protocol reveals accelerated fatigue rate in the 

presence of diaphragm weakness [120]. Tests in patients show that CHF diminishes 

inspiratory muscle endurance, e.g., Fig 2. and refs [35,43]. Inspiratory endurance tests 

involve diaphragm shortening, and diaphragm function declines faster during repetitive 
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shortening contractions [123,124]. Thus, isotonic fatigue properties of the diaphragm would 

be more relevant for in vivo function, and such measurements are still lacking in aging or 

CHF.

7. Inflammatory and neuroendocrine factors

7.1 - Renin-angiotensin system

The renin-angiotensin system is hyperactive in CHF and aging. Angiotensin II signaling is a 

hallmark of activation of the renin-angiotensin system. CHF raises systemic levels of 

angiotensin II, whereas aging promotes local activation of the renin-angiotensin system 

without necessarily elevating circulating angiotensin II levels [125]. Importantly, angiotensin 

II infusion in mice causes diaphragm atrophy [126]. A likely mechanism behind this atrophy 

is that angiotensin II stimulates reactive oxygen species (ROS) production by NAD(P)H 

oxidase and mitochondria [127,128]. This angiotensin II response is relevant because 

independent studies have implicated ROS as causative agents in diaphragm atrophy and 

contractile dysfunction [83,5,129].

While the direct effects of angiotensin II on diaphragm contractile function are unknown, 

antagonism of angiotensin II type I receptor prevents elevation in diaphragm ROS and loss 

of specific force with mechanical ventilation [130]. Blockade of the renin-angiotensin 

system with angiotensin-converting enzyme inhibitors prevents diaphragm weakness in CHF 

animals and patients [26,79]; however, inspiratory dysfunction is prevalent in CHF patients 

receiving angiotensin-converting enzyme inhibitors [35,40]. In fact, 89% of CHF patients 

with inspiratory dysfunction were on angiotensin-converting enzyme inhibitors [131]. 

General benefits of inhibition of the renin-angiotensin system are also seen in aging 

[125,132], but the effects on the diaphragm are unknown.

7.2 - Cytokines

Inflammatory cytokines are elevated in CHF and aging. Tumor necrosis factor-alpha (TNFα) 

and interleukin 6 (IL-6) have been considered putative circulating factors that cause 

diaphragm abnormalities in CHF. Injection of TNFα in vivo, exposure to TNFα in vitro, or 

cardiac-specific overexpression of TNFα cause a 15–20% loss of diaphragm specific force 

[133,134,121]. The effects of this cytokine on diaphragm abnormalities are especially 

notable because the loss of specific force in animals with cardiac-specific overexpression of 

TNFα occurs in the absence of atrophy [121]. Administration of IL-6, however, does not 

reduce specific force, but causes atrophy in diaphragm fiber types I, IIa, IIb [135]. Thus, 

results from studies in vivo and in vitro suggest TNFα and IL-6 signaling as triggers of loss 

of specific force and atrophy, respectively, in the diaphragm with CHF. The difficulty in 

focusing on cytokines for systemic treatment is that, to date, a plethora of clinical trials has 

yielded neutral or negative results due to the complex innate immune response and 

modulation of cardiac function in heart failure (reviewed in ref. [136]). Thence, it is 

important to understand the myocyte-specific mechanisms of dysfunction to facilitate the 

development of diaphragm-targeted therapies. Intracellular downstream effectors of TNFα 
and IL-6 include sphingolipid signaling, reactive oxygen species (ROS), and activation of 

proteolytic pathways that are discussed below.
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8. Cellular mediators of diaphragm abnormalities in CHF

8.1 - Sphingolipid signaling

Sphingolipids act as second-messengers in several pathways. The enzyme sphingomyelinase 

generates ceramide and is a critical component of sphingolipid signaling. Cytokines and 

angiotensin II activate sphingomyelinase [137–139], and CHF causes a 20% increase in the 

activity of the neutral isoform of sphingomyelinase [82]. Accordingly, there is an 

accumulation of ceramide (↑20%) in the diaphragm of CHF animals [82]. Experiments in 
vitro and in vivo support neutral sphingomyelinase and ceramide as mediators of diaphragm 

abnormalities. Recombinant sphingomyelinase activates calpain and causes atrophy in 

C2C12 myotubes [140,141]. In diaphragm bundles, exposure to sphingomyelinase or 

ceramide in vitro mimics the effects of CHF: decreased specific force, calcium-sensitivity, 

and fatigue resistance by disrupting contractile apparatus function [120,142]. A recent study 

has shown that neutral sphingomyelinase activation plays a causative role in diaphragm 

weakness induced by sepsis [140], a condition that, like CHF, is characterized by heightened 

cytokine levels. Therefore, inhibition of neutral sphingomyelinase may be protective against 

diaphragm dysfunction in CHF. Diaphragm weakness stimulated by sphingomyelinase is 

mediated by reactive oxygen species from NAD(P)H oxidases and mitochondria as well as 

activation of calpain [143,144,142,120,140].

8.2 - Reactive oxygen species, NAD(P)H oxidase, and mitochondrial abnormalities

The accumulation of ROS causes redox imbalance leading to protein oxidation that triggers 

diaphragm atrophy and impairs contractile function [145,146,129]. Systemic redox 

imbalance in CHF worsens as the disease progresses and is highest in severe stages of the 

disease [147,148]. This pattern parallels the progression of diaphragm weakness [32,40,31]. 

Importantly, CHF heightens ROS emission in the diaphragm, and despite reports of 

increased diaphragm antioxidant enzyme activity in CHF [149], markers of oxidation are 

increased by CHF in the diaphragm [86,150].

The main sources of ROS in diaphragm are NAD(P)H oxidases and mitochondria [151–

153]. CHF heightens diaphragm mRNA and protein levels of Nox2 subunits of NAD(P)H 

oxidase. Phosphorylation of the Nox2 subunit p47phox is a critical step for enzyme activation 

and ROS production [154,153], and CHF increases phosphorylation of p47phox in the 

diaphragm [83]. Mice deficient in p47phox, which lack Nox2 activity [155], are protected 

from CHF-induced increase in diaphragm ROS emission and impairments in isometric and 

isotonic contractile properties [83]. These observations suggest that p47phox is required for 

diaphragm abnormalities in CHF. Mitochondrial ROS emission is also elevated in CHF 

[112,150]. Systemic administration of mitochondria-targeted antioxidant blocks diaphragm 

mitochondrial ROS and normalizes diaphragm specific force in CHF [112]. Thus, 

mitochondrial ROS are a crucial component of the signaling pathway that culminates in 

diaphragm dysfunction in CHF. A plausible mechanism that reconciles findings in CHF is a 

cross-talk between Nox and mitochondria through ROS-induced ROS release 

[156,127,153,157].
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In aging, mitochondria abnormalities are well-defined, and mitochondrial ROS have been 

implicated in aging-induced skeletal muscle dysfunction [158]. Aging increases 

mitochondrial DNA deletions in human diaphragm [159]. The pattern of mitochondrial 

DNA mutation is consistent with, and possibly a cause of, decreases in the activity of 

electron transport chain complexes I and IV found in the diaphragm of old rats [160]. 

Further evidence for a role of mitochondria in aging-induced skeletal muscle weakness 

comes from studies in transgenic mice. The overexpression of mitochondrial catalase in 

these mice prevented aging-induced increases in hydrogen peroxide emission and weakness 

in limb muscles [161]. The protection against contractile dysfunction conferred by 

mitochondrial catalase overexpression appears to be mediated through effects on the 

contractile apparatus and excitation-contraction coupling. An interesting factor that has 

emerged as a trigger of elevated skeletal muscle mitochondrial ROS in aging is denervation 

[158]. Fiber denervation heightens emission of mitochondrial ROS, which can affect the 

metabolic and contractile properties of innervated fibers surrounding the denervated one 

[162].

Proteins of the myofilament and excitation-contraction coupling are sensitive to ROS 

[163,164,161,165–167] such that exposure to exogenous ROS mimics the effects of CHF on 

muscle function by decreasing specific force [168,169], calcium sensitivity [167], and 

fatigue resistance [146,170–173]. The oxidant modification most often linked to contractile 

dysfunction is protein carbonylation. Protein carbonyls are increased in diaphragm 

homogenates in CHF [150] but not aging [174], and oxidation of MHC (CHF [86]) and RyR 

(aging limb muscle [93]) are associated with muscle weakness. Notably, carbonylation is an 

irreversible modification that, despite being a marker of redox imbalance and enhancing 

protein susceptibility to degradation [175], plays a lesser role in regulation of protein 

function. Instead, contractile function is modulated by oxidation of protein thiols and redox 

regulation of protein phosphorylation [176,177,166,167,102], and these are prominent 

candidate mechanisms of loss of diaphragm specific force and power with aging and CHF. 

Our research efforts are currently focused on exploring thiol oxidation as a molecular 

mechanism of diaphragm dysfunction in CHF and aging.

8.3 - Proteolytic pathways

Diaphragm atrophy and degradation of myofibrillar proteins requires activation of 

proteolytic pathways. All of the aforementioned pathways (cytokines, angiotensin II, 

sphingomyelinase, and ROS) activate proteolytic signaling in muscle 

[126,128,178,179,145]. Protein degradation is largely dependent on the ubiquitin-

proteasome pathway [180]. In aging, the specific proteolytic pathways associated with 

diaphragm abnormalities are unclear. In CHF, markers of ubiquitin-proteasome pathway 

activation are elevated, and inhibition of the proteasome blunts diaphragm MHC degradation 

and loss of specific force [100]. These findings suggest that activation of the ubiquitin-

proteasome pathway is an important component of diaphragm abnormalities in CHF. 

However, protein cleavage and dislodging from myofibrils precedes degradation of 

myofibrillar proteins by the proteasome [180]. These antecedent processes are performed at 

least partially by calpains [181], which are activated by calcium. CHF dysregulates calcium 

homeostasis in the diaphragm such that intracellular calcium concentration is elevated and 
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calpain activity is increased two-fold [97]. Calpain activation, which causes diaphragm 

weakness in sepsis and mechanical ventilation [182,183], is a plausible process that 

mediates diaphragm weakness in CHF, but a cause-and-effect relationship has not been 

established.

9. Therapeutic strategies to counteract inspiratory dysfunction

9.1 - Endurance training

Endurance exercise training promotes several cardiovascular and muscular benefits in CHF 

and aging [184,185], including improvements in inspiratory muscle function in CHF [186]. 

Endurance training prevents the loss of diaphragm specific force in animals with CHF with 

preserved ejection fraction or after injection of TNF-α [187,149]. However, endurance 

training does not prevent morphological abnormalities of the neuromuscular junction in 

CHF [71]. Thus, it is unclear if the improvements in diaphragm function are a direct effect 

of endurance training on the diaphragm or a secondary response to modulation of upstream 

circulating factors that trigger diaphragm abnormalities. One important aspect to consider is 

that endurance training can cause atrophy in diaphragm fibers in healthy young and old rats 

[188,189]. These findings suggest that endurance training may be detrimental to inspiratory 

function during expulsive behaviors, which relies on recruitment of type IIx/b fibers [44]. 

Therefore, we propose that endurance training needs to be combined with adjuvant therapies 

targeting the diaphragm and inspiratory function to help patients obtain the greatest long-

term benefits of rehabilitation.

9.2 - Inspiratory (‘muscle’) resistance training

Inspiratory muscle resistance training (IMT) has been increasingly recognized as an integral 

component of the clinical management of CHF patients [190]. This therapy can provide 

additional benefits for CHF patients beyond those associated with endurance training alone 

[190–192]. In CHF, IMT increases maximal inspiratory pressure and endurance 

[35,131,193], reduces sympathetic nerve activity [194,195], heightens limb muscle blood 

flow [131], and prolongs time to fatigue or performance during whole-body exercise 

[196,191,197,190]. The technical and clinical aspects of IMT in CHF have been reviewed in 

detail elsewhere [190]. Importantly, CHF patients who undergo IMT pre-surgery have fewer 

pulmonary complications post-surgery [199]. Recent studies are emerging that suggest 

potential benefits of inspiratory resistance training in healthy older adults as well [84,200]. 

In older subjects, inspiratory muscle training increases peak inspiratory flow [84]. These 

findings are consistent with the notion that IMT might improve diaphragm function during 

expulsive behaviors and would be beneficial for airway clearance. To our knowledge, there 

are no specific studies showing that IMT decreases the incidence of pneumonia in the 

elderly or CHF patients. These extensive investigations are difficult to perform due to the 

requirements for a large number of patients and prolonged duration of training. Nonetheless, 

these are important studies that need to be done.

The cellular and molecular bases of improved inspiratory function with IMT in the human 

diaphragm are unknown. Inspiratory muscle training increases diaphragm thickness in CHF 

patients and old subjects [131,200], suggesting fiber hypertrophy similar to that seen in 
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healthy young rats undergoing a protocol that simulates IMT [201–203]. This approach also 

heightens diaphragm citrate synthase and cytochrome c oxidase activities in animals 

[204,205], suggesting greater mitochondrial volume density post-training. Neuromuscular 

adaptations are an important component of strength gains with resistance training in limb 

muscles. Therefore, the functional benefits of IMT in CHF and aging might result from 

diaphragm fiber hypertrophy along with metabolic and neuromuscular adaptations that have 

yet to be defined.

9.3 - Pharmacological agents

The existing knowledge of mechanisms of diaphragm weakness in CHF and aging support 

the use of drugs targeting proteolytic pathways or the myofilament. Bortezomib is a 

proteasome inhibitor that prevents protein degradation by the ubiquitin proteasome pathway. 

Systemic administration of bortezomib prevents loss of diaphragm MHC content and 

attenuates the decrease in maximal specific force in CHF rats [100]. A potential 

complication of ‘anti-atrophy’ agents for systemic use in CHF is an exacerbation of 

pathophysiological left ventricular remodeling and hypertrophy. Off-target effects on the left 

ventricle illustrate the need for isolating pathways and compounds specific to the diaphragm 

(or to skeletal muscles in general).

Other pharmaceutical agents combat the loss in diaphragmatic specific force by targeting 

myofibrillar proteins. In this regard, the calcium sensitizer levosimendan interacts with 

troponin C to increase calcium sensitivity. Exposure of diaphragm fibers (slow and fast 

isoforms) to levosimendan in vitro enhances calcium sensitivity in CHF animals [206]. 

Clinicians have been using levosimendan as a cardiac inotropic agent to treat acute or 

decompensated heart failure [207]. An off-label use of the drug could be the treatment of 

diaphragm dysfunction in patients with inspiratory dysfunction. New classes of calcium 

sensitizers have also been developed to target fast skeletal troponin C [208]. Human and 

animal diaphragm fibers exposed to fast troponin activators in vitro have increased calcium 

sensitivity, which translates into higher force generation within the physiological range of 

calcium concentrations [209,11]. In vitro treatment of intact diaphragm bundles from CHF 

rats with the fast troponin activator CK-2127107 increased submaximal diaphragm force to 

values equivalent to bundles from untreated control animals [11]. Diaphragm type II fibers 

are recruited mainly during expulsive behaviors [44,2,3]. Hence, fast troponin activators 

likely enhance inspiratory function during sneezing and coughing and might improve the 

patient’s ability to clear the airways.

Myosin activators are an alternative (or adjuvant) to troponin activators. A recent study 

showed that the myosin activator omecamtiv mecarbil increases calcium sensitivity of slow 

diaphragm fibers in healthy animals [210]. The efficacy of omecamtiv mecarbil to enhance 

diaphragm calcium sensitivity in pre-clinical models of CHF has not been tested. Early 

findings from clinical trials suggest that omecamtiv mecarbil diminishes dyspnea in CHF 

patients [211], and improved diaphragm function could contribute to the effects reported. 

Overall, inhibitors of proteolytic pathways and activators of myofibrillar protein function 

hold therapeutic potential for diaphragm dysfunction. Continued research on pathways 
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upstream of proteolysis and post-translational modification of myofibrillar proteins will help 

elucidate new drug targets to treat diaphragm abnormalities in CHF.

10. Summary and conclusions

Inspiratory dysfunction occurs with aging and is accentuated by CHF. Diaphragm 

neuromuscular and intrinsic myocyte abnormalities play a major role in the inspiratory 

dysfunction caused by CHF. Thus, diaphragm abnormalities contribute to key aspects of 

cardiovascular and pulmonary pathophysiology in CHF and aging including: i) impaired 

airway clearance and predisposition to pneumonia; ii) inability to sustain ventilation during 

physical activity; iii) shallow breathing pattern that limits alveolar ventilation and gas 

exchange; and iv) sympathetic activation that causes cardiac arrhythmias and tissue 

vasoconstriction. Loss of neurotrophic factors and activation of sphingolipid signaling, 

reactive oxygen species, and proteolytic pathways dictate changes in excitation-contraction 

coupling as well as the quantity and quality of myofibrillar proteins that lead to isometric 

and isotonic contractile dysfunction. Endurance and inspiratory resistance training combined 

with calcium sensitizing agents are current treatment options for inspiratory dysfunction, but 

these have yet to be optimized. The development of novel therapies will depend on research 

to further define receptors involved and specific cellular pathways leading to dysfunction.
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Figure 1. Decline in maximal inspiratory pressure with aging
Data are combined mean values from Neder et al. [20] and Enright et. al. [21]. Dotted line 

indicates mean value for subjects 20 to 29 years old.
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Figure 2. Inspiratory dysfunction in heart failure patients
A) Progressive decline in maximal inspiratory pressure (%predicted) in heart failure patients 

going from New York Heart Association (NYHA) class I to IV. Data are replotted from 

Filusch et al [32]. B) Heart failure patients have diminished endurance during a submaximal 

inspiratory load endurance test (protocol as in ref. [35]). Data shown in panel B were kindly 

provided by Dr. Gaspar Chiappa (Universidade Federal do Rio Grande do Sul, Brazil) and 

are from 18 CHF patients (age 64 ± 4 yrs) and 8 controls (age 62 ± 2 yrs) [131].
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Figure 3. Relevance of diaphragm abnormalities to cardiovascular and respiratory 
pathophysiology in aging and heart failure
Loss of diaphragm force is caused by contractile apparatus dysfunction and fiber atrophy, 

whereas slower shortening velocity is determined by contractile apparatus dysfunction and 

fiber type shifts. These diaphragm alterations trigger cardiovascular and pulmonary 

pathophysiological responses. SNA, sympathetic nervous activity. Solid arrows and lines are 

relevant for CHF and aging, while the dotted line is relevant mainly for CHF. The model 

illustrated here was expanded from concepts originally developed by others [53,3,1,45].
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Figure 4. Heart failure causes diaphragm isometric and isotonic contractile dysfunction
Data are from intact diaphragm bundles from adult control (open circles) and CHF mice 

(closed circles). Specific force, force (in Newton) normalized to cross-sectional area (cm2). 

Replotted from Ahn et al. [83]. The effects of aging on contractile properties are similar to 

those shown herein.
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Figure 5. Circulating factors and intra-myocyte pathways leading to diaphragm abnormalities in 
heart failure
Angiotensin II (Ang II), sphingomyelinase (SMase), NAD(P)H oxidase 2 (Nox2), reactive 

oxygen species (ROS). Heart failure increases diaphragm neutral SMase activity and 

ceramide content [82]. SMase and ceramide cause diaphragm contractile dysfunction 

through ROS from mitochondria and Nox2 [142,144,143], and activation of calpain [140]. 

ROS play a causative role in diaphragm contractile dysfunction in heart failure [150,83,112]. 

Heart failure increases diaphragm calpain and proteasome activity [97,100], and proteasome 

inhibition blunts contractile dysfunction. Notably, ROS stimulates the ubiquitin-proteasome 

system [178,212].
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