Skip to main content
Log in

Histone acetylation modification affects cell wall degradation and aerenchyma formation in wheat seminal roots under waterlogging

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Recent studies have shown that histone acetylation, which is an important epigenetic modification, plays a key role in abiotic stress responses in plants. Programmed cell death and aerenchyma formation occur in cortical cells of wheat seminal roots under waterlogging stress. To explore the role of histone acetylation in aerenchyma formation of cortical cells under waterlogging, the seminal roots of two wheat cultivars, namely, Huamai 8 (waterlogging-tolerant) and Huamai 9 (waterlogging-sensitive) were investigated with waterlogging and simultaneous treatment with an acetylation inhibitor. In this study, the immunefluorescence technique and Western blotting were used to determine the histone acetylation levels in wheat seminal roots under waterlogging stress. Cell wall degradation-related enzymes (cellulase and pectinase) were observed using the method of ultracytochemical localization. We also tested the expression of related genes, such as histone acetyltransferase (HAT1), histone deacetylase (HD3), endoglucanase (CEL), polygalacturonase (PG), and xyloglucan endotransglucosylase (XET). The results indicated that histone acetylation is involved in eliciting responses to waterlogging stress as well as in the aerenchyma formation by affecting cell wall degradation of cortical cells in wheat seminal roots. We also present a model of waterlogging-induced aerenchyma formation in cortical cells of wheat seminal roots based on our experimental results and the findings of previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CCD:

Charge-coupled device

CEL:

Endoglucanase cellulase

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

PAGE:

Polyacrylamide gel electrophoresis

PCD:

Programmed cell death

PCR:

Polymerase chain reaction

PG:

Polygalacturonase pectinase

SDS:

Sodium dodecyl sulfate

XET:

Xyloglucan endotransglycosylase

TEM:

Transmission electron microscopy

References

  • Bouranis DL, Chorianopoulou SN, Siyiannis VF, Protonotarios VE, Hawkesford MJ (2003) Aerenchyma formation in roots of maize during sulphate starvation. Planta 217:382–391

    Article  CAS  PubMed  Google Scholar 

  • Campbell R, Drew MC (1983) Electron microscopy of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to oxygen shortage. Planta 157:350–357

    Article  CAS  PubMed  Google Scholar 

  • Chanliaud E, De Silva J, Strongitharm B, Jeronimidis G, Gidley MJ (2004) Mechanical effects of plant cell wall enzymes on cellulose/xyloglucan composites. Plant J 38:27–37

    Article  CAS  PubMed  Google Scholar 

  • Chen LT, Wu K (2010) Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant Signal Behav 5:1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LT, Luo M, Wang YY, Wu K (2010) Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot 61:3345–3353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng XX, Yu M, Zhang N, Zhou ZQ, Xu QT, Mei FZ, Qu LH (2016) Reactive oxygen species regulate programmed cell death progress of endosperm in winter wheat (Triticum aestivum L.) under waterlogging. Protoplasma 253:311–327

    Article  CAS  PubMed  Google Scholar 

  • Choi SM, Song HR, Han SK et al (2012) HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. Plant J Cell Mol Biol 71:135–146

    Article  CAS  Google Scholar 

  • Clarke A, Samal E, Pillus L (2006) Distinct roles for the essential MYST family HAT Esa1p in transcriptional silencing. Mol Biol Cell 17:1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Y, Ni Z, Dai J, Zhao T, Sun Q (2005) Isolation and expression analysis of genes encoding DNA methyltransferase in wheat (Triticum aestivum L.). Biochem Biophys Acta 1729:118–125

    CAS  PubMed  Google Scholar 

  • Doniak M, Byczkowska A, Kaźmierczak A (2016) Kinetin-induced programmed death of cortex cells is mediated by ethylene and calcium ions in roots of Vicia faba ssp. minor. Plant Growth Regul 78(3):335–343

    Article  CAS  Google Scholar 

  • Evans DE (2004) Aerenchyma formation. New Phytol 161:35–49

    Article  Google Scholar 

  • Ghizzoni M, Wu J, Gao T, Haisma HJ, Dekker FJ, Zheng YG (2012) 6-alkylsalicylates are selective Tip60 inhibitors and target the acetyl-CoA binding site. Eur J Med Chem 47:337–344

    Article  CAS  PubMed  Google Scholar 

  • Gunawardena AHLAN, Pearce DM, Jackson MB, Hawes CR, Evans DE (2001a) Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.). Planta 212:205–214

    Article  CAS  PubMed  Google Scholar 

  • Gunawardena AHLAN, Pearce DME, Jackson MB, Hawes CR, Evans DE (2001b) Rapid changes in cell wall pectic polysaccharides are closely associated with early stages of aerenchyma formation, a spatially localized form of programmed cell death in roots of maize (Zea mays L.) promoted by ethylene. Plant Cell Environ 24:1369–1375

    Article  CAS  Google Scholar 

  • Guo Y, Zhu C, Gan L, Ng D, Xia K (2015) Ethylene is involved in the complete-submergence induced increase in root iron and manganese plaques in Oryza sativa. Plant Growth Regul 76(3):259–268

    Article  CAS  Google Scholar 

  • Haque ME, Abe F, Kawaguchi K (2010) Formation and extension of lysigenous aerenchyma in seminal root cortex of spring wheat (Triticum aestivum cv. Bobwhite line SH 98 26) seedlings under different strengths of waterlogging. Plant Root 4:31–39

    Article  Google Scholar 

  • Hu Y, Zhang L, Zhao L et al (2011) Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize. PloS ONE 6:e22132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Zhang LU, He S et al (2012) Cold stress selectively unsilences tandem repeats in heterochromatin associated with accumulation of H3K9ac. Plant Cell Environ 35:2130

    Article  CAS  PubMed  Google Scholar 

  • Ikura T, Ogryzko VV, Grigoriev M et al (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102:463–473

    Article  CAS  PubMed  Google Scholar 

  • Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287

    Article  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074

    Article  CAS  Google Scholar 

  • Jiang Z, Song XF, Zhou ZQ, Wang LK, Li JW, Deng XY, Fan HY (2010) Aerenchyma formation: programmed cell death in adventitious roots of winter wheat (Triticum aestivum L.) under waterlogging. Funct Plant Biol 37:748–755

    Article  Google Scholar 

  • Kaldis A, Tsementzi D, Tanriverdi O, Vlachonasios KE (2011) Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses. Planta 233:749–762

    Article  CAS  PubMed  Google Scholar 

  • Katsuhiro S, Hirokazu T, Timothyd C, Mikio N (2008) Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Sci 175:52–58

    Article  CAS  Google Scholar 

  • Kawai M, Samarajeewa PK, Barrero RA, Nishiguchi M, Uchimiya H (1998) Cellular dissection of the degradation pattern of cortical cell death during aerenchyma formation of rice roots. Planta 204:277–287

    Article  CAS  Google Scholar 

  • Kim JM, To TK, Ishida J et al (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49:1580

    Article  CAS  Google Scholar 

  • Klok EJ, Wilson IW, Wilson D et al (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong Y, Wang Z, Gu YJ, Xiong F, Chen G, Han Y (2009) Ethylene-induced aerenchyma formation of root in rice. Chin J Rice Sci 23:65–70

    CAS  Google Scholar 

  • Kumar D, Rajanala K, Minocha N, Saha S (2012) Histone H4 lysine 14 acetylation in Leishmania donovani is mediated by the MYST-family protein HAT4. Microbiology 158(Pt 2):328

    Article  CAS  PubMed  Google Scholar 

  • Li C, Xu J, Li J, Li Q, Yang H (2014) Involvement of Arabidopsis histone acetyltransferase HAC family genes in the ethylene signaling pathway. Plant Signal Behav 55:426

    CAS  Google Scholar 

  • Liu X, Luo M, Zhang W, Zhao J, Zhang J, Wu K, Tian L, Duan J (2012) Histone acetyltransferases in rice (Oryza sativa L.): phylogeneticanalysis, subcellular localization and expression. BMC Plant Biol 12:145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan H, Guo B, Pan Y, Chao L, Shen H, Xu R (2018) Morpho-anatomical and physiological responses to waterlogging stress in different barley (Hordeum vulgare L.) genotypes. Plant Growth Regul 85:399–409

    Article  CAS  Google Scholar 

  • Mcdonald MP, Galwey NW, Colmer TD (2001) Waterlogging tolerance in the tribe Triticeae: the adventitious roots of Critesion marinum have a relatively high porosity and a barrier to radial oxygen loss. Plant Cell Environ 24:585–596

    Article  Google Scholar 

  • Pavangadkar K, Thomashow MF, Triezenberg SJ (2010) Histone dynamics and roles of histone acetyltransferases during cold-induced gene regulation in Arabidopsis. Plant Mol Biol 74:183

    Article  CAS  PubMed  Google Scholar 

  • Purnobasuki H, Suzuki M (2005) Aerenchyma tissue development and gas-pathway structure in root of Avicennia marina (Forsk.) Vierh. J Plant Res 118:285–294

    Article  PubMed  Google Scholar 

  • Rajhi I, Yamauchi T, Takahashi H et al (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol 190:351–368

    Article  CAS  PubMed  Google Scholar 

  • Saab IN, Sachs MM (1996) A flooding-induced xyloglucan endo-transglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma. Plant Physiol 112:385–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subbaiah CC, Sachs MM (2003) Calcium-mediated responses of maize to oxygen deprivation. Russ J Plant Physiol 50:752–761

    Article  CAS  Google Scholar 

  • Tang Y, Luo J, Zhang W, Gu W (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24:827

    Article  CAS  PubMed  Google Scholar 

  • To TK, Nakaminami K, Kim JM et al (2011) Arabidopsis HDA6 is required for freezing tolerance. Biochem Biophys Res Commun 406:414–419

    Article  CAS  PubMed  Google Scholar 

  • Trought MCT, Drew MC (1980) The development of waterlogging damage in young wheat plants in anaerobic solution cultures. J Exp Bot 31:1573–1585

    Article  CAS  Google Scholar 

  • Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M (2006) Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol 47:995

    Article  CAS  PubMed  Google Scholar 

  • Turner BM (2000) Histone acetylation and an epigenetic code. Bioessays 22:836–845

    Article  CAS  PubMed  Google Scholar 

  • Vlachonasios KE, Thomashow MF, Triezenberg SJ (2003) Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell 15:626–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Cao H, Sun Y et al (2013) Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly regulate primary seed dormancy via abscisic acid–ethylene antagonism mediated by histone deacetylation. Plant Cell 25:149–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb J, Jackson MB (1986) A transmission and cryo-scanning electron microscopy study of the formation of aerenchyma (cortical gas-filled space) in adventitious roots of rice (Oryza sativa). J Exp Bot 37:832–841

    Article  Google Scholar 

  • Wu K, Zhang L, Zhou C, Yu CW, Chaikam V (2008) HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59:225

    Article  CAS  PubMed  Google Scholar 

  • Xu QT, Fan HY, Jiang Z, Zhou ZQ, Yang L, Mei FZ, Qu LH (2013a) Cell wall degradation and the dynamic changes of Ca2+ and related enzymes in the developing aerenchyma of wheat (Triticum aestivum L.) under waterlogging. Acta Biol Hung 64:328

    Article  CAS  PubMed  Google Scholar 

  • Xu QT, Yang L, Zhou ZQ, Mei FZ, Qu LH, Zhou GS (2013b) Process of aerenchyma formation and reactive oxygen species induced by waterlogging in wheat seminal roots. Planta 238:969–982

    Article  CAS  PubMed  Google Scholar 

  • Xu WL, Han M, Yuan ZL (2017) Effects of 3 triterpenoids on bioactivity and cellulase activity of Reticulitermes speratus. Shandong Agric Sci 49(11):98–104

    Google Scholar 

  • Yu M, Zhou Z, Deng X, Li J, Mei F, Qi Y (2017) Physiological mechanism of programmed cell death aggravation and acceleration in wheat endosperm cells caused by waterlogging. Acta Physiol Plant 39:23

    Article  CAS  Google Scholar 

  • Zhang F, Yue TL, Fei J, Yuan YH, Gao ZP (2004) Research on measuring method of PG activity. Acta Agric Boreali-occidentalis Sinica 13(4):134–137

    Google Scholar 

  • Zhao L, Wang P, Yan S et al (2013) Promoter-associated histone acetylation is involved in the osmotic stress-induced transcriptional regulation of the maize ZmDREB2A gene. Physiol Plant 151:459–467

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Zhang L, Duan J, Miki B, Wu K (2005) HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17:1196–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Jeong JC, Zhu Y et al (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci USA 105:4945

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant Nos. 31071347 and 31471428). We would like to thank Cao Jianbo and He Limin for providing the transmission electron microscope technology and the LetPub for providing linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

LC conceived and designed research. LC and LD conducted experiments. GB contributed new reagents or analytical tools. LD, YL and LZ analyzed data. LC wrote the manuscript under the help of DX and ZZ. All authors read and approved the manuscript.

Corresponding author

Correspondence to Zhuqing Zhou.

Ethics declarations

Conflicts of interest

We declare that the authors have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2666 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Liu, D., Lin, Z. et al. Histone acetylation modification affects cell wall degradation and aerenchyma formation in wheat seminal roots under waterlogging. Plant Growth Regul 87, 149–163 (2019). https://doi.org/10.1007/s10725-018-0460-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-018-0460-y

Keywords

Navigation