Skip to main content
Log in

Endogenous ethylene in indirect somatic embryogenesis of Medicago sativa L.

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Ethylene biosynthesis during different phases of somatic embryogenesis in Medicago sativa L. cv. Rangelander using two regeneration protocols, RPI and RPII, was studied. The highest ethylene production was detected during callus growth on induction medium in both regeneration protocols. Significantly less ethylene was produced by embryogenic suspension than by callus (RPII). Developing embryos synthesized higher amounts of ethylene than mature embryos. Production of ethylene was strongly limited by the availability of 1-aminocyclopropane-1-carboxylic acid and also by ACC-oxidase activity. However, removal of ethylene from culture vessels’ atmosphere using KMnO4 or HgClO4 had no significant effect on callus growth, somatic embryo induction and development. Reducing of ethylene biosynthesis by aminoethoxyvinylglycine substantially decreased somatic embryo production and adversely affected their development, indicating ethylene requirement during proliferation and differentiation but not induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylic acid

ACO:

ACC-oxidase

ACS:

ACC-synthase

AOA:

Aminooxyacetic acid

AVG:

Aminoethoxyvinylglycine

2,4-D:

2,4-Dichlorophenoxyacetic acid

NAA:

α-Naphthaleneacetic acid

NBD:

2,5-Norbornadiene

PAR:

Photosynthetically active radiations

RP:

Regeneration protocol

SE:

Somatic embryogenesis

References

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology. Academic Press, New York

    Google Scholar 

  • Adkins SW, Shiraishi T, McComb JA (1990) Rice callus physiology—identification of volatile emissions and their effects on culture. Physiol Plant 78:526–531. doi:10.1111/j.1399-3054.1990.tb05237.x

    Article  CAS  Google Scholar 

  • Atanassov A, Brown DCW (1984) Plant regeneration from suspension cultures and mesophyll protoplasts of Medicago sativa L. Plant Cell Tissue Organ Cult 3:149–162. doi:10.1007/BF00033736

    Article  Google Scholar 

  • Berardi G, Marino G (1998) Growth and gas evolution in evalution in embryogenic cultures of Cyclamen persicum. Mill affected by the type of vessel closure. Adv Hortic Sci 12:19–24

    Google Scholar 

  • Bingham ET, Hurley LV, Kaatz DM, Saunders JW (1975) Breeding alfalfa which regenerate from callus tissue culture. Crop Sci 15:719–721

    Article  Google Scholar 

  • Buddendorf-Joosten JMC, Woltering EJ (1994) Components of the gaseous environment and their effects on plant growth and development in vitro. Plant Growth Regul 15:1–16. doi:10.1007/BF00024671

    Article  CAS  Google Scholar 

  • Che P, Lall S, Howell SH (2006) Gene expression programs during shoot, root and callus development in Arabidopsis tissue culture. Plant Physiol 141:620–637. doi:10.1104/pp.106.081240

    Article  PubMed  CAS  Google Scholar 

  • El Meskaoui A, Tremblay FM (2001) Involvement of ethylene in the maturation of black spruce embryogenic cell lines with different maturation capacities. J Exp Bot 2:761–769

    Google Scholar 

  • El Meskaoui A, Desjardins Y, Tremblay FM (2000) Kinetics of ethylene biosynthesis and its effects during maturation of white spruce somatic embryos. Physiol Plant 109:333–342. doi:10.1034/j.1399-3054.2000.100315.x

    Article  CAS  Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228. doi:10.1023/A:1024033216561

    Article  Google Scholar 

  • Gamborg OL, LaRue TAG (1971) Ethylene production by plant cell cultures. The effect of auxins, abscisic acid, and kinetin on ethylene production in suspension cultures of rose and ruta cells. Plant Physiol 48:399–401. doi:10.1104/pp.48.4.399

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Oijma K (1968) Nutrient requirement of suspension cultures of soybean root cell. Exp Cell Res 50:148–151. doi:10.1016/0014-4827(68)90403-5

    Article  Google Scholar 

  • Gomez-Jimenez MC, Matilla AJ, Garrido D (1998) Isolation and characterization of a cDNA encoding an ACC-oxidase from Cicer arietinum and its expression during embryogenesis and seed germination. Aust J Plant Physiol 25:765–773

    Article  CAS  Google Scholar 

  • Gonzalez A, Arigita L, Majada J, Sanchez-Tames R (1997) Ethylene in vitro organogenesis and plant growth of Populus tremula L. Plant Growth Regul 22:1–6. doi:10.1023/A:1005751017498

    Article  CAS  Google Scholar 

  • Hansen H, Grossman K (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol 124:1437–1448. doi:10.1104/pp.124.3.1437

    Article  PubMed  CAS  Google Scholar 

  • Hatanaka T, Sawabe E, Azuma T, Uchida N, Yasuda T (1995) The role of ethylene in somatic embryogenesis from leaf discs of Coffea canephora. Plant Sci 107:199–204. doi:10.1016/0168-9452(95)04103-2

    Article  CAS  Google Scholar 

  • Huang XL, Li XJ, Li Y, Huang LZ (2001) The effect of AOA on ethylene and polyamine metabolism during early phases of somatic embryogenesis in Medicago sativa. Physiol Plant 113:424–429. doi:10.1034/j.1399-3054.2001.1130317.x

    Article  PubMed  CAS  Google Scholar 

  • Huxter TJ, Thorpe TA, Reid DM (1981) Shoot initiation and in light and dark-grown tobacco callus: the role of ethylene. Physiol Plant 53:319–326. doi:10.1111/j.1399-3054.1981.tb04507.x

    Article  CAS  Google Scholar 

  • Johnson-Flanagan AM, Spencer MS (1994) Ethylene production during development of mustard (Brassica juncea) and canola (Brassica napus) seed. Plant Physiol 106:601–606

    PubMed  CAS  Google Scholar 

  • Kępczyński J, McKersie BD, Brown DCW (1992) Requirement of ethylene for growth of callus and somatic embryogenesis in Medicago sativa L. J Exp Bot 43:1199–1202. doi:10.1093/jxb/43.9.1199

    Article  Google Scholar 

  • Khalafalla MM, Hattori K (2000) Ethylene inhibitors enhance in vitro root formation on faba bean shoots regenerated on medium containing thidiazuron. Plant Growth Regul 32:59–63. doi:10.1023/A:1006305123585

    Article  CAS  Google Scholar 

  • Kong L, Yeung EC (1994) Effects of ethylene and ethylene inhibitors on white spruce somatic embryo maturation. Plant Sci 104:71–80. doi:10.1016/0168-9452(94)90192-9

    Article  CAS  Google Scholar 

  • Liberman M (1979) Biosynthesis and action of ethylene. Annu Rev Plant Physiol 30:533–591. doi:10.1146/annurev.pp.30.060179.002533

    Article  Google Scholar 

  • Lizada MCC, Yang SF (1979) A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal Biochem 100:140–145. doi:10.1016/0003-2697(79)90123-4

    Article  PubMed  CAS  Google Scholar 

  • Mantiri FR, Kurdyukov S, Lohar DP, Sharopova N, Saeed A, Wang X-D, VandenBosch KA, Rose RJ (2008) The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula. Plant Physiol 146:1622–1636. doi:10.1104/pp.107.110379

    Article  PubMed  CAS  Google Scholar 

  • McKersie BD, Senaratna T, Bowley SR, Brown DCW, Krochko F, Bewley JD (1989) Application of artificial seed technology in the production of hybrid alfalfa (Medicago sativa L.). In Vitro Cell Dev Biol 25:1183–1188. doi:10.1007/BF02621272

    Article  Google Scholar 

  • Meijer EGM (1989) Developmental aspects of ethylene biosynthesis during somatic embryogenesis in tissue cultures of Medicago sativa L. J Exp Bot 40:479–484. doi:10.1093/jxb/40.4.479

    Article  CAS  Google Scholar 

  • Meijer EGM, Brown DCW (1987) Role of exogenous reduced nitrogen and sucrose in rapid high frequency somatic embryogenesis in Medicago sativa. Plant Cell Tissue Organ Cult 10:11–19. doi:10.1007/BF00037492

    Article  CAS  Google Scholar 

  • Meijer EGM, Brown DCW (1988) Inhibition of somatic embryogenesis in tissue cultures of Medicago sativa by aminoethoxyvinylglycine, amino-oxyacetic acid, 2, 4-dinitrophenol and salicylic acid at concentrations which do not inhibit ethylene biosynthesis and growth. J Exp Bot 39:263–270. doi:10.1093/jxb/39.2.263

    Article  CAS  Google Scholar 

  • Mensuali-Sodi A, Panizza M, Tognoni F (1992) Quantification of ethylene losses in different container-seal systems and comparision of biotic and abiotic contributions to ethylene accumulation in cultured tissues. Physiol Plant 84:472–476. doi:10.1111/j.1399-3054.1992.tb04693.x

    Article  CAS  Google Scholar 

  • Moshkov IE, Novikova GV, Hall MA, George EF (2008) Plant growth regulators III: gibberellins, ethylene, abscisic acid, their analogues and inhibitors; miscellaneous compounds. In: George EF, Hall MA, de Klerk GJ (eds) Plant propagation by tissue culture. Springer, Dordrecht, pp 227–282

    Google Scholar 

  • Nissen P (1994) Stimulation of somatic embryogenesis in carrot by ethylene: effects of modulators of ethylene biosynthesis and action. Physiol Plant 92:397–402. doi:10.1111/j.1399-3054.1994.tb08827.x

    Article  CAS  Google Scholar 

  • Saly S, Joseph C, Corbineau F, Lelu MA, Come D (2002) Induction of secondary somatic embryogenesis in hybrid larch (Larix × leptoeuropaea) as related to ethylene. Plant Growth Regul 37:287–294. doi:10.1023/A:1020856112765

    Article  CAS  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204. doi:10.1139/b72-026

    Article  CAS  Google Scholar 

  • Van Dijck R, De Proft M, De Greet J (1988) Role of ethylene and cytokinins in the initiation of lateral shoots growth in bromeliads. Plant Physiol 86:836–840. doi:10.1104/pp.86.3.836

    Article  PubMed  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189. doi:10.1146/annurev.pp.35.060184.001103

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Dr Teresa Radziejewska for linguistic assistance. This work was supported by a grant from the State Committee for Scientific Research (KBN), No. 6 PO4C 048 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Kępczyńska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kępczyńska, E., Ruduś, I. & Kępczyński, J. Endogenous ethylene in indirect somatic embryogenesis of Medicago sativa L.. Plant Growth Regul 59, 63–73 (2009). https://doi.org/10.1007/s10725-009-9388-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-009-9388-6

Keywords

Navigation