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Abstract To characterize the coupling effect between
patient flow to access the emergency department (ED) and
that to access the inpatient unit (IU), we develop a model
with two connected queues: one upstream queue for the
patient flow to access the ED and one downstream queue
for the patient flow to access the IU. Building on this patient
flow model, we employ queueing theory to estimate the
average waiting time across patients. Using priority specific
wait time targets, we further estimate the necessary number
of ED and IU resources. Finally, we investigate how an alter-
native way of accessing ED (Fast Track) impacts the average
waiting time of patients as well as the necessary number
of ED/IU resources. This model as well as the analysis on
patient flow can help the designer or manager of a hospi-
tal make decisions on the allocation of ED/IU resources in
a hospital.

Keywords Emergency department · Waiting time ·
Queueing theory · Hospital management

1 Introduction

Overcrowding in the emergency department (ED) is a
worldwide problem [1–3] impairing the ability of hospitals
to offer emergency care within a reasonable time frame [4].
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By observing more than 20 million patient visits to emer-
gency departments over five years, Guttmann et al. in [5]
determined that the risk of death and hospital readmission
increases with the degree of crowding in the emergency
department, and estimated that about 150 fewer patients
would die in Ontario each year if the average waiting time
to access the emergency department was less than an hour.

The issue of what constitutes timely access to emergency
care is obviously dependent on the acuity of the patient.
Without an accurate triage and acuity scale, patients who
need immediate emergency care will experience a delay in
treatment that may aggravate their condition. The Canadian
government published its own acuity guidelines in 1998,
and subsequently revised them in 2004 and in 2008. In these
guidelines, the severity of patients is classified into five
levels: resuscitation, emergent, urgent, less urgent and non
urgent [6]. This classification is based on a patient’s pre-
senting complaints, vital signs (including the hemodynamic
stability, hypertension, temperature, level of consciousness,
respiratory distress, etc.), pain severity, and injury level. For
patients in each severity level, their target waiting time to
see a physician is detailed in Table 1.

However, strict adherence to the priority system may
mean that a low priority patient may wait a long time
to receive a relatively simple procedure that would tie up
ED resources for very little time whereas the higher acu-
ity patients have complex needs that require significant
resources. As a means of addressing this issue, many hospi-
tals have introduced a fast-track system for the lower (less
urgent and non-urgent) priority patients on the premise that
they can be served quickly and easily without tying up too
many resources. This policy essentially means that a sin-
gle queue is broken into two and the ones who inevitably
suffer from such a policy are the patients at the end of the
first queue (priority III patients). Thus, though the impact of
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Table 1 Triage levels for emergency department [9]

Triage level Expected waiting time

to see a physician

I: Resuscitation Immediate

II: Emergent <15 min

III: Urgent <30 min

IV: Less urgent <60 min

V: Non urgent <120 min

the fast-track system is to reduce over-crowding by serving
low acuity patients quickly, it is our contention that, unless
resources are increased, this is accomplished at the cost of
increasing the wait times for priority III patients. This con-
tention has been partially confirmed. Cooke et al. in [7] and
Miquel et al. in [8] show that the fast track can reduce the
waiting time for patients who are qualified to access the fast
track but will slightly lengthen the waiting time of the other
patients. In this paper, we therefore concentrate on a stan-
dard priority system without a fast-track but also provide
some results for a system with a fast track.

Even with a good acuity scale in place, insufficient
resources can still cause overcrowding. As shown in Fig. 1,
the resources available in the ED and in the inpatient unit
(IU) will influence patient flow potentially leading to long
wait times to access the ED. While the lack of ED resources
can block patients in the waiting room, an insufficient num-
ber of IU resources may block transfers to the IU further
delaying other patients in the waiting room from accessing
the ED. Limited budgets however mean that it is inefficient
to carry too many resources either in the ED or the IU. Thus,
it is imperative that a methodology be developed that cor-
rectly estimates the necessary resource capacity in a hospital
in order to provide timely access to the ED both to avoid
overcrowding and idle time. In this paper, we concentrate
on bed capacity in the ED and the IUs. Clearly there are
other resources that play a role in determining the service
time in the ED such as lab capacity and testing equipment.

The assumption here is that other resources are not the rate
limiting step to meeting the targets set out in Table 1.

In this paper, we develop a queueing model to estimate
the waiting time of patients to access the ED as well as
the necessary amount of resources to achieve the wait time
targets for each priority class. This queueing model is com-
posed of two queues: the first one is a M/G/c1/∞ with
five priorities. In the above notation, the M refers to the
assumption that the arrival of demand follows a Poisson
distribution, the G means that the service rate can follow
a general distribution and the c1 refers to the number of
available resources in the ED. This queue characterizes the
patient flow from accessing the ED to departing the ED.
The five priorities represent five severity levels classified by
Table 1. The second queue is a G/GI/c2/c2 (general arrival
distribution, general but independent service times with c2

servers and c2 capacity in IU) without priority and no buffer,
and it characterizes the patient flow from accessing the IU
to discharge.

Additionally, in order to represent the coupling effect that
occurs when patients are blocked from entering the IU, we
estimate the probability of all servers being busy in the sec-
ond queue and the probability of patients in the ED waiting
for transfer to the IU being blocked. Building on this queue-
ing model, we attempt to estimate the necessary number
of ED and IU resources to achieve the performance targets
of Canadian Triage And Acuity Scale (CTAS), shown in
Table 1.

2 Related work

Studies relevant to the estimation of the necessary amount
of ED resources can be classified into two stages: (1) Rough
estimation stage and (2) further adjustment stage. First,
the ED manager needs to estimate the average resource
requirements over an extended period of time. Studies in
this stream usually estimate the number of resources by
the steady state of their estimation models providing a

Fig. 1 Patient flow to access
and depart ED [1]
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long run average estimation of the resource requirements.
This would constitute the first stage. Afterwards, the ED
manager may need to adjust the resource assignment to meet
the daily fluctuations in demand that are characteristic of
ED departments [10–12].

From the perspective of methodologies, while the stud-
ies of the first type often utilize queueing [2, 10–12] and
Markov chain models [3] to estimate the necessary amount
of ED resources in the steady state, the studies of the sec-
ond type usually utilize an autoregressive integrated moving
average model (ARIMA) [13–15], Monte-Carlo simulation
[1, 17], or Markov decision process (MDP) [16, 19, 20] to
dynamically analyze the necessary amount of resource as
a function of time. From the perspective of the length of
the planning horizon, the adjustment stage studies can fur-
ther be classified into short-term estimation and long-term
estimation. For short-term estimation (the length of the plan-
ning horizon is at most one day) the variation of arrival rate
is measured at the hourly level [13–16]. For long-term esti-
mation (the length of observation ranges from more than one
day to a few months), the daily variation or even seasonal
variation is factored into the planning decisions [19, 20].

Our study is of the first type, namely, estimating the
steady state resource requirements in a hospital in order
to provide timely access to the ED. To our knowledge no
paper has dealt with both the coupling effect between two
resources (such as the ED and IU) as well as the presence of
multiple priority classes in the demand stream. Patrick et al.
in [19, 20] present how to estimate the required capacity for
a diagnostic imaging department dealing with multiple pri-
ority classes but deal with only a single resource. Kolb et al.
in [1, 17] take into account the coupling effect between the
ED and the IU but do not consider the different triage levels
of patients. Similarly, Koizumi et al. in [21] present a model
that deals with a series of resources with potential block-
ing but with no acuity scale differentiating patients. For the
purposes of estimating resource requirements in the ED to
achieve priority-specific performance targets, it is important
to propose a model that takes into account both factors. The
model proposed in the next sections achieves that goal.

3 Models of patient flow

In this section, we present the arrival process of emergency
patients as well as the model to describe this process. Build-
ing on this model, we estimate the average waiting time of
an emergency patient accessing the ED.

Patients arrive at the ED either as walk-in patients or
ambulatory patients. After entering the main entrance, the
patient moves from the greeter desk to triage to registration
before waiting for a physician consult. In our model these
steps are combined under the heading ’Patients waiting to

access the ED’ (see Fig. 1). Once a patient accesses the ED,
they are assigned a bed by a nurse. After a pre-examination
by the ED nurse, the patient will see a physician for further
examination, tests and treatments. If the physician deter-
mines the patient can be discharged after examination, an
ED nurse facilitates the process of releasing the patient who
then departs the ED. If the physician decides to transfer
the patient to the inpatient units (IUs), a consulting physi-
cian from the IU will arrange the admission. Depending on
the availability of IU beds, the patient is either transferred
immediately or has to wait in the ED till an IU bed becomes
available. These steps in our model are combined under the
heading ’Patients staying in the ED’. A patient in the IU will
receive tests and treatments until he/she is deemed ready
for discharge. After a final examination by a physician, the
patient will depart the IU. These steps in our model are
combined under the heading ’Patients staying in the IU’.

3.1 Arrival process of demand accessing the ED and the IU

Demand for ED service fluctuates significantly throughout
the day. In consequence, Koizumi et al. in [21] divide the
whole day into several segments such that the arrival rate in
each segment can be assumed to be constant. They demon-
strate that the arrival process of emergency patients in most
time segments can be modeled as a Poisson process with
varying rates.

As mentioned in the previous section, our model looks to
provide the steady state resource requirements over a longer
period than a day and thus we do not take into account the
within day variations. Given the results from our model, a
further model (perhaps using a Markov Decision Process
approach) could be used to allocate the available resources
in order to take into account the within-day fluctuations in
demand.

The data presented in Table 2 was provided by a local
hospital and represents the average arrival rate of patients
entering the ED per hour (broken down by CTAS) and the

Table 2 Patient flow into the ED and the IU

Destination CTAS/Point of Entry Arrival Rates

ED I 0.075

II 0.662

III 3.749

IV 2.86

V 0.226

All 7.572

IU From ED 0.479

Direct 0.267

All 0.746
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average arrival of patients entering the IU per hour (broken
down by point of entry) for fiscal year 2011/2012.

3.2 Queueing models to estimate the waiting time

Building on the flowchart of patients accessing and depart-
ing the ED (shown in Fig. 1), we use queueing theory to
estimate the waiting time of a patient to access the ED
with the waiting time of a patient referring to the time
between arriving at the waiting room until treatment. To
estimate the waiting time, we need to model two patient
flows. (1) The patient flow from arriving at the waiting room
until departing the ED can be viewed as a M/GI/c1/∞
queue to model the patient flow arriving at and departing
from waiting rooms or ambulances since the size of the
waiting room is rarely the limiting factor. A M/GI/c1/∞
queue has a Poisson arrival process, independent and iden-
tically distributed service times with a general distribution,
c1 ED beds and infinite buffer capacity. (2) The patient
flow into the IU through to discharge can be viewed as a
G/GI/c2/c2 queue, which has a general arrival process,
independent and identically distributed service times with a
general distribution, c2 IU beds and no buffer capacity.

Model for patient flow in the ED Let λ represent the arrival
rate of emergency patients and μ1 represent the average ser-
vice rate in the ED without taking into account the coupling
effect. Due to the potential for patients being blocked from
leaving the ED, we can adjust the average service time in
the ED, 1/μ, (represented by a M/G/c1/∞ queue) as

1/μ = 1/μ1 + Pb ×mean(min
i

Ti) (1)

where Ti (i = 1, 2 · · · c2) is the waiting time until ith inpa-
tient is discharged and Pb is the blocking probability to
access the IUs. The rate of patients transferring to the IU is
xRd , where Rd = min{λ, c1μ} and x is the proportion of
patients transferred into the IU.

Thus, this modified average service time represents the
actual service in the ED plus the time spent waiting in
the ED for an IU bed. The time waiting to access the IU
equals the average length of waiting until the next inpatient
departure, denoted as min

i
Ti .

To incorporate the priority classification system of emer-
gency patients, we use the theory for a preemptive resume
multi-priority M/G/c1/∞ queue to calculate the length of
waiting time to access the ED. The rationale for using pre-
emptive resume queue models is that high priority (Level I
or level II) patients must receive immediate service. If no
physician is available when such a patient arrives, a physi-
cian treating a lower priority patient (or stabilized higher
priority one) must leave his/her current patient and resume
only after they offer the emergency treatment to the high

priority patient. The detailed calculation on the length of the
waiting time is presented in Section 4.

Model for patient flow in the IU The flow of patients
accessing and departing the IUs can be modeled as a
G/GI/c2/c2 queue [22]. In this queueing model, we focus
on the blocking probability Pb, that is, the probability
that there are no available beds in the IUs. This can be
determined by

Pb = αβe−kβ/v

(1 − e−kβ/v)ρd
√
c2

(2)

where c2 is the number of beds available in the IUs, λd is the
arrival rate of patients directly accessing the IUs and μ is
the service rate. Other parameters in Eq. 2 can be calculated
as:

ρd = xRd + λd

c2μ
, β = √

c2(1 − ρd),

k = √
c2, v = 1 + C2

a

2
,

α = [
1 + β�(β)

/
ϕ(β)

]−1
,

where C2
a is the squared coefficient of variation (SCV)

of the service time at inpatient units and �(·) and
ϕ(·) are the cumulative distribution function (CDF) and
probability density function (PDF) of a standard normal
distribution.

3.3 Steady state conditions of queuing models

In this paper, we employ queueing models to represent the
steady state of a queueing system to access the ED. As
shown in Fig. 1, the patient flow for accessing and depart-
ing the ED is represented by two coupled queueing models.
In the following, we will explore the conditions for both
queueing models to reach the steady state.

Given the arrival rate λ, the necessary and sufficient
steady state condition for the first queue is λ ≤ c1μ, and
that for the second queue is xRd + λd ≤ c2μI . Given
the parameters of these two queues, we can decide whether
these queues can reach steady state if we know the exact μ,
which determines both the service rate in the first queue and
the arrival rate of the second queue. Unfortunatelyμ is inter-
dependent with another unknown parameter Pb (shown in
Eqs. 1 and 2), and neither of them can be shown in a closed
form. Thus, the key to attaining the necessary and sufficient
steady state conditions for both queues is to calculate μ. In
the following, relaxing the constraints, we first present a suf-
ficient (not necessary) condition as well as a necessary (not
sufficient) condition without requiring the exact μ. Second,
we develop an iterative algorithm to numerically compute μ
from which a necessary and sufficient steady state condition
can be approximated.
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Sufficient (but not necessary) and necessary (but not
sufficient) conditions As the blocking probability satisfies
0 ≤ Pb ≤ 1, we can obtain constraints on μ as μmin ≤ μ ≤
μmax , where

μmin = 1

/
(1

/
μ1 +mean(min

i
Ti)) and (3)

μmax = μ1, (4)

where μmin is the value of μ (refer to Eq. 1) when Pb = 1
(the worst case in which an ED patient transferring into
IU is always blocked), and μmax is the value of μ when
Pb = 0 (the best case in which an ED patient transferring
into IU is never blocked). Thus, the sufficient steady state
condition of the first queue is λ ≤ c1μmin, and its neces-
sary steady state condition is λ ≤ c1μmax. Correspondingly,
the sufficient steady state condition of the second queue is
x min{λ, c1μmin} + λd ≤ c2μI , and its necessary steady
state condition is x min{λ, c1μmax} + λd ≤ c2μI .

Necessary and sufficient condition In the following, we will
discuss the necessary and sufficient steady state conditon.
First of all, we represent Eq. 1 as

y1(μ)+ y2(μ)− 1/μ = y0 (5)

where y1(μ) = 1/μ, y2(μ) = 1/μ − Pb × mean(min
i

Ti),

and y0 = 1/μ1. In the following, we show that there is at
least one feasible solution to Eq. 5, and this solution μ̂ ∈
[μmin, μmax].

Proof We will prove it by contradiction. Let y(μ) =
y1(μ)+y2(μ)−1/μ. From Eq. 2, we know y2(μ) ≤ y(μ) ≤
y1(μ). Assume that there is no feasible solution to Eq. 5,
then y0 = y2(μ) < y(μ) at μ = μmin, otherwise μmin will
be the feasible solution. Because of the continuity of y(μ)
and our assumption of no feasible solution in [μmin, μmax],
we can deduce that y(μ) > y0 for μ ∈ [μmin, μmax]. At
μ = μmax , we can conclude that y(μ) > y0 = y1(μ),
which is contradicted by the fact y(μ) ≤ y1(μ) from
Eq. 2.

Beyond the proof, we can also demonstrate that at least
one solution exists intuitively from Fig. 2. Certainly a
feasible solution exists (shown in circle), because of the
constraints: y2(μ) ≤ y(μ) ≤ y1(μ), y2(μmin) = y0, and
y1(μmax) = y0.

If there is only a single solution μ̂, then it is easy to
show the necessary and sufficient steady state condition as
λ ≤ c1μ̂ for the first queue and x min{λ, c1μ̂}+ λd ≤ c2μI

for the second queue.If there are multiple solutions, then
no necessary and sufficient steady state condition exists. In
the latter case, we can at least find a tighter sufficient con-
dition and a tighter necessary condition by replacing μmin

and μmax by μ̂min and μ̂max , respectively. Please note that

μ̂min and μ̂max are the minimal and maximal feasible solu-
tions. The detailed process of searching for the minimal and
maximal feasible solutions is shown in Algorithm 1.

If μ̂min and μ̂max
1 are the same, the sufficient and nec-

essary condition exists and this condition is: λ ≤ c1μ̂ for
the first queue and x min{λ, c1μ̂} + λd ≤ c2μI for the sec-
ond queue. Otherwise, there is no sufficient and necessary
condition, and we can use the tightest sufficient condition:
λ ≤ c1μ̂min for the first queue and x min{λ, c1μ̂min}+λd ≤
c2μI for the second queue to guarantee the stability of the
queue.

4 Estimation of the waiting time using the queueing
models

In this section, we present the estimation of the waiting time
in the ED. As shown in Eq. 1, this waiting time is dependent
on mean(min

i
Ti), namely, the average waiting time to be

transferred to the IUs. In the following, we first estimate
mean(min

i
Ti) and then estimate the waiting time in the ED.

Also we take into account two cases: patient flow with a
fast track and without a fast track. Specifically, we present
the estimation of waiting time in the case of no fast track in
IV. B., and the case with a fast track in IV. C.

4.1 Estimation of the waiting time to be transferred
into the IUs

In this section, we discuss how to calculate the average
waiting time to access the IUs, namely, mean(min

i
Ti).

Given Fi(z) as the cumulative distribution function (CDF)
of Ti (i = 1, · · · , c2), which is estimated as a triangular dis-
tribution in [17], the CDF of min

i
Ti (denoted as Fmin(z))

1Searching for the closest solution from the starting point can be done
by any standard method. We use the Matlab function ‘fsolve’ to carry
out the search, and its default internal algorithm is the trust-region
dogleg algorithm [23].
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Fig. 2 Intuitively understanding
the proof
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can be expressed as [18]

Fmin(z) = 1 −
c2∏

i=1

[1 − Fi(z)] (6)

Building on Eq. 6, we can calculate the mean of min
i

Ti

as

mean(min
i

Ti) =
∫

zdFmin(z) (7)

By substituting Eqs. 6 and 7 into Eq. 1, we can attain the
expression of the modified average service time 1/μ.

4.2 Estimation of the waiting time in the ED

As presented in Table 2, emergency care patients can be
classified into 5 categories. Patients with severity level I and
II are provided priority over ambulatory patients waiting for
admittance to the ER. The prioritizing frequently includes
pre-empting or suspending service for patients fitting the
profile of categories IV and V so that appropriate care can
be provided in life threatening situations [29]. From the per-
spective of queuing models, a pre-empting multiple-priority
queue is appropriate for this scenario [28–30].

As presented in III.B.(1), we will use a M/G/c/∞
queue to characterize the patient flow. Few studies pro-
vide the exact closed-form expression of waiting time in
a M/G/c/∞ queue. The exact waiting time is difficult to
calculate because such a queue does not possess an embed-
ded Markov chain [24]. Instead, most studies focus on an
approximation of a M/G/c/∞ queue. Hokstad in [25] and
Miyazawa in [26] both suggest using a probability gen-
erating function (PGF) to generate an approximation of
M/G/c/∞ queues. Tijms et al. in [27] propose a regen-
erative approach to simulate a M/G/c/∞ queue. The
aforementioned approximation methods are reliable but all
require knowledge of the exact distribution of the service

time, which is not applicable in our scenario because the dis-
tribution of our modified service time is unknown (shown in
Eq. 1).

By using heuristics, Bondi et al. in [31] present the
estimation of the waiting time in a preemptive resume multi-
priority M/G/c1/∞ queue. Given the number of priorities
K , the mean waiting time of patients with priority k (k =
1, · · · , K), Wk

c1
, can be estimated as [31]

Wk
c1

≈ WF
c1
Wk

1

WF
1

(8)

where Wk
1 represents the mean waiting time of patients

with priority k in a preemptive resume multi-priority
M/G/1/∞ queue, WF

1 represents the waiting time of
a FCFS M/G/1/∞ queue and WF

c1
represents the wait-

ing time of a First-come, first-served (FCFS) M/G/c1/∞
queue. Here we note that the priority increases with k such
that priority k represents the triage level K+1−k, shown in
Table 1. In the following, we focus on computing WF

1 , WF
c1

,
as well as Wk

1 .

Estimation of WF
1 The waiting time in a FCFS M/G/1/∞

queue can be easily computed following [32]

WF
1 = λS2

2(1 − ρ)
(9)

where ρ = λS, λ represents the arrival rate of patients
across all priorities, S represents the mean service time for
patients across all priorities and S2 represents the second
moment of the service time of patients across all priorities.

Estimation of WF
c1

The waiting time in a FCFS M/G/c1/∞
queue has been estimated in [33] as

WF
c1

≈
[
S + SPQ

c1 − λS

]
1 + C2

2
(10)

where C2 represents the SCV of the service time for patients
across all priorities, λ represents the arrival rate of patients



94 D. Lin et al.

across all priorities and S represents the mean service
time for patients across all priorities. PQ represents the
probability given in [33] as

PQ = (c1ρ)
c1

c1!(1 − ρ)

[
∑c1−1

t=1

(c1ρ)
t

t! +
∑∞

t=c1

(c1ρ)
t

c1!ct−c1
i

]−1

(11)

where ρ = λS
/
c1.

Estimation of Wk
1 The waiting time in a preemptive resume

multi-priority M/G/1/∞ queue has been well studied.
Specifically, given the number of priorities K , for each pri-
ority k = 1, · · · , K , the mean waiting time is expressed in
[32] as

Wk
1 =

{
(1−ρ1)S1+R1

1−ρ1
, for k = 1

(1−ρ1−···−ρk)Sk+Rk

(1−ρ1−···−ρk−1)(1−ρ1−···−ρk)
, for k > 1

(12)

where ρk = λkS(k), λk represents the arrival rate of patients
with priority k, S(k) represents the mean service time for
patients with priority k (after taking into account the cou-

pling effects), Rk = 1
2

∑k
i=1 λiS

2
(k), and S

2
(k) is the second

moment of the service time of kth-priority patients.

Estimating the mean and second moment of service time in
the ED Building on Eqs. 10, 11 and 12, the estimation of
WF

1 , WF
c1

, and Wk
1 are determined by the mean and second

moment of service time for patients in each priority as well
as the average across various priorities. Building on Eq. 1,
we can attain the mean and second moment for kth-priority
patients as in Eq. 13 below.

S(k) = S(k) + Pb[mean(min
i

Ti)] (13)

and

S
2
(k) = S2

(k) + 2S(k)Pb ×mean(min
i

Ti)

+P 2
b [mean(min

i
Ti)]2

where S(k) represents the emergency service time in the
ED, and S2

(k) represents the second moment of emergency
service time in the ED.

The average service time of the first queue across various
priorities, μ, equals the average of the mean service time

of each priority. Namely, μ = 1

/
∑

k

qkS(k), where qk =
λk/

∑

k

λk . Substituting this into Eq. 2, we can denote Pb as

a function of
∑

k

S(k).

To compute the mean and the second moment of service
time for patients in each priority, we develop a numerical

algorithm, shown in Algorithm 2. The Algorithm 2 itera-
tively calculates S(k), S2

(k), Pb, and μ until the estimation of

S(k) and S2
(k) in two consecutive iterations has a difference

below a threshold. If the output is not ’No solution’, then,
this output can be viewed as an estimation of the exact mean
and second moment of the service time within an acceptable
difference. Building on this algorithm as well as Eqs. 10, 11
and 12, we can attain the estimation of the waiting time of
patients to access the ED, Wk

c1
.

4.3 Estimation of waiting time for an ED with a fast track

While the previous sections investigated the case of ED
without a fast track, we now turn our attention to the case
with a fast track. A fast track is designed for patients with
less serious illnesses and injuries to shorten both waiting
and treatment times for these patients. More specifically,
after evaluation by a triage nurse, patients with less emer-
gent issues (triage level IV and V) are placed in the fast track
[34].

In our model, a system with a fast track places paitents
at triage level IV and V on an express line, and the other
patients will be put on the regular line. Also c1 beds in ED
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will be split into two parts: one part for Fast Track (the num-
ber of beds is denoted as cI1) and one part for regular line
(the number of beds is denoted as cII1 ). According to Eqs.
(1) and (2), the averge service time (denoted as 1/μI ) in the
Fast Track and the average service time (denoted as 1/μII )
in the regular line are shown as Eq. 14.

1/μI = 1/μI
1 + Pb ×mean(min

i
Ti)

1/μII = 1/μII
1 + Pb ×mean(min

i
Ti)

μI
1 + μII

1 = μ1 (14)

where Pb is shown in Eq. 2.
The average service time (denoted as 1/μF ) across all

triage levels is shown in Eq. 15

1/μF = 1

P I
r μ

I + P II
r μII

P I
r + P II

r = 1 (15)

where P I
r is the probability of a patient whose triage level is

at level I-III, while P II
r is the probability of a patient whose

triage level is at level IV–V.
By substituting Eq. 15 into Eq. 8, we can estimate the

average waiting time of Fast Track by setting the number
of beds in ED as cI1, while estimating the average waiting
time in the regular line (acute side) by setting the number of
beds in ED as cII1 . Definitely, both of these waiting times are
dependent on the proportion of patients who are switched
over to the fast track, namely, the probability of a patient
whose triage level is at level I–III P I

r .

5 Result and discussion

In the following we investigate the necessary capacity of
ED and IU in various scenarios to meet the waiting time
targets from arrival to first physician assessment in the ED
(shown in Table 1). For triage level I, we replace ’imme-
diate’ by ’<3 min’. The other parameters in our model
include the arrival rate λ as the average arrival rate of emer-
gency patients throughout the day (shown in Table 2) and
the arrival rate λ′ as the average arrival rate of patients that
directly access the inpatient units throughout the day (shown
in Table 2). In addition, the distribution of the service time
in the ED is triangular with a lower limit of 0.1 hour, upper
limit of 1 hour, and mode of 0.5 hour (see Section 4.1).
The distribution of the service time in the IU is triangular
with a lower limit of 1 day, upper limit of 7 days, and mode
of 4 days. Building on Eq. 8, we can estimate the wait-
ing time to access the ED without a fast track as well as
with a fast track, and compare the results in both scenarios
in Section 5.4. The other parameters in Eqs. 1–10 can be
calculated from the aforementioned parameters.

5.1 Relationship between ED and IU resource requirements

Given a set of priority specific wait time targets, the model
presented here can be used to estimate the necessary capac-
ity both in the ED and the IU in order to meet the perfor-
mance targets. Figure 3 shows the impact of changes in the
available IU capacity on the necessary ED capacity. In our
queueing model, the average of length of stay in the IU is 4
days, the arrival rate to access the ED is 7.572 patients per
hour, and we assume here that there is no fast track. Also
our analytical results are verified by Monte-Carlo simula-
tions, in which we mimic two individual queues which link
with each other and calculate the necessary capacity of ED
resources by repeating the simulation 50000 times.

Unsurprisingly, the necessary ED capacity increases as
the size of the IU decreases. However, the impact of addi-
tional IU capacity on ED resource requirements decreases
significantly as the IU increases suggesting that there is a
threshold size of the IU beyond which additional increases
cease to be advisable. However, attempting to reduce the
size of the IU below that threshold leads to a steep increase
in the required ED capacity in order to meet the same targets
and therefore is likely not cost-effective.

5.2 Capacity of resources and length of stay in the IU

Clearly, the probability of congestion in the IU leading to
backlogs in the ED is dependent on the rate of turnover in
the IU which is regulated by the length of stay of patients.
Thus, it is of interest to analyze changes in the necessary
capacity of the IU/ED resources as the length of stay in the
IU is varied. In the queueing model, we first vary the aver-
age length of stay in IU through 110–150 hours. Given a
number of ED resources, we can determine the necessary IU
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Fig. 3 Capacity of ED resources vs. capacity of IU resources
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resources as the length of stay in the IU is varied. Secondly,
by varying the number of ED resources through 10–20, we
can obtain the 3-dimensional plot which determines how the
necessary ED/IU resources change as the length of stay in
the IU varies (shown in Fig. 4). In both cases, we fix the
arrival rate to the ED at 7.572 patients per hour and assume
that there is no fast track.

With the increase in the length of stay in the IU, the
capacity of both IU resources and ED resources will, of
course, increase. However, the rate of increase in the nec-
essary IU resources as the length of stay is increased is
significantly higher than for the ED (shown in Fig. 4). In
other words, an increase in the length of stay in the IU
causes a larger increase in the necessary IU resources. Thus,
in the face of greater uncertainty in the length of stay of
patients, it is preferable to carry additional or “excess” IU
capacity rather than hoping to manage this problem by
using the ED as a holding bay for the IU; a reality that is
surprisingly common in practice.

5.3 Capacity of resources and arrival rate of ED patients

Obviously, the necessary ED and IU resources to guarantee
an acceptable waiting time to see a physician are dependent
on the arrival rate to the ED, so it is of interest to investigate
the impact on ED and IU resource requirements of increases
in this arrival rate. We focus on how much additional ED/IU
capacity should be anticipated as necessary given a fore-
cast of increasing demand. In the queueing model, we first
fix the number of IU resources at 125 and determine the
necessary ED resources as the arrival rate to the ED is var-
ied. Secondly, we fix the number of ED resources at 20 and
determine how the necessary IU resources change as the
arrival rate to the ED is varied. In both cases, we fix the
length of stay in IU at 150 hours and assume that there is no
fast track.
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Fig. 4 Capacity of ED/IU resources vs. average length of stay in IU

With the increase in the arrival rate to the ED, the
required capacity of ED and IU resources will, of course,
increase. However, the rate of increase in the necessary
IU resources as the arrival rate is increased is significantly
higher than for the ED (shown in Fig. 5). In other words, an
increase in the arrival rate to the ED causes a larger increase
in the necessary IU resources. Thus, again in the face of
greater uncertainty in the arrival rate of ED patients, it is
preferable to carry additional or “excess” IU capacity rather
than hoping to manage this problem by using the ED as a
holding bay for the IU.

5.4 Average waiting time to access the ED
with and without a fast track

The aforementioned discussion assumes that a hospital does
not implement a fast track for patients at triage level IV and
V. In the following, we focus on the influence of a fast track
on the average waiting time to access the ED. In this sce-
nario, the average length of stay in the IU is 4 days, and the
number of IU resources is 125. In the scenario with a fast
track, we allocated 20 % of ED capacity to the fast track.

As shown in Fig. 6, a fast track reduces the average
waiting time across all patients to access the ED by approx-
imately 0.3–1 hour. The explanation is as follows. The fast
track provides for the prompt treatment of patients with non-
life-threatening injuries. In a non-fast track system, these
patients are forced to queue behind patients whose complex-
ity requires long service times. The fast track provides short
wait times for a cohort of patients who otherwise would
have the longest wait, thus reducing the average wait time.

However, the reduction in the average waiting time across
all patients comes at the cost of increasing the waiting time
of patients who do not qualify for the fast track. As shown in
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Fig. 6 Average waiting time across various triage levels vs. capaciy
of ED resources

Figs. 7 and 8, the average waiting time of patients at triage
level III increases by around 0.1–0.5 hours in a system that
implements a fast track. In this scenario, the number of ED
resources is 25.

5.5 Limitations of our patient flow model

The patient flow model in our paper has the following
limitations: firstly, we assume that the inpatient unit can
accommodate all types of patients, but in reality, a few
specialized units can only accommodate a specific type of
patient. For example, an injured patient cannot stay in a car-
diovascular disease unit. Secondly, in our model, we assume
that one resource can only be offered to one patient, so c

patients will consume c resources in the ED. However, in
real scenarios, EDs with c beds can accommodate more than
c patients by using hall beds and internal waiting rooms
[35]. Thirdly, our model employs steady-state and aver-
age arrival rates, which do not take into account that the
arrival rate is non-stationary. Finally, our model does not

Fig. 7 Waiting time to see a doctor across various triage levels [hours]
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cover the real-life cost implications of Length of Stay (LOS)
reductions.

6 Conclusions

In this paper, we develop a two-stream model to character-
ize the coupling effect between patient flow to access the
ED and that to access the IU. Building on this patient flow
model, we employ queueing theory methods to estimate the
average waiting time across patients as well as the necessary
ED and IU resources in order to meet target waiting times
for patients at each triage level. In addition, we investigate
the influence of a fast track stream on the average waiting
time of patients. Our model improves on previous research
by taking into account both the reality of multiple priority
classes competing for ED resources and the strong potential
for downstream congestion impacting on the timely access
of patients to the ED.

In addition to providing hospital management with a
means of determining the necessary capacity in the ED and
the IU in order to meet priority specific wait time targets
for timely access to the ED, this paper also provides the
following insights. (1) There is a threshold size for the IU
such that reductions in the IU below that threshold lead
to steep increases in the necessary ED capacity in order
to meet the same targets. Thus, there exists a “optimal”
IU capacity such that either increasing or decreasing IU
resources will lead to higher costs associated with the same
performance. (2) Uncertainty in the LOS in the IU or in
the arrival rate to the ED is best accommodated by car-
rying extra IU capacity rather than by increasing the size
of the ED. (3) While a fast track can reduce the average
waiting time across patients from all the triage levels, it is
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accomplished by a large reduction in the wait times of
patients from triage levels IV and V that offset a concur-
rent increase in the wait times of patients from triage level
III. In other words, a fast track actually worsens the ability
of an ED to provide timely access to patients whose condi-
tions could potentially progress to a more serious problem
requiring emergency intervention, such as asthma, vaginal
bleeding, moderate trauma, Gastrointestinal (GI) bleeding,
and acute pain. These three insights are partially verified
by relevant research literature [7, 8, 36]. Erik et al. in [36]
explain that increasing IU resources instead of ED resources
with the aid of “IU buffers” can solve the problem of over-
crowding and shows the “best buffering capacity” in IU,
but this paper does not take into account the triage lev-
els of patients. Also Cooke et al. in [7] and Miquel et
al. in [8] show that the fast track can reduce the wait-
ing time for patients who are qualified to access ED but
will slightly lengthen the waiting time of the other patients.
However, these two papers do not consider the coupling
effects between the ED and IU.

We would like to extend our results by varying the pro-
portion of ED resources allocated to the fast track, and
develop a general rule to determine the optimal allocation
depending on the proportion of demand that is eligible for
the fast track and the relative resource consumption of the
two groups. We would like to explore whether there exists
an optimal proportion of ED resources to allocate to the fast
track in order to minimize the demand of IU resources and
satisfy all CTAS time requirements.
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