Skip to main content
Log in

Mitochondrial DNA repair: a novel therapeutic target for heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Mitochondria play a crucial role in a variety of cellular processes ranging from energy metabolism, generation of reactive oxygen species (ROS) and Ca2+ handling to stress responses, cell survival and death. Malfunction of the organelle may contribute to the pathogenesis of neuromuscular, cancer, premature aging and cardiovascular diseases (CVD), including myocardial ischemia, cardiomyopathy and heart failure (HF). Mitochondria contain their own genome organized into DNA–protein complexes, called “mitochondrial nucleoids,” along with multiprotein machineries, which promote mitochondrial DNA (mtDNA) replication, transcription and repair. Although the mammalian organelle possesses almost all known nuclear DNA repair pathways, including base excision repair, mismatch repair and recombinational repair, the proximity of mtDNA to the main sites of ROS production and the lack of protective histones may result in increased susceptibility to various types of mtDNA damage. These include accumulation of mtDNA point mutations and/or deletions and decreased mtDNA copy number, which will impair mitochondrial function and finally, may lead to CVD including HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kucej M, Butow RA (2007) Evolutionary tinkering with mitochondrial nucleoids. Trends Cell Biol 17:586–592

    Article  CAS  PubMed  Google Scholar 

  2. Spelbrink JN (2010) Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges. IUBMB Life 62:19–32

    CAS  PubMed  Google Scholar 

  3. Bogenhagen DF (2012) Mitochondrial DNA nucleoid structure. Biochim Biophys Acta 1819:914–920

    Article  CAS  PubMed  Google Scholar 

  4. Hensen F, Cansiz S, Gerhold JM, Spelbrink JN (2014) To be or not to be a nucleoid protein: a comparison of mass-spectrometry based approaches in the identification of potential mtDNA–nucleoid associated proteins. Biochimie 100:219–226

    Article  CAS  PubMed  Google Scholar 

  5. Wanrooij S, Falkenberg M (2010) The human mitochondrial replication fork in health and disease. Biochim Biophys Acta 1797:1378–1388

    Article  CAS  PubMed  Google Scholar 

  6. McKinney EA, Oliveira MT (2013) Replicating animal mitochondrial DNA. Genet Mol Biol 36:308–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Korhonen JA, Gaspari M, Falkenberg M (2003) TWINKLE Has 5′– >3′ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem 278:48627–48632

    Article  CAS  PubMed  Google Scholar 

  8. Alam TI, Kanki T, Muta T, Ukaji K, Abe Y et al (2003) Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res 31:1640–1645

    Article  CAS  PubMed  Google Scholar 

  9. Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M et al (2004) Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 13:935–944

    Article  CAS  PubMed  Google Scholar 

  10. Maniura-Weber K, Goffart S, Garstka HL, Montoya J, Wiesner RJ (2004) Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucleic Acids Res 32:6015–6027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fisher RP, Clayton DA (1988) Purification and characterization of human mitochondrial transcription factor 1. Mol Cell Biol 8:3496–3509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Copeland WC, Longley MJ (2014) Mitochondrial genome maintenance in health and disease. DNA Repair (Amst) 19:190–198

    Article  CAS  Google Scholar 

  13. Kasiviswanathan R, Collins TR, Copeland WC (2012) The interface of transcription and DNA replication in the mitochondria. Biochim Biophys Acta 1819:970–978

    Article  CAS  PubMed  Google Scholar 

  14. Yin H, Xu L, Porter NA (2011) Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111:5944–5972

    Article  CAS  PubMed  Google Scholar 

  15. Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94:514–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stumpf JD, Saneto RP, Copeland WC (2013) Clinical and molecular features of POLG-related mitochondrial disease. Cold Spring Harb Perspect Biol 5:a011395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Longley MJ, Nguyen D, Kunkel TA, Copeland WC (2001) The fidelity of human DNA polymerase gamma with and without exonucleolytic proofreading and the p55 accessory subunit. J Biol Chem 276:38555–38562

    Article  CAS  PubMed  Google Scholar 

  18. Vermulst M, Bielas JH, Kujoth GC, Ladiges WC, Rabinovitch PS et al (2007) Mitochondrial point mutations do not limit the natural lifespan of mice. Nat Genet 39:540–543

    Article  CAS  PubMed  Google Scholar 

  19. Williams SL, Huang J, Edwards YJ, Ulloa RH, Dillon LM et al (2010) The mtDNA mutation spectrum of the progeroid Polg mutator mouse includes abundant control region multimers. Cell Metab 12:675–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12:685–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cline SD (2012) Mitochondrial DNA damage and its consequences for mitochondrial gene expression. Biochim Biophys Acta 1819:979–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singer TP, Ramsay RR (1990) Mechanism of the neurotoxicity of MPTP: an update. FEBS Lett 274:1–8

    Article  CAS  PubMed  Google Scholar 

  23. Bandy B, Davison AJ (1990) Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radic Biol Med 8:523–539

    Article  CAS  PubMed  Google Scholar 

  24. Garcia CC, Freitas FP, Di Mascio P, Medeiros MH (2010) Ultrasensitive simultaneous quantification of 1, N2-etheno-2′-deoxyguanosine and 1, N2-propano-2′-deoxyguanosine in DNA by an online liquid chromatography-electrospray tandem mass spectrometry assay. Chem Res Toxicol 23:1245–1255

    Article  CAS  PubMed  Google Scholar 

  25. Hunter SE, Jung D, Di Giulio RT, Meyer JN (2010) The QPCR assay for analysis of mitochondrial DNA damage, repair, and relative copy number. Methods 51:444–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  CAS  PubMed  Google Scholar 

  27. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakamura J, Swenberg JA (1999) Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res 59:2522–2526

    CAS  PubMed  Google Scholar 

  29. Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF (2009) Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res 37:2539–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9:619–631

    CAS  PubMed  Google Scholar 

  31. McKinnon PJ, Caldecott KW (2007) DNA strand break repair and human genetic disease. Annu Rev Genomics Hum Genet 8:37–55

    Article  CAS  PubMed  Google Scholar 

  32. Furda AM, Marrangoni AM, Lokshin A, Van Houten B (2012) Oxidants and not alkylating agents induce rapid mtDNA loss and mitochondrial dysfunction. DNA Repair (Amst) 11:684–692

    Article  CAS  Google Scholar 

  33. Liu P, Demple B (2010) DNA repair in mammalian mitochondria: Much more than we thought? Environ Mol Mutagen 51:417–426

    CAS  PubMed  Google Scholar 

  34. Sykora P, Wilson DM 3rd, Bohr VA (2012) Repair of persistent strand breaks in the mitochondrial genome. Mech Ageing Dev 133:169–175

    Article  CAS  PubMed  Google Scholar 

  35. Alexeyev M, Shokolenko I, Wilson G, LeDoux S (2013) The maintenance of mitochondrial DNA integrity–critical analysis and update. Cold Spring Harb Perspect Biol 5:a012641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Pascucci B, Versteegh A, van Hoffen A, van Zeeland AA, Mullenders LH et al (1997) DNA repair of UV photoproducts and mutagenesis in human mitochondrial DNA. J Mol Biol 273:417–427

    Article  CAS  PubMed  Google Scholar 

  37. Olivero OA, Chang PK, Lopez-Larraza DM, Semino-Mora MC, Poirier MC (1997) Preferential formation and decreased removal of cisplatin-DNA adducts in Chinese hamster ovary cell mitochondrial DNA as compared to nuclear DNA. Mutat Res 391:79–86

    Article  CAS  PubMed  Google Scholar 

  38. Larsen NB, Rasmussen M, Rasmussen LJ (2005) Nuclear and mitochondrial DNA repair: Similar pathways? Mitochondrion 5:89–108

    Article  CAS  PubMed  Google Scholar 

  39. Stuart JA, Brown MF (2006) Mitochondrial DNA maintenance and bioenergetics. Biochim Biophys Acta 1757:79–89

    Article  CAS  PubMed  Google Scholar 

  40. Druzhyna NM, Wilson GL, LeDoux SP (2008) Mitochondrial DNA repair in aging and disease. Mech Ageing Dev 129:383–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alexeyev M, Shokolenko I, Wilson G, LeDoux S (2013) The maintenance of mitochondrial DNA integrity–critical analysis and update. Cold Spring Harb Perspect Biol 5:a012641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kazak L, Reyes A, Holt IJ (2012) Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 13:659–671

    Article  CAS  PubMed  Google Scholar 

  43. LeDoux SP, Driggers WJ, Hollensworth BS, Wilson GL (1999) Repair of alkylation and oxidative damage in mitochondrial DNA. Mutat Res 434:149–159

    Article  CAS  PubMed  Google Scholar 

  44. Svilar D, Goellner EM, Almeida KH, Sobol RW (2011) Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal 14:2491–2507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang J, Wang Q, Watson LJ, Jones SP, Epstein PN (2011) Cardiac overexpression of 8-oxoguanine DNA glycosylase 1 protects mitochondrial DNA and reduces cardiac fibrosis following transaortic constriction. Am J Physiol Heart Circ Physiol 301:H2073–H2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thorslund T, Sunesen M, Bohr VA, Stevnsner T (2002) Repair of 8-oxoG is slower in endogenous nuclear genes than in mitochondrial DNA and is without strand bias. DNA Repair (Amst) 1:261–273

    Article  CAS  Google Scholar 

  47. Bohr VA (2002) Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic Biol Med 32:804–812

    Article  CAS  PubMed  Google Scholar 

  48. Akbari M, Visnes T, Krokan HE, Otterlei M (2008) Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis. DNA Repair 7:605–616

    Article  CAS  PubMed  Google Scholar 

  49. Szczesny B, Tann AW, Longley MJ, Copeland WC, Mitra S (2008) Long patch base excision repair in mammalian mitochondrial genomes. J Biol Chem 283:26349–26356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Svilar D, Goellner EM, Almeida KH, Sobol RW (2011) Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal 14:2491–2507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Almeida KH, Sobol RW (2007) A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair 6:695–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dizdaroglu M (2005) Base-excision repair of oxidative DNA damage by DNA glycosylases. Mutat Res 591:45–59

    Article  CAS  PubMed  Google Scholar 

  53. Huffman JL, Sundheim O, Tainer JA (2005) DNA base damage recognition and removal: new twists and grooves. Mutat Res 577:55–76

    Article  CAS  PubMed  Google Scholar 

  54. Dodson ML, Lloyd RS (2002) Mechanistic comparisons among base excision repair glycosylases. Free Radic Biol Med 32:678–682

    Article  CAS  PubMed  Google Scholar 

  55. Szczesny B, Tann AW, Longley MJ, Copeland WC, Mitra S (2008) Long patch base excision repair in mammalian mitochondrial genomes. J Biol Chem 283:26349–26356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Akbari M, Visnes T, Krokan HE, Otterlei M (2008) Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis. DNA Repair (Amst) 7:605–616

    Article  CAS  Google Scholar 

  57. Liu P, Qian L, Sung JS, de Souza-Pinto NC, Zheng L et al (2008) Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria. Mol Cell Biol 28:4975–4987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hegde ML, Hazra TK, Mitra S (2008) Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 18:27–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kazak L, Reyes A, Holt IJ (2012) Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 13:659–671

    Article  CAS  PubMed  Google Scholar 

  60. Zheng L, Zhou M, Guo Z, Lu H, Qian L et al (2008) Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates. Mol Cell 32:325–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tann AW, Boldogh I, Meiss G, Qian W, Van Houten B et al (2011) Apoptosis induced by persistent single-strand breaks in mitochondrial genome: critical role of EXOG (5′-EXO/endonuclease) in their repair. J Biol Chem 286:31975–31983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Croteau DL, Rossi ML, Canugovi C, Tian J, Sykora P et al (2012) RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity. Aging Cell 11:456–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. De S, Kumari J, Mudgal R, Modi P, Gupta S et al (2012) RECQL4 is essential for the transport of p53 to mitochondria in normal human cells in the absence of exogenous stress. J Cell Sci 125:2509–2522

    Article  CAS  PubMed  Google Scholar 

  64. Khidr L, Wu G, Davila A, Procaccio V, Wallace D et al (2008) Role of SUV3 helicase in maintaining mitochondrial homeostasis in human cells. J Biol Chem 283:27064–27073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen PL, Chen CF, Chen Y, Guo XE, Huang CK et al (2013) Mitochondrial genome instability resulting from SUV3 haploinsufficiency leads to tumorigenesis and shortened lifespan. Oncogene 32:1193–1201

    Article  CAS  PubMed  Google Scholar 

  66. Chen XJ (2013) Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA. Microbiol Mol Biol Rev MMBR 77:476–496

    Article  CAS  PubMed  Google Scholar 

  67. Thyagarajan B, Padua RA, Campbell C (1996) Mammalian mitochondria possess homologous DNA recombination activity. J Biol Chem 271:27536–27543

    Article  CAS  PubMed  Google Scholar 

  68. Bacman SR, Williams SL, Moraes CT (2009) Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res 37:4218–4226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pohjoismaki JL, Goffart S, Tyynismaa H, Willcox S, Ide T et al (2009) Human heart mitochondrial DNA is organized in complex catenated networks containing abundant four-way junctions and replication forks. J Biol Chem 284:21446–21457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kajander OA, Karhunen PJ, Holt IJ, Jacobs HT (2001) Prominent mitochondrial DNA recombination intermediates in human heart muscle. EMBO Rep 2:1007–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pohjoismaki JL, Goffart S, Taylor RW, Turnbull DM, Suomalainen A et al (2010) Developmental and pathological changes in the human cardiac muscle mitochondrial DNA organization, replication and copy number. PLoS ONE 5:e10426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Suomalainen A, Majander A, Wallin M, Setala K, Kontula K et al (1997) Autosomal dominant progressive external ophthalmoplegia with multiple deletions of mtDNA: clinical, biochemical, and molecular genetic features of the 10q-linked disease. Neurology 48:1244–1253

    Article  CAS  PubMed  Google Scholar 

  73. Esposito LA, Melov S, Panov A, Cottrell BA, Wallace DC (1999) Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci USA 96:4820–4825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR et al (1997) A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 16:226–234

    Article  CAS  PubMed  Google Scholar 

  75. Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P et al (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18:231–236

    Article  CAS  PubMed  Google Scholar 

  76. Wang J, Wilhelmsson H, Graff C, Li H, Oldfors A et al (1999) Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 21:133–137

    Article  CAS  PubMed  Google Scholar 

  77. Wang J, Silva JP, Gustafsson CM, Rustin P, Larsson NG (2001) Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc Natl Acad Sci USA 98:4038–4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hansson A, Hance N, Dufour E, Rantanen A, Hultenby K et al (2004) A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts. Proc Natl Acad Sci USA 101:3136–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ikeuchi M, Matsusaka H, Kang D, Matsushima S, Ide T et al (2005) Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation 112:683–690

    Article  CAS  PubMed  Google Scholar 

  80. Zhang D, Mott JL, Farrar P, Ryerse JS, Chang SW et al (2003) Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovasc Res 57:147–157

    Article  CAS  PubMed  Google Scholar 

  81. Mott JL, Zhang D, Stevens M, Chang S, Denniger G et al (2001) Oxidative stress is not an obligate mediator of disease provoked by mitochondrial DNA mutations. Mutat Res 474:35–45

    Article  CAS  PubMed  Google Scholar 

  82. Zhang D, Mott JL, Chang SW, Stevens M, Mikolajczak P et al (2005) Mitochondrial DNA mutations activate programmed cell survival in the mouse heart. Am J Physiol Heart Circ Physiol 288:H2476–H2483

    Article  CAS  PubMed  Google Scholar 

  83. Lewis W, Day BJ, Kohler JJ, Hosseini SH, Chan SS et al (2007) Decreased mtDNA, oxidative stress, cardiomyopathy, and death from transgenic cardiac targeted human mutant polymerase gamma. Lab Invest 87:326–335

    CAS  PubMed  Google Scholar 

  84. Tyynismaa H, Sembongi H, Bokori-Brown M, Granycome C, Ashley N et al (2004) Twinkle helicase is essential for mtDNA maintenance and regulates mtDNA copy number. Hum Mol Genet 13:3219–3227

    Article  CAS  PubMed  Google Scholar 

  85. Milenkovic D, Matic S, Kuhl I, Ruzzenente B, Freyer C et al (2013) TWINKLE is an essential mitochondrial helicase required for synthesis of nascent D-loop strands and complete mtDNA replication. Hum Mol Genet 22:1983–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sen D, Nandakumar D, Tang GQ, Patel SS (2012) Human mitochondrial DNA helicase TWINKLE is both an unwinding and annealing helicase. J Biol Chem 287:14545–14556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pohjoismaki JL, Goffart S (2011) Of circles, forks and humanity: topological organisation and replication of mammalian mitochondrial DNA. BioEssays 33:290–299

    Article  CAS  PubMed  Google Scholar 

  88. Tanaka A, Ide T, Fujino T, Onitsuka K, Ikeda M, et al. (2013) The overexpression of Twinkle helicase ameliorates the progression of cardiac fibrosis and heart failure in pressure overload model in mice. PloS One 8:e67642

  89. Pohjoismaki JL, Williams SL, Boettger T, Goffart S, Kim J et al (2013) Overexpression of Twinkle-helicase protects cardiomyocytes from genotoxic stress caused by reactive oxygen species. Proc Natl Acad Sci USA 110:19408–19413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Goffart S, Cooper HM, Tyynismaa H, Wanrooij S, Suomalainen A et al (2009) Twinkle mutations associated with autosomal dominant progressive external ophthalmoplegia lead to impaired helicase function and in vivo mtDNA replication stalling. Hum Mol Genet 18:328–340

    Article  CAS  PubMed  Google Scholar 

  91. Tyynismaa H, Mjosund KP, Wanrooij S, Lappalainen I, Ylikallio E et al (2005) Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci USA 102:17687–17692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P (2003) Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res 31:e61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Frahm T, Mohamed SA, Bruse P, Gemund C, Oehmichen M et al (2005) Lack of age-related increase of mitochondrial DNA amount in brain, skeletal muscle and human heart. Mech Ageing Dev 126:1192–1200

    Article  CAS  PubMed  Google Scholar 

  94. Wang J, Wilhelmsson H, Graff C, Li H, Oldfors A et al (1999) Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 21:133–137

    Article  CAS  PubMed  Google Scholar 

  95. Li H, Wang J, Wilhelmsson H, Hansson A, Thoren P et al (2000) Genetic modification of survival in tissue-specific knockout mice with mitochondrial cardiomyopathy. Proc Natl Acad Sci USA 97:3467–3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lewis W (2003) Defective mitochondrial DNA replication and NRTIs: pathophysiological implications in AIDS cardiomyopathy. Am J Physiol Heart Circ Physiol 284:H1–H9

    Article  CAS  PubMed  Google Scholar 

  97. L’Ecuyer T, Sanjeev S, Thomas R, Novak R, Das L et al (2006) DNA damage is an early event in doxorubicin-induced cardiac myocyte death. Am J Physiol Heart Circ Physiol 291:H1273–H1280

    Article  PubMed  CAS  Google Scholar 

  98. Lebrecht D, Walker UA (2007) Role of mtDNA lesions in anthracycline cardiotoxicity. Cardiovasc Toxicol 7:108–113

    Article  CAS  PubMed  Google Scholar 

  99. Marin-Garcia J, Goldenthal MJ, Moe GW (2001) Mitochondrial pathology in cardiac failure. Cardiovasc Res 49:17–26

    Article  CAS  PubMed  Google Scholar 

  100. Karamanlidis G, Nascimben L, Couper GS, Shekar PS, del Monte F et al (2010) Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res 106:1541–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sebastiani M, Giordano C, Nediani C, Travaglini C, Borchi E et al (2007) Induction of mitochondrial biogenesis is a maladaptive mechanism in mitochondrial cardiomyopathies. J Am Coll Cardiol 50:1362–1369

    Article  CAS  PubMed  Google Scholar 

  102. Garnier A, Zoll J, Fortin D, N’Guessan B, Lefebvre F et al (2009) Control by circulating factors of mitochondrial function and transcription cascade in heart failure: a role for endothelin-1 and angiotensin II. Circ Heart Fail 2:342–350

    Article  CAS  PubMed  Google Scholar 

  103. Karamanlidis G, Nascimben L, Couper GS, Shekar PS, del Monte F et al (2010) Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res 106:1541–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Marin-Garcia J, Ananthakrishnan R, Goldenthal MJ, Filiano JJ, Perez-Atayde A (1997) Cardiac mitochondrial dysfunction and DNA depletion in children with hypertrophic cardiomyopathy. J Inherit Metab Dis 20:674–680

    Article  CAS  PubMed  Google Scholar 

  105. Spelbrink JN, Li FY, Tiranti V, Nikali K, Yuan QP et al (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 28:223–231

    Article  CAS  PubMed  Google Scholar 

  106. Cohen BH, Naviaux RK (2010) The clinical diagnosis of POLG disease and other mitochondrial DNA depletion disorders. Methods 51:364–373

    Article  CAS  PubMed  Google Scholar 

  107. Goffart S, Cooper HM, Tyynismaa H, Wanrooij S, Suomalainen A et al (2009) Twinkle mutations associated with autosomal dominant progressive external ophthalmoplegia lead to impaired helicase function and in vivo mtDNA replication stalling. Hum Mol Genet 18:328–340

    Article  CAS  PubMed  Google Scholar 

  108. Holmlund T, Farge G, Pande V, Korhonen J, Nilsson L et al (2009) Structure-function defects of the twinkle amino-terminal region in progressive external ophthalmoplegia. Biochim Biophys Acta 1792:132–139

    Article  CAS  PubMed  Google Scholar 

  109. Roberts NK, Perloff JK, Kark RA (1979) Cardiac conduction in the Kearns–Sayre syndrome (a neuromuscular disorder associated with progressive external ophthalmoplegia and pigmentary retinopathy). Report of 2 cases and review of 17 published cases. Am J Cardiol 44:1396–1400

    Article  CAS  PubMed  Google Scholar 

  110. Antozzi C, Zeviani M (1997) Cardiomyopathies in disorders of oxidative metabolism. Cardiovasc Res 35:184–199

    Article  CAS  PubMed  Google Scholar 

  111. Khambatta S, Nguyen DL, Beckman TJ, Wittich CM (2014) Kearns–Sayre syndrome: a case series of 35 adults and children. Int J Gen Med 7:325–332

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marín-García.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marín-García, J. Mitochondrial DNA repair: a novel therapeutic target for heart failure. Heart Fail Rev 21, 475–487 (2016). https://doi.org/10.1007/s10741-016-9543-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-016-9543-x

Keywords

Navigation