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Abstract
Upon toxic metal stress numerous defence mechanisms have been induced, including the synthesis of metal-binding ligands 
and plant hormones or plant growth regulators in plants. As several elements in the promoter region of the heavy metal-
responsive genes can be activated by plant hormones and growth regulators, understanding and revealing possible and special 
relationships between these regulator compounds and the metal chelator phytochelatins, which are in the first line of heavy 
metal defence mechanism is of great important. Phytochelatins are synthetized from glutathione and have a structure of 
[(γ-Glu-Cys)n]-Gly, where n is the number of repetition of the (γ-Glu-Cys) units. Evidences for the role of PCs in heavy metal 
tolerance are very strong; however, little information is available on how plant growth regulators influence the phytochelatin 
synthesis at molecular or even gene expression level. In the present review we provide an overview of the role and synthesis 
of phytochelatins in metal-tolerance mechanism from a new point of view, i.e. their relation to the plant growth regulator 
molecules, with special regard also on those cases, when close direct relationship exists because of the partly overlapped 
synthesis pathways of plant growth regulators and glutathione/phytochelatins.
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Abbreviations
ABA	� Abscisic acid
ACC​	� 1-Aminocyclopropane-1-carboxylic acid
ACO	� ACC-oxidase
ACS	� ACC-synthase
BRs	� Brassinosteroids
CKs	� Cytokinins
dcSAM	� Decarboxylated S-adenosyl-methionine
γ-GCS	� γ-Glutamyl-cysteine synthase
GA	� Gibberelins
GSH	� Glutathione
GSS	� Glutathione synthase
JA	� Jasmonic acid
MeJA	� Methyl jamonic acid
NaSA	� Sodium salicylate
PA	� Polyamine
PC	� Phytochelatin
PCS	� Phytochelatin synthase

PUT	� Putrescine
SA	� Salicylic acid
SAM	� S-adenosyl-methionine
SPD	� Spermidine
SPDS	� Spermidine synthase
SPM	� Spermine
SPMS	� Spermine synthase

Introduction

Heavy metals induce numerous physiological changes in 
plants, such as growth inhibition, imbalance of water and ion 
homeostasis, inhibition of photosynthesis, changes in enzyme 
activities, and formation of free radicals, that are all well-
studied (Di Toppi and Gabbrielli 1999). Mechanism leading 
to the heavy metal tolerance can be divided into two groups: 
avoidance and tolerance strategies. The first one limits the 
uptake of the heavy metal, thus excluding them from plant 
tissue, includes modification of rhizosphere pH, exudation of 
organic acids, development of mucous barrier on root tips or 
immobilization in the cell walls (Hall 2002). While plants with 
tolerance strategies are capable of accumulating, storing and 
immobizaling heavy metals by binding them to amino acids, 

 *	 Magda Pál 
	 pal.magda@agrar.mta.hu

1	 Centre for Agricultural Research, Agricultural 
Institute, Hungarian Academy of Sciences, POB 19, 
Martonvásár 2462, Hungary

Author's personal copy

http://orcid.org/0000-0003-3468-962X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10725-018-0391-7&domain=pdf


	 Plant Growth Regulation

1 3

proteins or peptides (Pál et al. 2006). The nitrate and sulphate 
assimilation pathways activated during heavy metal stress play 
an important role in the increase of phytochelatin (PC) produc-
tion (Astolfi et al. 2004; Wu et al. 2015); furthermore, prior-
ity of phytochelatin synthesis during cadmium exposure even 
under reduced sulfate uptake has been also reported (Yama-
guchi et al. 2017).

A growing body of evidence suggests that growth regula-
tors or plant hormones, such as abscisic acid (ABA), ethylene, 
jasmonic acid (JA), polyamines (PA) and SA, are involved in 
the heavy metal stress signalling of plants (Groppa et al. 2007; 
Pál et al. 2013; Chmielowska-Bąk et al. 2014; Yan et al. 2015; 
Keunen et al. 2016; Singh et al. 2016). Acting as signalling 
molecules in a highly complex relationship, these molecules 
allow plants to retain growth plasticity during development 
and are probably the main means by which plants respond 
to abiotic and biotic stresses (Bücker-Neto et al. 2017). Both 
their increased endogenous levels under heavy metal stress and 
the relationship between their modified endogenous content 
(resulted from genetic modification or exogenous treatment) 
and the level of heavy metal tolerance have been reported in 
various plant species (Xiang and Oliver 1998; Groppa et al. 
2001; Maksymiec and Krupa 2002, Hsu and Kao 2003; 
Maksymiec et al. 2005; Wen et al. 2010a; Tao et al. 2013; 
Chmielowska-Bąk et al. 2013; Kovács et al. 2014; Gondor 
et al. 2016; Pál et al. 2017). Majority of the experimental data 
focuses on the changes in growth and photosynthesis param-
eters, the induction of antioxidant system or the relationship 
between the observed protective effect and the hormonal 
changes.

Details of structures, biosynthesis, analytical methods, 
related genes and other aspects of PCs are also available in 
previous reviews (Cobbett 2000; Inouhe 2005; Yadav 2010; 
Merlos Rodrigo et al. 2014). However, little information is 
available on how plant growth regulators influence the PC 
synthesis at molecular or even gene expression level. The 
synthesis and subsequent vacuolar compartmentalization of 
PCs, which are capable to form complexes with metal ions, are 
induced shortly after the exposure to heavy metal, while other 
defence mechanisms, involving the action of stress proteins, 
antioxidant enzymes or salicylic acid (SA) also play an impor-
tant role (Pál et al. 2006). Finding novel mechanism participat-
ing in the regulation of PC synthesis during toxic metal stress 
conditions will be of great importance. In the present review, 
we provide an overview of the role and synthesis of PCs for the 
better understanding of the metal-tolerance mechanism from a 
new point of view, i.e. their relation to the plant growth regula-
tor molecules.

Synthesis and role of PCs

When Cd enters the cytosol, numerous metal-binding 
ligands, e.g. the system linked to the sulphur metabo-
lism, become activated in plants, resulting in the develop-
ment of complex-forming agents. PCs have a structure of 
[(γ-Glu-Cys)n]-Gly, where n is the number of repetition 
of the (γ-Glu-Cys) units, which is generally in the range 
of 2–11. The structural model of the Cd–PC complex is 
[Cd3(PC3)4], which contains discrete Cd(SCys)4 units 
(Cobbett 2000). Different PC families are well-charac-
terised (Cobbett 2000). PCs form low-molecular-weight 
(LMW) complexes with metal ions. These complexes 
then form high-molecular-weight (HMW) complexes 
with acid-labile sulphur, which are more stable and have 
greater affinity for heavy metal. HMW complex contains 
mostly longer peptides [higher number of repetition of the 
(γ-Glu-Cys) units], while LMW complex contains shorter 
peptides (Cobbett 2000).

The enzyme catalysing the synthesis of PCs is 
γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin 
synthase: PCS) (Chen et al. 1997). PCS gene was expressed 
constitutively in Arabidopsis, but in wheat increased level of 
PCS transcriptome was found during Cd exposure suggest-
ing that, in some species, PCS activity may be regulated at 
both the transcriptional and post-translational levels (Cob-
bett 2000). Furthermore, the biosynthesis of PCs is self-reg-
ulated, as the product of the reaction (PC) upon binding the 
activator metal ions, inhibit the enzyme. As PC accumula-
tion is usually in parallel with the decline of GSH level, cells 
exposed to heavy metal need to replace the utilized GSH. 
According to these, the γ-glutamylcysteine synthetase and 
glutathione synthetase activities co-limit GSH production 
under heavy metal stress (Zhu et al. 1999) and metal toler-
ance is related to the ability of plants to produce PCs and to 
prevent associated GSH depletion (Jozefczak et al. 2012).

The literature on the relationship between heavy metal 
tolerance and PC synthesis is interspersed with many contra-
dictions. On one hand, evidences for the role of PCs in heavy 
metal tolerance are very strong (Zagorchev et al. 2013). The 
cad1 mutant of Arabidopsis plants were deficient in their 
ability to accumulate PCs and the amount of accumulated 
PCs correlated with the level of Cd tolerance (Howden et al. 
1995). However, higher gene expression level of PCS in 
Arabidopsis, due to its transgenic modification, resulted in 
increased PC production, but did not lead to increased Cd 
tolerance (Lee et al. 2003). When comparing the Cd toler-
ance of maize, rice and wheat plants, maize proved to be the 
most sensitive to stress (Wójcik and Tukendorf 1999) despite 
having accumulated far less Cd than the other species and 
synthesised sufficient amount of PCs in the most intensive 
mode for the efficient detoxification of Cd.
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In general, it can be declared that the results on PCs differ 
depending on the metal ion, its concentration, the duration 
of the treatment and the plant species. PCs may form the 
first line of defence with a decisive role being played by 
the quantity of PCs, the rate of PC formation, the number 
of (γ-Glu-Cys) units and the rate of HMW complex for-
mation. The second line is ensured by other systems, such 
as exclusion and immobilisation, antioxidant system, stress 
proteins and hormones (Pál et al. 2006). However, PCs have 
dual role: they can bind the heavy metals to inactivate and 
detoxify in the vacuole, and they can transfer the essential 
metals to newly synthesised apoenzymes (Zenk 1996). In 
addition, PCs are found to be part of the defence mechanism 
not only against metal-related stresses but also in response 
to other stressors such as drought, cold, heat, salt, UV-B and 
herbicide (Emamverdian et al. 2015).

Plant growth regulators

Investigations on naturally occurring compounds capa-
ble of reducing the stress sensitivity of plants are of great 
importance in the twenty-first century, where certain human 
activities have been identified as primary causes of ongo-
ing climate change and contamination of the environment 
with heavy metals is a serious problem. Plant hormones and 
PAs are ubiquitously found in the plant kingdom. Like other 
abiotic stresses, heavy metal stress also induces the altera-
tion in the metabolism of plant hormones or plant growth 
regulators. These changes are involved in the perception and 
responses to heavy metal stress (Chmielowska-Bąk et al. 
2013). Table 1 shows exemplary studies on the relationship 
between plant growth regulators and thiol-related peptide 
synthesis. In this chapter, connection of PC synthesis to 
these plant growth regulators is discussed.

ABA

ABA is a multifaceted plant hormone. Besides controlling 
many developmental and growth processes in plants, ABA 
is commonly known as a stress hormone (Vishwakarma 
et al. 2017). Several stress factors including toxic metals 
induce ABA synthesis. Arsenic stress resulted in increased 
expression of ABA biosynthesis genes, as well as in the 
up-regulation of ABA signalling genes in rice (Huang 
et al. 2012). Exogenous ABA decreased Cd content and 
enhanced Cd tolerance in rice, while application of ABA 
biosynthesis inhibitor reduced ABA accumulation, increased 
the Cd content and decreased Cd tolerance (Hsu and Kao 
2003). Despite the lack of exact knowledge regarding the 
way in which the ABA signalling pathway is involved in the 
response to heavy metal exposure, strong correlation has 
been assumed between ABA content and the level of heavy 

metal tolerance (Bücker-Neto et al. 2017). Cd treatments led 
to increased ABA levels in roots of Phragmites and Typha 
plants and this increase indicated the involvement of ABA in 
early Cd stress responses. In the same experiment it was also 
found that ABA has a role in an activation of O-acetylserine 
(thiol) lyase, the enzyme responsible for cysteine biosyn-
thesis (Fediuc et al. 2005). Cd treatment also increased the 
ABA content of potato tuber discs and, in parallel with this 
elevated StPCS1 transcript level, PCS activity and total PC 
content was detected. Similar changes in PC synthesis were 
found after ABA treatment (Stroiński et al. 2010). Early peak 
in ABA content occurs in response to heavy metal suggest-
ing that ABA is involved in Cd detoxification by increasing 
acting as a stress signal triggering downstream reactions, 
such as synthesis of PCs in Deschampsia cespitosa L. (Hay-
ward et al. 2013). Using inhibitor of ABA synthesis also 
revealed that ABA is required in Cd signal transduction and 
therefore, in the regulation of PC synthesis as well (Stroiński 
et al. 2013). ABA differentially affected the GSH content, 
GSH:GSSG ratio, GR activity and γ-ECS transcript level 
in two maize genotypes differing in their stress tolerance 
(Kellős et al. 2008), vice versa GSH treatment also enhance 
ABA synthesis and accumulation (Cheng et al. 2015) sug-
gesting crosstalk between ABA and GSH. In spite of con-
siderable progress in the understanding of ABA signalling 
pathways, its relationship with the detoxification system is 
still poorly known.

Auxins

Auxin, as a plant growth hormone, is able to stimulate plant 
growth and development in response to gravity or light 
stimuli (Zhao 2010). Its homeostasis (synthesis, distribution, 
metabolism and transport) within the plant is regulated by 
various environmental factors and may be disturbed by heavy 
metals (Hu et al. 2013). However, application of tryptophan, 
a precursor of auxin to the roots of rice seedlings, enhanced 
plant growth and yield under Cd stress (Farooq et al. 2015). 
It has been also revealed that under optimum growth condi-
tions, root growth dependence on glutathione is linked to 
auxin transport in Arabidopsis (Koprivova et al. 2010). In 
addition, the level of endogenous GSH has been reported to 
affect the expression of auxin transport gene (Eckardt 2010), 
and increased auxin level has a crucial role in the incre-
ment of the glutathione-S-transferase activity in the roots 
of Cd-treated barley (Bočová et al. 2013). Nevertheless, the 
mode of action, i.e. how increase in endogenous auxin level 
prevents growth inhibition in plant exposed to heavy metal 
stress, is still poorly understood, and only a few studies are 
available on the relationship between auxin and PCs. Inves-
tigation on correlation between hormonal homeostasis and 
physiological responses in Arabidopsis thaliana exposed to 
Cd, Cu, Zn and their combined treatments suggested that no 
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Table 1   Selected studies on the effects of plant growth regulators on thiol and/or phytochelatin levels in plants

Plants overexpressing the synthesis enzymes related to the plant growth regulators or treated with plant growth regulators are indicated with +, 
while changes found in plants deficient in the synthesis or signalling of plant growth regulator or treated with inhibitors of the plant growth regu-
lators are indicated with: − (ABA abscisic acid, CKs cytokinins, GA gibberelins, BRs brassinosteroids, JA jasmonic acid, MeJA methyl jamonic 
acid, PUT putrescine, SPD spermidine, SPM spermine, SA salicylic acid, NaSA sodium salicylate)

Plant growth regulator Heavy metal Changes related to thiol metabolism Plant species References

ABA+ Cd Increased activity of O-acetylserine (thiol) 
lyase

Phragmites and Typha Fediuc et al. (2005)

Cd Increased gene expression and activity of 
PCS increased PC content

Potato Stroiński et al. (2010, 2013)

Auxin− Zn Decreased cysteine, glutathione and PCs 
content

Rice Begum et al. (2016)

CKs+ Cd Increased non-protein tiol content Solanum melongena L. Singh and Prasad (2014)
Ni No changes in γ-glutamylcysteine, GSH 

and PC contents
Alyssum murale Cassina et al. (2011)

CKs− As Increased gene expression level of 
γ-glutamylcysteine synthetase, GSH 
synthetase and PCS increased GSH and 
PC contents

Arabidodpsis, tobacco Mohan et al. (2016)

Ethylene+ Cd Increased GSH content B. juncea Masood et al. (2012)
Cd Increased gene expression level of GSH 

synthesis enzymes
tobacco Guan et al. (2015)

Ni, Zn Increased GSH content B. juncea Khan and Khan (2014)
Ethylene− Pb Decreased GSH content Arabidopsis Cao et al. (2009)

Cd Decreased activiy of PCS activity 
decreased the total SH groups

Carrot Di Toppi et al. (1998)

Cd Decreased gene expression level of GSH 
synthesis enzymes

Arabidopsis Schellingen et al. (2015)

GA+ Cd, Pb, Cu Increased GSH content Chlorella vulgaris Piotrowska-Niczyporuk et al. (2012)
BRs+ Cr Increased GSH content Radish Choudhary et al. (2011)

Cd, Pb Increased GSH content Tomato Rady and Osman (2012)
Cu, Pb, Cd Increased GSH content Chlorella vulgaris Bajguz (2010)
Pb Increased PC content Chlorella vulgaris Bajguz (2002)

JA+ Cd, Cu Increased gene expression level and activ-
ity for GSH synthesis

Arabidodsis thaliana Xiang and Oliver (1998)

Pb Increased GSH content Wolffia arrhizal Piotrowska et al. (2009)
MeJA+ Cd Increased GSH content Rice Singh and Shah (2014)
PUT+ Cd Increased GSH and PC contents Mung bean Nahar et al. (2016)

Cd Decreased gene expression level and 
activity of PCS decreased GSH and PC 
contents

Rice Pál et al. (2017)

SPD+ Cd, Pb, Zn Decreased GSH content European pear Wen et al. (2010a, b)
Cr Increased GSH and PC contents Radish Choudhary et al. (2012)

SPM+ Cd Decreased GSH content Wheat Groppa et al. (2007)
Cd Increased GSH content Rice Hsu and Kao (2007)
Cd Decreased GSH and PC contents Canavalia lineata Yun et al. (1997)

SA+ Ni Increased activity of serine acetyltrans-
ferase increased GSH content

Arabidopsis Freeman et al. (2005)

Cd Increased GSH content Rice Guo et al. (2009)
Cd Changes in PC pattern Maize Szalai et al. (2013)
Cd No changes in gene expression level of 

PCS no changes in GSH content
Barley Metwally et al. (2003)

Cd Increased activity of PCS increased PC 
content

Maize Gondor et al. (2016)

NaSA+ Cd Increased PC content Maize Gondor et al. (2016)
Melatonin Cd Increased GSH and PC contents Tomato Hasan et al. (2015)
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direct relationship exists between the level of GSH/PCs and 
auxin (Sofo et al. 2013). However, significant decreases in 
the amount of cysteine, glutathione and total PCs was found 
after treatment with auxin inhibitor in roots of rice plants 
(Begum et al. 2016). Recently it was also demonstrated that 
Cd inhibits root meristem growth by NO-mediated repres-
sion of auxin accumulation and signalling in Arabidopsis 
(Yuan and Huang 2016), in addition, that the knockout muta-
tion of PCS1 in Arabidopsis may decrease the auxin content 
and distribution (De Benedictis et al. 2018). According to 
these PCs/PCS may have putative role in the root meristem 
maintenance and growth recovery under heavy metal stress, 
due their direct or indirect relationship with auxin.

Cytokinins (CKs)

Since their discovery, the roles of CKs were documented 
in almost all aspects of plant growth and development. In 
addition, CK-dependent modulation of stress responses has 
also been studied at various levels (Raines et al. 2016). The 
decrease in CK content was found in wheat plants after Cd 
treatment, which was in parallel with elevated CK oxidase 
activity (Veselov et al. 2003). Cd-induced CK oxidation/deg-
radation has also been reported in durum wheat (Kaminek 
et al. 1997). According to these, application of CK antago-
nist or an inhibitor of CK degradation can improve plant 
growth of Cd-treated Bulbine natalensis and Rumex crispus 
(Gemrotová et al. 2013). On the other hand, it has been 
noted that exogenous CKs were able to reverse heavy metal 
induced toxicity in various plant species (Al-Hakimi 2007; 
Piotrowska-Niczyporuk et al. 2012), which was related to 
enhanced antioxidant capacity (increased activity of anti-
oxidant enzymes and the contents of non-enzymatic antioxi-
dants, such as non-protein thiols) (Singh and Prasad 2014). 
In contrast, CK signalling mutants and transgenic Arabidop-
sis and tobacco plants with reduced endogenous CK levels 
showed higher accumulation of thiol compounds, such as 
GSH and PCs (PC2, PC3 and PC4) leading to higher As 
tolerance compared to the wild type. Furthermore, plants 
overexpressing cytokinin oxidase/dehydrogenase 1 showed 
increased expression of genes related to PC biosynthesis 
(γ-glutamylcysteine synthetase, GSH synthetase and PCS) 
compared to wild-type controls (Mohan et al. 2016). How-
ever CK treatments produced a significant increase in plant 
biomass and transpiration rate of the Ni hyper-accumulator, 
Alyssum murale, whereas no significant variation in Ni 
accumulation or the concentration of non-protein thiols 
(γ-glutamylcysteine, GSH and total PC) was observed (Cas-
sina et al. 2011). Recently it has also been demonstrated 
that Cd-induced inhibition of root growth is related to an 
altered homeostasis of auxin/CK signalling, which in turn 
influence meristem size and stem cell niche activity (Bruno 
et al. 2017). These findings are suggesting the existence of 

an antagonistic interaction between auxin and CK in their 
relationship with PCs.

Ethylene

This volatile molecule mediates many complex aspects 
of plant growth and development and also mediates adap-
tive responses to a various stresses (Chang 2016), such as 
heavy metal stress (Keunen et al. 2016). Several toxic metal 
treatments have been reported to induce ethylene synthe-
sis and signalling in various plant species (Keunen et al. 
2016). These data suggested that the heavy metal-induced 
ethylene production is plant-specific and also depends on 
the type and concentration of the heavy metal. Generally, 
the induction of ethylene by metals may cause unbeneficial 
symptoms in plants and have role in Cd-induced cell death. 
Application of the ethylene inhibitor, silver thiosulphate, 
completely ameliorated the Cd-induced negative effects 
(Maksymiec 2011). In acs2-1 acs6-1 (ACS: 1-aminocy-
clopropane-1-carboxylic acid synthase), double knockout 
Arabidopsis mutants showed higher leaf biomass in parallel 
with decreased ethylene production under short-term, low 
concentration Cd-stress (Schellingen et al. 2014). However, 
it has also been reported that both acs2-1acs6-1 double 
knockout mutant and wild type of Arabidopsis were sen-
sitive to prolonged, severe Cd-stress, and lower transcript 
levels of genes encoding GSH biosynthesis enzymes were 
found in acs2-1 acs6-1 double knockout Arabidopsis mutant 
(Schellingen et al. 2015) indicating that ethylene was nec-
essary to maintain the GSH level. It was also found that 
ethylene insensitive ein2-1 mutants were more sensitive to 
Pb, which was related to the decreased GSH-content and it 
also suggests that crosstalk exists between ethylene and GSH 
(Cao et al. 2009) (Keunen et al. 2016). Since GSH synthesis 
is affected by S-availability and ethylene induces the activity 
of ATP sulphurylase leading to the accumulation of sulphur 
(Iqbal et al. 2013), ethylene seems to have a modulator role 
in making up the demand for GSH during metal stress in 
order to alleviate metal toxicity. According to these, a certain 
accumulation of ethylene, which was lower than the heavy 
metal-induced ethylene level, but still higher than the eth-
ylene level of control plants, could lead to beneficial plant 
responses, such as increased sulphur metabolism and GSH 
synthesis (Masood et al. 2012; Thao et al. 2015). Transgenic 
tobacco plants overexpressing ethylene responsive factor 
1 (ERF1) showed greater tolerance to Cd stress than the 
wild, which was related to an enhanced expression level of 
GSH biosynthesis genes (Guan et al. 2015). It has also been 
mentioned that this positive crosstalk exists despite the fact 
that Cys is a common precursor for both GSH and ethylene 
synthesis (Keunen et al. 2016) (Fig. 1). Nevertheless, there 
is only a few studies on the direct relationship between eth-
ylene and PC synthesis under heavy metal stress. In cell 
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suspension cultures of carrot, the absence of ethylene (after 
treatment with an inhibitor of ethylene-biosynthesis, or use 
of ethylene traps) caused both a decrease in the PCS activ-
ity and a strong decrease in the amount of total SH groups 
in plants. However, the 1-aminocyclopropane-1-carboxylic 
acid (precursor of ethylene) supply did not increase them 
(Di Toppi et al. 1998).

Gibberelins (GAs)

GAs are plant hormones that are essential for many devel-
opmental processes in plants but their central role in the 
response to abiotic stress is becoming increasingly evident 
(Colebrook et al. 2014). The role of GAs in the protection 
against Cd stress has been extensively reported (Asgher et al. 
2015) and it has been demonstrated that the expression of 
adenosine 5′-phosphosulphate reductase, the key enzyme of 
sulphate assimilation, was increased by GA in Arabidopsis 
(Koprivova et al. 2008). Furthermore, increased GSH con-
tent has also been detected upon Cd, Pb and Cu exposure 
in combination with GA in Chlorella vulgaris (Piotrowska-
Niczyporuk et al. 2012). Although, increased level of GA3 
levels has been detected in the root of Arabidopsis plant after 
Cd, Cu and Zn treatments, this increased hormone level was 
not in direct correlation with the induction of GSH or PC 
synthesis both at molecular and gene expression level (Sofo 

et al. 2013). According to these, possible interaction between 
GAs and PCs still needs extensive further research.

Brassinosteroids (BRs)

BRs are steroidal plant hormones that play role in the regu-
lation of various plant growth and development processes. 
Moreover, BRs regulate the expression of hundreds of genes 
affecting numerous metabolic pathways (Fariduddin et al. 
2014). Besides reducing the accumulation of heavy met-
als, BRs stimulate the growth and development of plants 
exposed to heavy metal stress (Rajewska et al. 2016). In 
most of the cases, the protective effect of BRs were related 
to enhanced antioxidant enzyme activities (Bajguz 2010; 
Choudhary et al. 2011) or increased GSH pool in various 
plant species under heavy metal stress (Bajguz 2010; Choud-
hary et al. 2011; Rady and Osman 2012). However, BRs 
have also been demonstrated to stimulate the syntheses of 
PC in C. vulgaris treated with Pb, and the different BRs 
had various stimulatory effects (Bajguz 2002). Increase in 
total PC content was also observed in radish treated with 
epibrassinolide alone or in combination with Cu (Choudhary 
et al. 2010). However, investigation on Arabidopsis for the 
better understanding of the relationship between Cd stress 
responses and BR signalling has suggested that the synthesis 

Fig. 1   Possible relationship between plant growth regulators and 
thiol-related peptide synthesis. Black arrows indicate the synthesis 
pathways of phytochelatins, ethylene and polyamines with the com-

mon precursor, cysteine. Dotted arrows show the positive (+) or neg-
ative (−) effects of the plant growth regulators on the phytochelatin 
synthesis pathway (for details see text)
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of PCs is BR-independent in response to Cd stress (Villiers 
et al. 2012).

Jasmonates

Jasmonates (jasmonic acid: JA and methyl jasmonates: 
MeJA) are known to take part in various physiological pro-
cesses. JA also has role as a signalling molecule in plants 
under different environmental stresses (Ahmad et al. 2016). 
The involvement of JA in the early response to Cd has been 
described in Phaseolus coccineus (Maksymiec 2011). Cu2+ 
and Cd2+ induced accumulation of JA in the leaves of Arabi-
dopsis thaliana and P. coccineus plants, and the relation of 
JA to the mechanism of toxic action of both heavy metals 
have been also reported (Maksymiec et al. 2005). In addi-
tion, Cd-induced growth inhibition of Phaseolus coccineus 
leaves was alleviated by most inhibitors of the jasmonate 
pathway (Maksymiec 2011). However, MeJA alleviates cad-
mium toxicity in Solanum nigrum by regulating metal uptake 
and antioxidant capacity (Yan et al. 2015), while JA allevi-
ates negative impacts of Cd by modifying osmolytes and 
antioxidants in faba bean (Ahmad et al. 2017). Treatment 
with JA at the higher concentration (100 µM) also resulted 
in the enhancement of heavy metal toxicity in Wolffia arrhi-
zal, while at lower concentration (0.1 µM) it inhibited heavy 
metal accumulation, restored plant growth and increased the 
GSH content (Piotrowska et al. 2009). Seed priming with 
JA also help in ameliorating toxic effect of Cu in Cajanus 
cajan (Poonam et al. 2013) and that of Ni in Glycine max 
(Sirhindi et al. 2016).

MeJA treatment accelerated the Cd-induced GSH accu-
mulation in rice (Singh and Shah 2014). JA pre-treatment 
also potentiated and enhanced GSH synthesis before cop-
per treatment in Arabidopsis (Xiang and Oliver 1998). In 
contrast, the lack of induction of further accumulation of 
GSH was found after combined JA and heavy metal treat-
ment in C. vulgaris compared to heavy metal stress alone 
(Piotrowska-Niczyporuk et al. 2012). It has been revealed 
that glutathione accumulation is necessary for the up-regu-
lation of the JA signalling pathway, implicating glutathione 
as a factor, which determines basal JA gene expression (Han 
et al. 2013). In addition, among others, genes related to JA 
biosynthesis were activated during GSH treatment in Arabi-
dopsis (Cheng et al. 2015). Although there are a few studies, 
which investigate how JA influence GSH content especially 
under heavy metal stress and, to our knowledge, none of 
them focuses on PC synthesis.

PAs

Heavy metals affect various processes in plants including 
synthesis of protective compounds, such as PAs, which are 
present in almost all living organisms. However, PAs should 

no longer be considered simply as protective molecules but 
rather as compounds that are involved in a complex signal-
ling system with a key role in the regulation of stress toler-
ance (Chmielowska-Bąk et al. 2014; Pál et al. 2015). Cd 
stress has been reported to increase the putrescine (PUT) 
content and to induce the enzymes involved in its synthesis 
in wheat plants, while Cd-induced oxidative stress was alle-
viated by PA treatment in the same plant species (Groppa 
et al. 2007). Exogenous PAs have been reported to reverse 
heavy metal-induced oxidative stress mainly due to the 
activation of the antioxidant system (Groppa et al. 2001; 
Tang et al. 2005; Zhao and Yang 2008). Although changes 
in the content of PAs and GSH and/or PC contents under 
heavy metal stress have been studied for a long time, for 
example, in the case of Hg (Agrawal et al. 1992), Cd (Pal 
et al. 2006) and Zn (D’Souza and Devaraj 2012), only a few 
controversial studies have been found in the literature on 
the effect of PAs on PC synthesis under heavy metal stress; 
in particular, regarding the special aspect of their interac-
tion, as the synthesis of PCs and the triamine spermidine 
(SPD) and the tetramine spermine (SPM) (also called higher 
PAs) are linked with each other due to their common pre-
cursor, Cys (Fig. 1). SPM-treatment in combination with 
Cd resulted in decreased GSH and PC levels in Canavalia 
lineata and in the roots an additional PC form with lower 
affinity for Cd was found (Yun et al. 1997). In a transgenic 
European pear, the overexpression of SPD synthase resulted 
in increased SPD content and significantly depleted GSH 
level under heavy metal stress conditions compared to the 
wild type (Wen et al. 2010b). Comparative study on poplar 
and willow plants revealed that Cd enhanced the PC con-
tent especially in the leaves of poplar but not in willow. 
However, Cd increased PA contents in both the roots and 
leaves of willow, but only that of putrescine in the roots 
of poplar, which suggests antagonistic relationship between 
PA and PC (Zacchini et al. 2011). SPM was also found to 
provide protection against Cd-induced oxidative damage in 
wheat, but failed to reverse the depletion in GSH content 
(Groppa et al. 2007). However, there may be a difference 
in the effect of PUT and higher PA treatments as SPD and 
SPM, as with the exception of PUT, PAs reduced Cd toxic-
ity and reversed the Cd-induced decrease in GSH in rice 
(Hsu and Kao 2007). Exogenous application of SPD and 
SPM does not require additional decarboxylated S-adenosyl 
methionine for the synthesis of higher PAs, while after PUT 
treatment, the PUT taken up is metabolised to higher PAs in 
the PA cycle (Pál et al. 2015), thereby using up large quan-
tities of Cys (Fig. 1.). However, PUT reduced Cd uptake 
and increased GSH/PC content in mung bean (Nahar et al. 
2016) and in another case, SPD increased the GSH and PC 
content, but did not alleviated Cr-induced growth inhibition 
in radish (Choudhary et al. 2012). In a recent study, inhibi-
tion of PUT synthesis, but not PUT application was proved 
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to be protective against Cd stress in rice. PUT pre-treatment 
decreased the content of thiols and PCs, the activity of PCS 
and even on the gene expression level of PCS (Pál et al. 
2017). The decrease in PC may be resulted from the deple-
tion of GSH content due to the increased PA metabolism. 
In addition, as the role of PAs as metal chelators has been 
also suggested (Lomozik et al. 2005), PUT treatment and 
the subsequent PA accumulation and PA–Cd binding may 
have reduced the amount of free Cd ions required for the 
induction of PCS activity and also for PCS gene expression 
(Pál et al. 2017).

SA

Phenolic compounds, such as SA are also involved in many 
important physiological processes (Dempsey and Klessig 
2017). This endogenous plant growth regulator was first 
demonstrated to play a role in biotic stress responses. Soon 
afterwards, however, it became increasingly clear that SA 
plays a role during the plant response to abiotic stresses, 
such as heavy metal toxicity (Janda et al. 2007). On one 
hand, SA pre-treatment was reported to alleviate Cd toxic-
ity, while on the other hand, Cd induced SA accumulation in 
several cases (Metwally et al. 2003; Pál et al. 2005; Krantev 
et al. 2008; Chao et al. 2010; Kovács et al. 2014; Bai et al. 
2015). One of the major role of SA in modulating plant 
responses to various stresses is the induction of antioxidant 
capacity, involving increase in GSH content and GSH:GSSG 
ratio to combat environmental stress in plants (Ghanta et al. 
2014). Constitutively elevated SA level enhances the activity 
of serine acetyltransferase, leading to elevated GSH content 
and increased Ni resistance in Arabidopsis (Freeman et al. 
2005) and SA treatment increased GSH level in rice under 
Cd stress (Guo et al. 2009). Despite the numerous studies 
on the protective role of SA against various heavy metal 
stresses, only a few experiments are focused on the effect of 
SA on PC synthesis. Although SA alleviates Cd toxicity in 
barley, the protection was not related to the metal chelator 
system, as the amount of GSH and the transcription level 
of PCS was indistinguishable between the Cd treatments 
with or without SA (Metwally et al. 2003). Cd stress-induced 
increase in the root SA level has been reported to be related 
to the enhancement of the internal GSH cycle, thus inducing 
not only the antioxidant system but also the metal chelator 
PC synthesis, which promotes Cd stress tolerance in wheat 
seedlings (Kovács et al. 2014). SA treatment as seed soaking 
before Cd exposure of maize plants reduced the heavy metal 
injury and influenced PC composition. SA pre-treatment fol-
lowed by lower concentration of Cd decreased the total PC 
content in the leaves of maize, while in the case of higher Cd 
concentration (after SA pre-treatment), the total PC content 
increased even in comparison to the solely Cd-treated plants 
(Szalai et al. 2013). Along with these, the combination of 

SA with higher Cd concentration also caused a shift towards 
the occurrence of PC with higher number of repetition of 
the (γ-Glu-Cys) units. Comparison study on the effect of 
SA and Na–SA has been revealed that both of them induce 
various defence mechanisms during Cd stress in maize. 
However, SA mainly influences PC content and PCS activ-
ity in the leaves, while NaSA increased the PC level in the 
roots. These differences between SA and NaSA were mani-
fested in the distribution of the Cd and in the changes of the 
antioxidant activities in maize plants (Gondor et al. 2016). 
Induced PCS transcripts has also been reported due to SA 
supplementation in Cr-stressed rice plants in parallel with 
increased PC and thiol contents compared to the control or 
Cr-treated ones (Huda et al. 2016).

Melatonin

Although the role of melatonin as a signal molecule is well-
characterized in animals, the knowledge about their function 
in plants is still fragmentary. Melatonin has been accepted 
as a new plant growth regulator rather than plant hormone 
(Arnao and Hernández-Ruiz 2007; Li et al. 2017). Cd stress 
has been found to increase melatonin content in rice (Byeon 
et al. 2015); in addition, melatonin treatment mitigates Cd 
stress through the induction of PC synthesis in tomato 
(Hasan et al. 2015). In this latter study, melatonin treatment 
resulted in higher GSH, PC2, PC3 and PC4 content in the 
leaves of tomato under Cd stress.

Conclusion and further perspectives

Investigations on naturally occurring compounds capable of 
reducing the stress sensitivity of plants are of great impor-
tance in the ever changing environment. Recently, more 
and more attention has been given to find and/or develop 
strategies in order to alleviate the adverse effects of heavy 
metal stress in plants, in addition to expand our understand-
ing of defence mechanisms involved in the metal detoxi-
fication of plants. Involvement of several plant hormones 
and plant growth regulators was found to be associated 
with heavy metal stress responses. However, the clear link 
between hormonal pathways and metal-binding ligands in 
plants, either due to certain signalling pathway or common 
synthesis pathway, still needs to be explained (Fig. 1.). As 
there are numerous elements in the promoter region of the 
Cd-responsive genes that become activated in plant hormone 
signalling and as these plant growth regulators become 
induced simultaneously upon exposure to heavy metals and 
act in a coherent way, understanding and revealing possi-
ble and special relationships are even more difficult. GSH, 
the precursor of PCs, has several roles—among them the 
most important are primary metabolism, redox signalling 

Author's personal copy



Plant Growth Regulation	

1 3

and detoxification—and its synthesis is affected by many 
factors (Noctor et al. 2012). Accordingly, revealing direct 
relationship between plant growth regulators and GSH/PCs 
at molecular level is only possible if their synthesis pathway 
is linked to each other, as in the case of ET or PAs. How-
ever, there is also a gap in the knowledge of the hormonal 
regulation of PC synthesis at gene expression level. It should 
be also take into consideration that the hormone mediated 
responses of plants may overlap, for example NO acts as 
an intermediate signalling molecule in CK, ABA, auxin, 
and ET signalling, in addition several S-nitrosylated pro-
teins were identified as being polyamine-regulated (Tanou 
et al. 2014). There is some evidence that phytochelatins may 
also undergo S-nitrosylation, which could reduce the abil-
ity to chelate metals (Arasimowicz-Jelonek et al. 2011). It 
has been also shown that mitogen activated protein kinases 
(MAPKs) play a role in the signalling of plant hormones. 
In addition, the effect of cadmium on plant MAPKs in rice 
suggests that a MAPK cascade may also function in the cad-
mium-signalling pathways (Chmielowska-Bąk et al. 2014). 
Analysis of the promoter sequences of Cd-inducible genes 
in soybean seedlings revealed that their promoters possess 
several regulative motifs associated with plant response to 
ABA and ethylene (Chmielowska-Bąk et al. 2013).

Nevertheless, plant tolerance proven by phytohormones 
can not only be promoted directly but also indirectly, e.g. 
ABA-induced stomatal closure may decrease the root-to-
shoot translocation of heavy metals in Arabidopsis (Perfus-
Barbeoch et al. 2002); in case of polyamines, SPD has been 
reported to stimulate root Cd uptake, but not translocation 
in wheat (Tajti et al. 2018) maybe in relation with the heavy 
metal binding property of polyamines; or auxin-induced 
increased hemicellulose level and subsequent metal fixation 
in the roots, also decrease the translocation in Arabidopsis 
(Zhu et al. 2013).

Overall, improving our knowledge of hormone signal-
ling in plants is critical for the development of new biotech-
nologies in order to mitigate heavy metal toxicity. Further 
investigations on hormone synthesis mutants or transgenic 
plants may help to identify clear interrelations. The gath-
ered information may open the way for future experiments 
exploiting these relationships in phytoremediation strategies. 
According to these plant hormones may have promising role 
in improving the phytoextraction capacity of plants.

Acknowledgements  This work was supported by the grant of the 
National Research, Development and Innovation Office, KH 124472, 
which is gratefully acknowledged.

References

Agrawal SB, Agrawal M, Lee EH et al (1992) Changes in polyam-
ine and glutathione contents of a green alga, Chlorogonium 

elongatum (Dang) France exposed to mercury. Environ Exp 
Bot 32:145–151. https​://doi.org/10.1016/0098-8472(92)90039​
-5

Ahmad P, Rasool S, Gul A et al (2016) Jasmonates: multifunctional 
roles in stress tolerance. Front Plant Sci 7:813. https​://doi.
org/10.3389/fpls.2016.00813​

Ahmad P, Alyemeni MN, Wijaya L et  al (2017) Jasmonic acid 
alleviates negative impacts of cadmium stress by modifying 
osmolytes and antioxidants in faba bean (Vicia faba L.). Arch 
Agron Soil Sci 63:1889–1899. https​://doi.org/10.1080/03650​
340.2017.13134​06

Al-Hakimi AMA (2007) Modification of cadmium toxicity in pea seed-
lings by kinetin. Plant Soil Environ 53:129–135

Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Gwóźdź EA (2011) 
The message of nitric oxide in cadmium challenged plants. Plant 
Sci 181:612–620. https​://doi.org/10.1016/j.plant​sci.2011.03.019

Arnao MB, Hernández-Ruiz J (2007) Melatonin promotes adventitious- 
and lateral root regeneration in etiolated hypocotyls of Lupinus 
albus L. J Pineal Res 42:147–152. https​://doi.org/10.1111/j.1600-
079X.2006.00396​.x

Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxic-
ity of cadmium in plants—role of plant growth regulators. Pro-
toplasma 252:399–413

Astolfi S, Zuchi S, Passera C (2004) Role of sulphur availability on 
cadmium-induced changes of nitrogen and sulphur metabolism 
in maize (Zea mays L.) leaves. J Plant Physiol 161:795–802. https​
://doi.org/10.1016/j.jplph​.2003.11.005

Bai X, Dong Y, Kong J et al (2015) Effects of application of sali-
cylic acid alleviates cadmium toxicity in perennial ryegrass. 
Plant Growth Regul 75:695–706. https​://doi.org/10.1007/s1072​
5-014-9971-3

Bajguz A (2002) Brassinosteroids and lead as stimulators of phytochel-
atins synthesis in Chlorella vulgaris. J Plant Physiol 159:321–
324. https​://doi.org/10.1078/0176-1617-00654​

Bajguz A (2010) An enhancing effect of exogenous brassinolide on the 
growth and antioxidant activity in Chlorella vulgaris cultures 
under heavy metals stress. Environ Exp Bot 68:175–179. https​
://doi.org/10.1016/j.envex​pbot.2009.11.003

Begum MC, Islam M, Sarkar MR et al (2016) Auxin signaling is 
closely associated with Zn-efficiency in rice (Oryza sativa L.). 
J Plant Interact 11:124–129. https​://doi.org/10.1080/17429​
145.2016.12200​26

Bočová B, Huttová J, Mistrík I, Tamás L (2013) Auxin signalling is 
involved in cadmium-induced glutathione-S-transferase activ-
ity in barley root. Acta Physiol Plant 35:2685–2690. https​://doi.
org/10.1007/s1173​8-013-1300-3

Bruno L, Pacenza M, Forgione I et al (2017) In Arabidopsis thali-
ana cadmium impact on the growth of primary root by altering 
SCR expression and auxin-cytokinin cross-talk. Front Plant Sci 
8:1323. https​://doi.org/10.3389/fpls.2017.01323​

Bücker-Neto L, Paiva ALS, Machado RD et  al (2017) Inter-
actions between plant hormones and heavy met-
als responses. Genet Mol Biol 40:373–386. https​://doi.
org/10.1590/1678-4685-gmb-2016-0087

Byeon Y, Lee HY, Hwang OJ et al (2015) Coordinated regulation 
of melatonin synthesis and degradation genes in rice leaves in 
response to cadmium treatment. J Pineal Res 58:470–478. https​
://doi.org/10.1111/jpi.12232​

Cao S, Chen Z, Liu G et al (2009) The Arabidopsis ethylene-insensitive 
2 gene is required for lead resistance. Plant Physiol Biochem 
47:308–312. https​://doi.org/10.1016/j.plaph​y.2008.12.013

Cassina L, Tassi E, Morelli E et  al (2011) Exogenous cytokinin 
treatments of an NI hyper-accumulator, Alyssum Murale, 
grown in a serpentine soil: implications for phytoextraction. 
Int J Phytoremed 13:90–101. https​://doi.org/10.1080/15226​
514.2011.56853​8

Author's personal copy

https://doi.org/10.1016/0098-8472(92)90039-5
https://doi.org/10.1016/0098-8472(92)90039-5
https://doi.org/10.3389/fpls.2016.00813
https://doi.org/10.3389/fpls.2016.00813
https://doi.org/10.1080/03650340.2017.1313406
https://doi.org/10.1080/03650340.2017.1313406
https://doi.org/10.1016/j.plantsci.2011.03.019
https://doi.org/10.1111/j.1600-079X.2006.00396.x
https://doi.org/10.1111/j.1600-079X.2006.00396.x
https://doi.org/10.1016/j.jplph.2003.11.005
https://doi.org/10.1016/j.jplph.2003.11.005
https://doi.org/10.1007/s10725-014-9971-3
https://doi.org/10.1007/s10725-014-9971-3
https://doi.org/10.1078/0176-1617-00654
https://doi.org/10.1016/j.envexpbot.2009.11.003
https://doi.org/10.1016/j.envexpbot.2009.11.003
https://doi.org/10.1080/17429145.2016.1220026
https://doi.org/10.1080/17429145.2016.1220026
https://doi.org/10.1007/s11738-013-1300-3
https://doi.org/10.1007/s11738-013-1300-3
https://doi.org/10.3389/fpls.2017.01323
https://doi.org/10.1590/1678-4685-gmb-2016-0087
https://doi.org/10.1590/1678-4685-gmb-2016-0087
https://doi.org/10.1111/jpi.12232
https://doi.org/10.1111/jpi.12232
https://doi.org/10.1016/j.plaphy.2008.12.013
https://doi.org/10.1080/15226514.2011.568538
https://doi.org/10.1080/15226514.2011.568538


	 Plant Growth Regulation

1 3

Chang C (2016) Q&A: how do plants respond to ethylene and what is 
its importance? BMC Biol 14:7. https​://doi.org/10.1186/s1291​
5-016-0230-0

Chao YY, Chen CY, Huang WD, Kao CH (2010) Salicylic acid-medi-
ated hydrogen peroxide accumulation and protection against 
Cd toxicity in rice leaves. Plant Soil 329:327–337. https​://doi.
org/10.1007/s1110​4-009-0161-4

Chen J, Zhou J, Goldsbrough PB (1997) Characterization of phyto-
chelatin synthase from tomato. Physiol Plant 101:165–172. https​
://doi.org/10.1111/j.1399-3054.1997.tb018​33.x

Cheng MC, Ko K, Chang WL et al (2015) Increased glutathione 
contributes to stress tolerance and global translational changes 
in Arabidopsis. Plant J 83:926–939. https​://doi.org/10.1111/
tpj.12940​

Chmielowska-Bąk J, Lefèvre I, Lutts S, Deckert J (2013) Short term 
signaling responses in roots of young soybean seedlings exposed 
to cadmium stress. J Plant Physiol 170:1585–1594. https​://doi.
org/10.1016/j.jplph​.2013.06.019

Chmielowska-Bąk J, Gzyl J, Rucińska-Sobkowiak R et al (2014) The 
new insights into cadmium sensing. Front Plant Sci 5:245. https​
://doi.org/10.3389/fpls.2014.00245​

Choudhary SP, Bhardwaj R, Gupta BD et al (2010) Epibrassinolide 
induces changes in indole-3-acetic acid, abscisic acid and poly-
amine concentrations and enhances antioxidant potential of rad-
ish seedlings under copper stress. Physiol Plant 140:280–296. 
https​://doi.org/10.1111/j.1399-3054.2010.01403​.x

Choudhary SP, Kanwar M, Bhardwaj R et al (2011) Epibrassinolide 
ameliorates Cr(VI) stress via influencing the levels of indole-
3-acetic acid, abscisic acid, polyamines and antioxidant sys-
tem of radish seedlings. Chemosphere 84:592–600. https​://doi.
org/10.1016/j.chemo​spher​e.2011.03.056

Choudhary SP, Kanwar M, Bhardwaj R et al (2012) Chromium stress 
mitigation by polyamine-brassinosteroid application involves 
phytohormonal and physiological strategies in Raphanus sati-
vus L. PLoS ONE 7:e33210. https​://doi.org/10.1371/journ​
al.pone.00332​10

Cobbett CS (2000) Phytochelatins and their roles in heavy metal detox-
ification. Plant Physiol 123:825–832. https​://doi.org/10.1104/
pp.123.3.825

Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of 
gibberellin signalling in plant responses to abiotic stress. J Exp 
Biol 217:67–75. https​://doi.org/10.1242/jeb.08993​8

D’Souza RM, Devaraj VR (2012) Induction of oxidative stress and 
antioxidative mechanisms in hyacinth bean under zinc stress. 
African Crop Sci J 20:17–29

De Benedictis M, Brunetti C, Brauer EK et al (2018) The Arabidopsis 
thaliana knockout mutant for phytochelatin synthase1 (cad1-3) 
is defective in callose deposition, bacterial pathogen defense and 
auxin content, but shows an increased stem lignification. Front 
Plant Sci 9:19. https​://doi.org/10.3389/fpls.2018.00019​

Dempsey DA, Klessig DF (2017) How does the multifaceted plant 
hormone salicylic acid combat disease in plants and are similar 
mechanisms utilized in humans? BMC Biol 15:23. https​://doi.
org/10.1186/s1291​5-017-0364-8

Di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher 
plants. Environ Exp Bot 41:105–130. https​://doi.org/10.1016/
S0098​-8472(98)00058​-6

Di Toppi LS, Lambardi M, Pazzagli L et al (1998) Response to cad-
mium in carrot in vitro plants and cell suspension cultures. Plant 
Sci 137:119–129. https​://doi.org/10.1016/S0168​-9452(98)00099​
-5

Eckardt NA (2010) Redox regulation of auxin signaling and plant 
development. Plant Cell 22:295. https​://doi.org/10.1105/
tpc.110.22021​2

Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal 
stress and some mechanisms of plant defense response. Sci World 
J 2015:1–18. https​://doi.org/10.1155/2015/75612​0

Fariduddin Q, Yusuf M, Ahmad I, Ahmad A (2014) Brassinosteroids 
and their role in response of plants to abiotic stresses. Biol Plant 
58:9–17. https​://doi.org/10.1007/s1053​5-013-0374-5

Farooq H, Asghar HN, Khan MY et al (2015) Auxin-mediated growth 
of rice in cadmium-contaminated soil. Turkish J Agric For 
39:272–276. https​://doi.org/10.3906/tar-1405-54

Fediuc E, Lips SH, Erdei L (2005) O-acetylserine (thiol) lyase activity 
in Phragmites and Typha plants under cadmium and NaCl stress 
conditions and the involvement of ABA in the stress response. 
J Plant Physiol 162:865–872. https​://doi.org/10.1016/j.jplph​
.2004.11.015

Freeman JL, Garcia D, Kim D et al (2005) Constitutively elevated 
salicylic acid signals glutathione-mediated nickel tolerance in 
thlaspi nickel hyperaccumulators. Plant Physiol 137:1082–1091. 
https​://doi.org/10.1104/pp.104.05529​3

Gemrotová M, Kulkarni MG, Stirk WA et al (2013) Seedlings of 
medicinal plants treated with either a cytokinin antagonist (PI-
55) or an inhibitor of cytokinin degradation (INCYDE) are pro-
tected against the negative effects of cadmium. Plant Growth 
Regul 71:137–145. https​://doi.org/10.1007/s1072​5-013-9813-8

Ghanta S, Datta R, Bhattacharyya D et al (2014) Multistep involve-
ment of glutathione with salicylic acid and ethylene to combat 
environmental stress. J Plant Physiol 171:940–950. https​://doi.
org/10.1016/j.jplph​.2014.03.002

Gondor OK, Pál M, Darkó É et al (2016) Salicylic acid and sodium 
salicylate alleviate cadmium toxicity to different extents in maize 
(Zea mays L.). PLoS ONE 11:e0160157. https​://doi.org/10.1371/
journ​al.pone.01601​57

Groppa MD, Tomaro ML, Benavides MP (2001) Polyamines as pro-
tectors against cadmium or copper-induced oxidative damage 
in sunflower leaf discs. Plant Sci 161:481–488. https​://doi.
org/10.1016/S0168​-9452(01)00432​-0

Groppa MD, Tomaro ML, Benavides MP (2007) Polyamines and heavy 
metal stress: the antioxidant behavior of spermine in cadmium- 
and copper-treated wheat leaves. Biometals 20:185–195. https​://
doi.org/10.1007/s1053​4-006-9026-y

Guan C, Ji J, Wu D et al (2015) The glutathione synthesis may be 
regulated by cadmium-induced endogenous ethylene in Lycium 
chinense, and overexpression of an ethylene responsive transcrip-
tion factor gene enhances tolerance to cadmium stress in tobacco. 
Mol Breed 35:1–13. https​://doi.org/10.1007/s1103​2-015-0313-6

Guo B, Liang Y, Zhu Y (2009) Does salicylic acid regulate antioxidant 
defense system, cell death, cadmium uptake and partitioning to 
acquire cadmium tolerance in rice? J Plant Physiol 166:20–31. 
https​://doi.org/10.1016/j.jplph​.2008.01.002

Hall JL (2002) Cellular mechanisms for heavy metal detoxification and 
tolerance. J Exp Bot 53:1–11

Han Y, Mhamdi A, Chaouch S, Noctor G (2013) Regulation of basal 
and oxidative stress-triggered jasmonic acid-related gene expres-
sion by glutathione. Plant Cell Environ 36:1135–1146. https​://
doi.org/10.1111/pce.12048​

Hasan MK, Ahammed GJ, Yin L et al (2015) Melatonin mitigates 
cadmium phytotoxicity through modulation of phytochelatins 
biosynthesis, vacuolar sequestration, and antioxidant potential 
in Solanum lycopersicum L. Front Plant Sci 6:601. https​://doi.
org/10.3389/fpls.2015.00601​

Hayward AR, Coates KE, Galer AL et al (2013) Chelator profiling in 
Deschampsia cespitosa (L.) Beauv. Reveals a Ni reaction, which 
is distinct from the ABA and cytokinin associated response to 
Cd. Plant Physiol Biochem 64:84–91. https​://doi.org/10.1016/j.
plaph​y.2012.12.018

Author's personal copy

https://doi.org/10.1186/s12915-016-0230-0
https://doi.org/10.1186/s12915-016-0230-0
https://doi.org/10.1007/s11104-009-0161-4
https://doi.org/10.1007/s11104-009-0161-4
https://doi.org/10.1111/j.1399-3054.1997.tb01833.x
https://doi.org/10.1111/j.1399-3054.1997.tb01833.x
https://doi.org/10.1111/tpj.12940
https://doi.org/10.1111/tpj.12940
https://doi.org/10.1016/j.jplph.2013.06.019
https://doi.org/10.1016/j.jplph.2013.06.019
https://doi.org/10.3389/fpls.2014.00245
https://doi.org/10.3389/fpls.2014.00245
https://doi.org/10.1111/j.1399-3054.2010.01403.x
https://doi.org/10.1016/j.chemosphere.2011.03.056
https://doi.org/10.1016/j.chemosphere.2011.03.056
https://doi.org/10.1371/journal.pone.0033210
https://doi.org/10.1371/journal.pone.0033210
https://doi.org/10.1104/pp.123.3.825
https://doi.org/10.1104/pp.123.3.825
https://doi.org/10.1242/jeb.089938
https://doi.org/10.3389/fpls.2018.00019
https://doi.org/10.1186/s12915-017-0364-8
https://doi.org/10.1186/s12915-017-0364-8
https://doi.org/10.1016/S0098-8472(98)00058-6
https://doi.org/10.1016/S0098-8472(98)00058-6
https://doi.org/10.1016/S0168-9452(98)00099-5
https://doi.org/10.1016/S0168-9452(98)00099-5
https://doi.org/10.1105/tpc.110.220212
https://doi.org/10.1105/tpc.110.220212
https://doi.org/10.1155/2015/756120
https://doi.org/10.1007/s10535-013-0374-5
https://doi.org/10.3906/tar-1405-54
https://doi.org/10.1016/j.jplph.2004.11.015
https://doi.org/10.1016/j.jplph.2004.11.015
https://doi.org/10.1104/pp.104.055293
https://doi.org/10.1007/s10725-013-9813-8
https://doi.org/10.1016/j.jplph.2014.03.002
https://doi.org/10.1016/j.jplph.2014.03.002
https://doi.org/10.1371/journal.pone.0160157
https://doi.org/10.1371/journal.pone.0160157
https://doi.org/10.1016/S0168-9452(01)00432-0
https://doi.org/10.1016/S0168-9452(01)00432-0
https://doi.org/10.1007/s10534-006-9026-y
https://doi.org/10.1007/s10534-006-9026-y
https://doi.org/10.1007/s11032-015-0313-6
https://doi.org/10.1016/j.jplph.2008.01.002
https://doi.org/10.1111/pce.12048
https://doi.org/10.1111/pce.12048
https://doi.org/10.3389/fpls.2015.00601
https://doi.org/10.3389/fpls.2015.00601
https://doi.org/10.1016/j.plaphy.2012.12.018
https://doi.org/10.1016/j.plaphy.2012.12.018


Plant Growth Regulation	

1 3

Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cad-
mium-sensitive, cad1 mutants of Arabidopsis thaliana are phy-
tochelatin deficient. Plant Physiol 107:1059–1066

Hsu YT, Kao CH (2003) Role of abscisic acid in cadmium tolerance of 
rice (Oryza sativa L.) seedlings. Plant Cell Environ 26:867–874. 
https​://doi.org/10.1046/j.1365-3040.2003.01018​.x

Hsu YT, Kao CH (2007) Cadmium-induced oxidative damage in rice 
leaves is reduced by polyamines. Plant Soil 291:27–37. https​://
doi.org/10.1007/s1110​4-006-9171-7

Hu YF, Zhou G, Na XF et al (2013) Cadmium interferes with main-
tenance of auxin homeostasis in Arabidopsis seedlings. J 
Plant Physiol 170:965–975. https​://doi.org/10.1016/j.jplph​
.2013.02.008

Huang W-L, Lee C-H, Chen Y-R (2012) Levels of endogenous absci-
sic acid and indole-3-acetic acid influence shoot organogenesis 
in callus cultures of rice subjected to osmotic stress. Plant Cell 
Tissue Organ Cult 108:257–263. https​://doi.org/10.1007/s1124​
0-011-0038-0

Huda AKMN., Swaraz AM, Reza MA et al (2016) Remediation of 
chromium toxicity through exogenous salicylic acid in rice 
(Oryza sativa L.). Water Air Soil Pollut. https​://doi.org/10.1007/
s1127​0-016-2985-x

Inouhe M (2005) Phytochelatins. Braz J Plant Physiol 17:65–78. https​
://doi.org/10.1590/S1677​-04202​00500​01000​06

Iqbal N, Masood A, Khan MIR et al (2013) Cross-talk between sulfur 
assimilation and ethylene signaling in plants. Plant Signal Behav 
8:e22478. https​://doi.org/10.4161/psb.22478​

Janda T, Horváth E, Szalai G, Páldi E (2007) Role of salicylic acid in 
the induction of abiotic stress tolerance. In: Salicylic acid: a plant 
hormone. Springer, Dordrecht, pp 91–150

Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glu-
tathione is a key player in metal-induced oxidative stress 
defenses. Int J Mol Sci 13:3145–3175. https​://doi.org/10.3390/
ijms1​30331​45

Kaminek M, Motyka V, Vankova R (1997) Regulation of cytokinin 
content in plant cells. Physiol Plant 101:689–700. https​://doi.org
/10.1034/j.1399-3054.1997.10104​04.x

Kellős T, Tímár I, Szilágyi V et al (2008) Stress hormones and abiotic 
stresses have different effects on antioxidants in maize lines with 
different sensitivity. Plant Biol 10:563–572. https​://doi.org/10.1
111/j.1438-8677.2008.00071​.x

Keunen E, Schellingen K, Vangronsveld J, Cuypers A (2016) Ethylene 
and metal stress: small molecule, big impact. Front Plant Sci 
7:1–18. https​://doi.org/10.3389/fpls.2016.00023​

Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhi-
bition by nickel and zinc in mustard through changes in PSII 
activity, photosynthetic nitrogen use efficiency, and antioxi-
dant metabolism. Protoplasma 251:1007–1019. https​://doi.
org/10.1007/s0070​9-014-0610-7

Koprivova A, North KA, Kopriva S (2008) Complex signaling network 
in regulation of adenosine 5′-phosphosulfate reductase by salt 
stress in Arabidopsis roots. Plant Physiol 146:1408–1420. https​
://doi.org/10.1104/pp.107.11317​5

Koprivova A, Mugford ST, Kopriva S (2010) Arabidopsis root growth 
dependence on glutathione is linked to auxin transport. Plant Cell 
Rep 29:1157–1167. https​://doi.org/10.1007/s0029​9-010-0902-0

Kovács V, Gondor OK, Szalai G et al (2014) Synthesis and role of 
salicylic acid in wheat varieties with different levels of cadmium 
tolerance. J Hazard Mater 280:12–19. https​://doi.org/10.1016/j.
jhazm​at.2014.07.048

Krantev A, Yordanova R, Janda T et al (2008) Treatment with salicylic 
acid decreases the effect of cadmium on photosynthesis in maize 
plants. J Plant Physiol 165:920–931. https​://doi.org/10.1016/j.
jplph​.2006.11.014

Lee S, Moon JS, Ko T-S et al (2003) Overexpression of Arabidopsis 
phytochelatin synthase paradoxically leads to hypersensitivity 

to cadmium stress. Plant Physiol 131:656–663. https​://doi.
org/10.1104/pp.01411​8

Li X, Yu B, Cui Y, Yin Y (2017) Melatonin application confers 
enhanced salt tolerance by regulating Na+ and Cl– accumulation 
in rice. Plant Growth Regul 83:441–454. https​://doi.org/10.1007/
s1072​5-017-0310-3

Lomozik L, Gasowska A, Bregier-Jarzebowska R, Jastrzab R (2005) 
Coordination chemistry of polyamines and their interactions in 
ternary systems including metal ions, nucleosides and nucleo-
tides. Coord Chem Rev 249:2335–2350

Maksymiec W (2011) Effects of jasmonate and some other signalling 
factors on bean and onion growth during the initial phase of 
cadmium action. Biol Plant 55:112–118. https​://doi.org/10.1007/
s1053​5-011-0015-9

Maksymiec W, Krupa Z (2002) Jasmonic acid and heavy met-
als in Arabidopsis plants: a similar physiological response 
to both stressors? J Plant Physiol 159:509–515. https​://doi.
org/10.1078/0176-1617-00610​

Maksymiec W, Wianowska D, Dawidowicz AL et al (2005) The level 
of jasmonic acid in Arabidopsis thaliana and Phaseolus coc-
cineus plants under heavy metal stress. J Plant Physiol 162:1338–
1346. https​://doi.org/10.1016/j.jplph​.2005.01.013

Masood A, Iqbal N, Khan NA (2012) Role of ethylene in alleviation of 
cadmium-induced photosynthetic capacity inhibition by sulphur 
in mustard. Plant Cell Environ 35:524–533. https​://doi.org/10.1
111/j.1365-3040.2011.02432​.x

Merlos Rodrigo MA, Michálek P, Kryštofová O et al (2014) The role 
of phytochelatins in plant and animals: a review. J Met Nano-
technol 1:22–77

Metwally A, Finkemeier I, Georgi M, Dietz K-J (2003) Salicylic acid 
alleviates the cadmium toxicity in barley seedlings. Plant Physiol 
132:272–281. https​://doi.org/10.1104/pp.102.01845​7

Mohan TC, Castrillo G, Navarro C et al (2016) Cytokinin determines 
thiol-mediated arsenic tolerance and accumulation in Arabidop-
sis thaliana. Plant Physiol 171:00372. https​://doi.org/10.1104/
pp.16.00372​2016

Nahar K, Hasanuzzaman M, Alam MM et al (2016) Polyamine and 
nitric oxide crosstalk: antagonistic effects on cadmium toxicity in 
mung bean plants through upregulating the metal detoxification, 
antioxidant defense and methylglyoxal detoxification systems. 
Ecotoxicol Environ Saf 126:245–255. https​://doi.org/10.1016/j.
ecoen​v.2015.12.026

Noctor G, Mhamdi A, Chaouch S et al (2012) Glutathione in plants: 
an integrated overview. Plant Cell Environ 35:454–484. https​://
doi.org/10.1111/j.1365-3040.2011.02400​.x

Pal M, Horvath E, Janda T et al (2006) The effect of cadmium stress on 
phytochelatin, thiol and polyamine content in maize. Cereal Res 
Commun 34:65–68. https​://doi.org/10.2307/23788​895

Pál M, Horváth E, Janda T et al (2005) Cadmium stimulates the accu-
mulation of salicylic acid and its putative precursors in maize 
(Zea mays) plants. Physiol Plant 125:356–364. https​://doi.org/1
0.1111/j.1399-3054.2005.00545​.x

Pál M, Horváth E, Janda T et al (2006) Physiological changes and 
defense mechanisms induced by cadmium stress in maize. J Plant 
Nutr Soil Sci 169:239–246. https​://doi.org/10.1002/jpln.20052​
0573

Pál M, Szalai G, Kovács V et al (2013) Salicylic acid-mediated abiotic 
stress tolerance. In: Hayat S, Ahmad A, AM (eds) Salicylic acid. 
Springer, Dordrecht, pp 183–247

Pál M, Szalai G, Janda T (2015) Speculation: polyamines are important 
in abiotic stress signaling. Plant Sci 237:16–23

Pál M, Csávás G, Szalai G et al (2017) Polyamines may influence phy-
tochelatin synthesis during Cd stress in rice. J Hazard Mater 
340:272–280. https​://doi.org/10.1016/j.jhazm​at.2017.07.016

Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) 
Heavy metal toxicity: cadmium permeates through calcium 

Author's personal copy

https://doi.org/10.1046/j.1365-3040.2003.01018.x
https://doi.org/10.1007/s11104-006-9171-7
https://doi.org/10.1007/s11104-006-9171-7
https://doi.org/10.1016/j.jplph.2013.02.008
https://doi.org/10.1016/j.jplph.2013.02.008
https://doi.org/10.1007/s11240-011-0038-0
https://doi.org/10.1007/s11240-011-0038-0
https://doi.org/10.1007/s11270-016-2985-x
https://doi.org/10.1007/s11270-016-2985-x
https://doi.org/10.1590/S1677-04202005000100006
https://doi.org/10.1590/S1677-04202005000100006
https://doi.org/10.4161/psb.22478
https://doi.org/10.3390/ijms13033145
https://doi.org/10.3390/ijms13033145
https://doi.org/10.1034/j.1399-3054.1997.1010404.x
https://doi.org/10.1034/j.1399-3054.1997.1010404.x
https://doi.org/10.1111/j.1438-8677.2008.00071.x
https://doi.org/10.1111/j.1438-8677.2008.00071.x
https://doi.org/10.3389/fpls.2016.00023
https://doi.org/10.1007/s00709-014-0610-7
https://doi.org/10.1007/s00709-014-0610-7
https://doi.org/10.1104/pp.107.113175
https://doi.org/10.1104/pp.107.113175
https://doi.org/10.1007/s00299-010-0902-0
https://doi.org/10.1016/j.jhazmat.2014.07.048
https://doi.org/10.1016/j.jhazmat.2014.07.048
https://doi.org/10.1016/j.jplph.2006.11.014
https://doi.org/10.1016/j.jplph.2006.11.014
https://doi.org/10.1104/pp.014118
https://doi.org/10.1104/pp.014118
https://doi.org/10.1007/s10725-017-0310-3
https://doi.org/10.1007/s10725-017-0310-3
https://doi.org/10.1007/s10535-011-0015-9
https://doi.org/10.1007/s10535-011-0015-9
https://doi.org/10.1078/0176-1617-00610
https://doi.org/10.1078/0176-1617-00610
https://doi.org/10.1016/j.jplph.2005.01.013
https://doi.org/10.1111/j.1365-3040.2011.02432.x
https://doi.org/10.1111/j.1365-3040.2011.02432.x
https://doi.org/10.1104/pp.102.018457
https://doi.org/10.1104/pp.16.003722016
https://doi.org/10.1104/pp.16.003722016
https://doi.org/10.1016/j.ecoenv.2015.12.026
https://doi.org/10.1016/j.ecoenv.2015.12.026
https://doi.org/10.1111/j.1365-3040.2011.02400.x
https://doi.org/10.1111/j.1365-3040.2011.02400.x
https://doi.org/10.2307/23788895
https://doi.org/10.1111/j.1399-3054.2005.00545.x
https://doi.org/10.1111/j.1399-3054.2005.00545.x
https://doi.org/10.1002/jpln.200520573
https://doi.org/10.1002/jpln.200520573
https://doi.org/10.1016/j.jhazmat.2017.07.016


	 Plant Growth Regulation

1 3

channels and disturbs the plant water status. Plant J 32:539–548. 
https​://doi.org/10.1046/j.1365-313X.2002.01442​.x

Piotrowska A, Bajguz A, Godlewska-Zyłkiewicz B et al (2009) Jas-
monic acid as modulator of lead toxicity in aquatic plant Wolffia 
arrhiza (Lemnaceae). Environ Exp Bot 66:507–513. https​://doi.
org/10.1016/j.envex​pbot.2009.03.019

Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, Godlewska-
z̈yłkiewicz B (2012) Phytohormones as regulators of heavy 
metal biosorption and toxicity in green alga Chlorella vulgaris 
(Chlorophyceae). Plant Physiol Biochem 52:52–65. https​://doi.
org/10.1016/j.plaph​y.2011.11.009

Poonam S, Kaur H, Geetika S (2013) Effect of jasmonic acid on pho-
tosynthetic pigments and stress markers in Cajanus cajan (L.) 
Millsp. Seedlings under copper stress. Am J Plant Sci 4:817–823. 
https​://doi.org/10.4236/ajps.2013.44100​

Rady MM, Osman AS (2012) Response of growth and antioxidant sys-
tem of heavy metal-contaminated tomato plants to 24-epibrassi-
nolide. Afr J Agric Res 7:3249–3254. https​://doi.org/10.5897/
AJAR1​2.079

Raines T, Shanks C, Cheng C-Y et al (2016) The cytokinin response 
factors modulate root and shoot growth and promote leaf 
senescence in Arabidopsis. Plant J 85:134–147. https​://doi.
org/10.1111/tpj.13097​

Rajewska I, Talarek M, Bajguz A (2016) Brassinosteroids and response 
of plants to heavy metals action. Front Plant Sci 7:629. https​://
doi.org/10.3389/fpls.2016.00629​

Schellingen K, Van Der Straeten D, Vandenbussche F et al (2014) 
Cadmium-induced ethylene production and responses in Arabi-
dopsis thaliana rely on ACS2 and ACS6 gene expression. BMC 
Plant Biol 14:214. https​://doi.org/10.1186/s1287​0-014-0214-6

Schellingen K, Van Der Straeten D, Remans T et al (2015) Ethylene 
signalling is mediating the early cadmium-induced oxidative 
challenge in Arabidopsis thaliana. Plant Sci 239:137–146. https​
://doi.org/10.1016/j.plant​sci.2015.07.015

Singh S, Prasad SM (2014) Growth, photosynthesis and oxidative 
responses of Solanum melongena L. seedlings to cadmium 
stress: mechanism of toxicity amelioration by kinetin. Sci 
Hortic (Amsterdam) 176:1–10. https​://doi.org/10.1016/j.scien​
ta.2014.06.022

Singh I, Shah K (2014) Exogenous application of methyl jasmonate 
lowers the effect of cadmium-induced oxidative injury in rice 
seedlings. Phytochemistry 108:57–66. https​://doi.org/10.1016/j.
phyto​chem.2014.09.007

Singh S, Singh A, Bashri G, Prasad SM (2016) Impact of Cd stress on 
cellular functioning and its amelioration by phytohormones: an 
overview on regulatory network. Plant Growth Regul 80:253–
263. https​://doi.org/10.1007/s1072​5-016-0170-2

Sirhindi G, Mir MA, Abd-Allah EF et al (2016) Jasmonic acid modu-
lates the physio-biochemical attributes, antioxidant enzyme 
activity, and gene expression in glycine max under nickel toxicity. 
Front Plant Sci 7:591. https​://doi.org/10.3389/fpls.2016.00591​

Sofo A, Vitti A, Nuzzaci M et al (2013) Correlation between hormonal 
homeostasis and morphogenic responses in Arabidopsis thaliana 
seedlings growing in a Cd/Cu/Zn multi-pollution context. Physiol 
Plant 149:487–498. https​://doi.org/10.1111/ppl.12050​

Stroiński A, Chadzinikolau T, Gizewska K, Zielezińska M (2010) 
ABA or cadmium induced phytochelatin synthesis in potato 
tubers. Biol Plant 54:117–120. https​://doi.org/10.1007/s1053​
5-010-0017-z

Stroiński A, Gizewska K, Zielezińska M (2013) Abscisic acid is 
required in transduction of cadmium signal to potato roots. Biol 
Plant 57:121–127. https​://doi.org/10.1007/s1053​5-012-0135-x

Szalai G, Krantev A, Yordanova R et al (2013) Influence of salicylic 
acid on phytochelatin synthesis in Zea mays during Cd stress. 
Turk J Bot 37:708–714. https​://doi.org/10.3906/bot-1210-6

Tajti J, Janda T, Majláth I et al (2018) Comparative study on the effects 
of putrescine and spermidine pre-treatment on cadmium stress 
in wheat. Ecotoxicol Environ Saf 148:546–554. https​://doi.
org/10.1016/j.ecoen​v.2017.10.068

Tang CF, Liu YG, Zeng GM et al (2005) Effects of exogenous spermi-
dine on antioxidant system responses of Typha latifolia L. under 
Cd2+ stress. J Integr Plant Biol 47:428–434. https​://doi.org/10.1
111/j.1744-7909.2005.00074​.x

Tanou G, Ziogas V, Belghazi M et al (2014) Polyamines reprogram 
oxidative and nitrosative status and the proteome of citrus plants 
exposed to salinity stress. Plant Cell Environ 37:864–885. https​
://doi.org/10.1111/pce.12204​

Tao S, Sun L, Ma C et al (2013) Reducing basal salicylic acid enhances 
Arabidopsis tolerance to lead or cadmium. Plant Soil 372:309–
318. https​://doi.org/10.1007/s1110​4-013-1749-2

Thao NP, Khan MI, Thu NB et al (2015) Role of ethylene and its cross 
talk with other signaling molecules in plant responses to heavy 
metal stress. Plant Physiol 169:73–84. https​://doi.org/10.1104/
pp.15.00663​

Veselov D, Veselov D, Kudoyarova G et al (2003) Effect of cadmium 
on ion uptake, transpiration and cytokinin content in wheat seed-
lings. Bulg J Plant Physiol 29:353–359

Villiers F, Jourdain A, Bastien O et al (2012) Evidence for functional 
interaction between brassinosteroids and cadmium response 
in Arabidopsis thaliana. J Exp Bot 63:1185–1200. https​://doi.
org/10.1093/jxb/err33​5

Vishwakarma K, Upadhyay N, Kumar N et al (2017) Abscisic acid 
signaling and abiotic stress tolerance in plants: a review on cur-
rent knowledge and future prospects. Front Plant Sci 8:161. https​
://doi.org/10.3389/fpls.2017.00161​

Wen X-P, Ban Y, Inoue H et al (2010a) Spermidine levels are impli-
cated in heavy metal tolerance in a spermidine synthase over-
expressing transgenic European pear by exerting antioxidant 
activities. Transgenic Res 19:91–103. https​://doi.org/10.1007/
s1124​8-009-9296-6

Wen XP, Ban Y, Inoue H et al (2010b) Spermidine levels are implicated 
in heavy metal tolerance in a spermidine synthase overexpress-
ing transgenic European pear by exerting antioxidant activi-
ties. Transgenic Res 19:91–103. https​://doi.org/10.1007/s1124​
8-009-9296-6

Wójcik M, Tukendorf A (1999) Cd-tolerance of maize, rye and 
wheat seedlings. ACTA Physiol Plant 21:99–107. https​://doi.
org/10.1007/s1173​8-999-0063-3

Wu Z, Zhang C, Yan J et  al (2015) Effects of sulfur supply and 
hydrogen peroxide pretreatment on the responses by rice under 
cadmium stress. Plant Growth Regul 77:299–306. https​://doi.
org/10.1007/s1072​5-015-0064-8

Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately 
respond to heavy metals and jasmonic acid in Arabidopsis. Plant 
Cell 10:1539–1550. https​://doi.org/10.1105/tpc.10.9.1539

Yadav SK (2010) Heavy metals toxicity in plants: an overview on the 
role of glutathione and phytochelatins in heavy metal stress toler-
ance of plants. S Afr J Bot 76:167–179

Yamaguchi C, Ohkama-Ohtsu N, Shinano T, Maruyama-Nakashita A 
(2017) Plants prioritize phytochelatin synthesis during cadmium 
exposure even under reduced sulfate uptake caused by the disrup-
tion of SULTR1;2. Plant Signal Behav 12:e1325053

Yan Z, Zhang W, Chen J, Li X (2015) Methyl jasmonate alleviates 
cadmium toxicity in Solanum nigrum by regulating metal uptake 
and antioxidative capacity. Biol Plant 59:373–381. https​://doi.
org/10.1007/s1053​5-015-0491-4

Yuan H-M, Huang X (2016) Inhibition of root meristem growth by 
cadmium involves nitric oxide-mediated repression of auxin 
accumulation and signalling in Arabidopsis. Plant Cell Environ 
39:120–135. https​://doi.org/10.1111/pce.12597​

Author's personal copy

https://doi.org/10.1046/j.1365-313X.2002.01442.x
https://doi.org/10.1016/j.envexpbot.2009.03.019
https://doi.org/10.1016/j.envexpbot.2009.03.019
https://doi.org/10.1016/j.plaphy.2011.11.009
https://doi.org/10.1016/j.plaphy.2011.11.009
https://doi.org/10.4236/ajps.2013.44100
https://doi.org/10.5897/AJAR12.079
https://doi.org/10.5897/AJAR12.079
https://doi.org/10.1111/tpj.13097
https://doi.org/10.1111/tpj.13097
https://doi.org/10.3389/fpls.2016.00629
https://doi.org/10.3389/fpls.2016.00629
https://doi.org/10.1186/s12870-014-0214-6
https://doi.org/10.1016/j.plantsci.2015.07.015
https://doi.org/10.1016/j.plantsci.2015.07.015
https://doi.org/10.1016/j.scienta.2014.06.022
https://doi.org/10.1016/j.scienta.2014.06.022
https://doi.org/10.1016/j.phytochem.2014.09.007
https://doi.org/10.1016/j.phytochem.2014.09.007
https://doi.org/10.1007/s10725-016-0170-2
https://doi.org/10.3389/fpls.2016.00591
https://doi.org/10.1111/ppl.12050
https://doi.org/10.1007/s10535-010-0017-z
https://doi.org/10.1007/s10535-010-0017-z
https://doi.org/10.1007/s10535-012-0135-x
https://doi.org/10.3906/bot-1210-6
https://doi.org/10.1016/j.ecoenv.2017.10.068
https://doi.org/10.1016/j.ecoenv.2017.10.068
https://doi.org/10.1111/j.1744-7909.2005.00074.x
https://doi.org/10.1111/j.1744-7909.2005.00074.x
https://doi.org/10.1111/pce.12204
https://doi.org/10.1111/pce.12204
https://doi.org/10.1007/s11104-013-1749-2
https://doi.org/10.1104/pp.15.00663
https://doi.org/10.1104/pp.15.00663
https://doi.org/10.1093/jxb/err335
https://doi.org/10.1093/jxb/err335
https://doi.org/10.3389/fpls.2017.00161
https://doi.org/10.3389/fpls.2017.00161
https://doi.org/10.1007/s11248-009-9296-6
https://doi.org/10.1007/s11248-009-9296-6
https://doi.org/10.1007/s11248-009-9296-6
https://doi.org/10.1007/s11248-009-9296-6
https://doi.org/10.1007/s11738-999-0063-3
https://doi.org/10.1007/s11738-999-0063-3
https://doi.org/10.1007/s10725-015-0064-8
https://doi.org/10.1007/s10725-015-0064-8
https://doi.org/10.1105/tpc.10.9.1539
https://doi.org/10.1007/s10535-015-0491-4
https://doi.org/10.1007/s10535-015-0491-4
https://doi.org/10.1111/pce.12597


Plant Growth Regulation	

1 3

Yun IIS, Hwang ID, Moon BY, Kwon YM (1997) Effect of spermine 
on the phytochelatin concentration and composition in cadmium-
treated roots of Canavalia lineata seedlings. J Plant Biol 40:275–
278. https​://doi.org/10.1007/BF030​30460​

Zacchini M, Iori V, Mugnozza GS et al (2011) Cadmium accumulation 
and tolerance in. Biol Plant 55:383–386

Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for 
thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–
7432. https​://doi.org/10.3390/ijms1​40474​05

Zenk MH (1996) Heavy metal detoxification in higher plants: a review. 
Gene 179:21–30. https​://doi.org/10.1016/S0378​-1119(96)00422​
-2

Zhao Y (2010) Auxin biosynthesis and its role in plant development. 
Annu Rev Plant Biol 61:49–64. https​://doi.org/10.1146/annur​ev-
arpla​nt-04280​9-11230​8

Zhao H, Yang H (2008) Exogenous polyamines alleviate the lipid per-
oxidation induced by cadmium chloride stress in Malus hup-
ehensis Rehd. Sci Hortic (Amsterdam) 116:442–447. https​://doi.
org/10.1016/j.scien​ta.2008.02.017

Zhu YL, Pilon-Smits EA, Tarun AS et al (1999) Cadmium tolerance 
and accumulation in Indian mustard is enhanced by overex-
pressing gamma-glutamylcysteine synthetase. Plant Physiol 
121:1169–1178

Zhu XF, Wang ZW, Dong F et al (2013) Exogenous auxin alleviates 
cadmium toxicity in Arabidopsis thaliana by stimulating syn-
thesis of hemicellulose 1 and increasing the cadmium fixation 
capacity of root cell walls. J Hazard Mater 263:398–403. https​
://doi.org/10.1016/j.jhazm​at.2013.09.018

Author's personal copy

https://doi.org/10.1007/BF03030460
https://doi.org/10.3390/ijms14047405
https://doi.org/10.1016/S0378-1119(96)00422-2
https://doi.org/10.1016/S0378-1119(96)00422-2
https://doi.org/10.1146/annurev-arplant-042809-112308
https://doi.org/10.1146/annurev-arplant-042809-112308
https://doi.org/10.1016/j.scienta.2008.02.017
https://doi.org/10.1016/j.scienta.2008.02.017
https://doi.org/10.1016/j.jhazmat.2013.09.018
https://doi.org/10.1016/j.jhazmat.2013.09.018

	Interactions between plant hormones and thiol-related heavy metal chelators
	Abstract
	Introduction
	Synthesis and role of PCs
	Plant growth regulators
	ABA
	Auxins
	Cytokinins (CKs)
	Ethylene
	Gibberelins (GAs)
	Brassinosteroids (BRs)
	Jasmonates
	PAs
	SA
	Melatonin

	Conclusion and further perspectives
	Acknowledgements 
	References


