Skip to main content

Advertisement

Log in

Effects of brassinosteroids on barley root growth, antioxidant system and cell division

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Homobrassinolide (HBR), which is one of the most biologically active forms of Brassinosteroids (BRs), was used to examine the potential effects of hormone on root germination, antioxidant system enzymes and cell division of barley (Hordeum vulgare L.). Seeds were germinated between filter papers in 0.1, 0.5 and 1.0 μM HBR-supplemented distilled water for 48 h at dark with their controls. HBR application increased especially the primary root growth significantly with increasing concentrations when compared with the control materials and reached two fold increase in 1.0 μM HBR treated material. Treated and untreated control group roots were fixed in 1:3 aceto-alcohol and aceto-orcein preparations were made. Roots treated with HBR showed more mitotic activity, mitotic abnormalities and significant enlargements at the root tips when compared with control material. HBR application decreased total soluble protein content, superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) and peroxidase (EC 1.11.1.11) activities significantly at 1.0 μM HBR concentration. Data presented here is one of the first detailed analyses of HBR effect on barley root development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BL:

Brassinolide

BR:

Brassinosteroid

BRs:

Brassinosteroids

BSA:

Bovine serum albumin

CAT:

Catalase

EBR:

Epibrassinolide

HBR:

Homobrassinolide

PBS:

Phosphate buffered saline

POX:

Peroxidase

SOD:

Superoxide dismutase

References

  • Ahmad E, Shadab GGHA, Hoda A et al (2000) Genotoxic effects of estradiol-17β on human lymphocyte chromosomes. Mutat Res 46(1):109–115

    Google Scholar 

  • Aydın Y, Talas-Ogras T, Ipekci-Altas Z et al (2006) Effects of brassinosteroid on cotton regeneration via somatic embryogenesis. Biologia 61(3):289–293. doi:10.2478/s11756-006-0053-5

    Article  Google Scholar 

  • Bajguz A (2000) Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiol Biochem 38(3):209–215. doi:10.1016/S0981-9428(00)00733-6

    Article  CAS  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:127–132. doi:10.1104/pp.98.4.1222

    Article  Google Scholar 

  • Cho YW, Park EH, Lim CJ (2000) Glutathione S-transferase activities of S-type and L-type thioltransferase from Arabidopsis thaliana. J Biochem Mol Biol 33(2):179–183

    Google Scholar 

  • Chono M, Honda I, Zeniya H et al (2003) Semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol 133:1209–1219. doi:10.1104/pp.103.026195

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD (2002) Brassinosteroid signal transduction clarifying the pathway from ligand perception to gene expression. Mol Cell 10(5):973–982. doi:10.1016/S1097-2765(02)00744-X

    Article  PubMed  CAS  Google Scholar 

  • Cordoba-Pedregosa MC, Cordoba F, Villalba JM et al (2003) Zonal changes in ascorbate and hydrogen peroxide contents, peroxidase, and ascorbate-related enzyme activities in onion roots. Plant Physiol 131(2):697–706. doi:10.1104/pp.012682

    Article  CAS  Google Scholar 

  • Guan M, Roddick JG (1988) Epibrassinolide-inhibition of development of excised, adventitious and intact roots of tomato (Lycopersicon esculentum): comparison with the effects of steroidal estrogens. Physiol Plant 74:720–726. doi:10.1111/j.1399-3054.1988.tb02043.x

    Article  CAS  Google Scholar 

  • Hayat S, Ali B, Hasan SA et al (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea (L.). Environ Exp Bot 60:33–41. doi:10.1016/j.envexpbot.2006.06.002

    Article  CAS  Google Scholar 

  • Hochholdinger F, Zimmermann R et al (2007) Conserved and diverse mechanisms in root development. Curr Opin Plant Biol 10:1–5. doi:10.1016/j.pbi.2006.11.012

    Article  Google Scholar 

  • Howell WM, Keller GEIII, Kirkpatrick JD et al (2007) Effects of the plant steroidal hormone, 24-epibrassinolide, on the mitotic index and growth of onion (Allium cepa) root tips. Genet Mol Res 6(1):50–58

    PubMed  CAS  Google Scholar 

  • Kilic S, Cavusoglu K, Kabar K et al (2007) Effects of 24 epibrassinolide on salinity induced inhibition of seed germination, seedling growth and leaf anatomy of barley. SDU Fen Edebiyat Fakultesi Fen Derg 2(1):41–52

    Google Scholar 

  • Kim H, Park PJ, Hwang HJ et al (2006) Brassinosteroid signal control expression of the AXR3/IAA17 gene in the cross-talk point with auxin in root development. Biosci Biotechnol Biochem 70(4):768–773. doi:10.1271/bbb.70.768

    Article  PubMed  CAS  Google Scholar 

  • Kim TW, Lee MS, Joo SH et al (2007) Elongation and gravitropic responses of Arabidopsis roots are regulated by brassinolide and IAA. Plant Cell Environ 30:679–689. doi:10.1111/j.1365-3040.2007.01659.x

    Article  PubMed  CAS  Google Scholar 

  • Kochba J, Lavee S, Spiegel-Roy P et al (1977) Differences in peroxidase activity and isoenzymes in embryogenic and non-embryogenic ‘‘Shamouti’’ orange ovular callus lines. Plant Cell Physiol 18:463–467

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mazorra LM, Nunez M, Hechavarria M et al (2002) Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biol Plant 45:593–596. doi:10.1023/A:1022390917656

    Article  CAS  Google Scholar 

  • Miyazawa Y, Nakajima N, Abe T et al (2003) Activation of cell proliferation by brassinolide application in tobacco BY-2 cells: effects of brassinolide on cell multiplication, cell-cycle-related gene expression, and organellar DNA contents. J Exp Bot 54(393):2669–2678. doi:10.1093/jxb/erg312

    Article  PubMed  CAS  Google Scholar 

  • Mouchel CF, Osmont KS, Hardtke CS et al (2006) BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 443:458–461. doi:10.1038/nature05130

    Article  PubMed  CAS  Google Scholar 

  • Mussig C (2005) Brassinosteroid-promoted growth. Plant Biol 7:110–117. doi:10.1055/s-2005-837493

    Article  PubMed  CAS  Google Scholar 

  • Mussig C, Shin GH, Altmann T et al (2003) Brassinosteroids promote root growth in Arabidopsis. Plant Physiol 133:1261–1271. doi:10.1104/pp.103.028662

    Article  PubMed  Google Scholar 

  • Nemhauser JL, Chory J (2004) Bring it on: new insights into the mechanism of brassinosteroid action. J Exp Bot 55:265–270. doi:10.1093/jxb/erh024

    Article  PubMed  CAS  Google Scholar 

  • Oh MH, Clouse SD (1998) Brassinosteroid affects the rate of cell division in isolated leaf protoplasts of Petunia hybrida. Plant Cell Rep 17:921–924. doi:10.1007/s002990050510

    Article  CAS  Google Scholar 

  • Ozdemir F, Bor M, Demiral T et al (2004) Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul 42:203–211. doi:10.1023/B:GROW.0000026509.25995.13

    Article  Google Scholar 

  • Pan Y, Wu LJ, Yu ZL (2006) Effect of salt and drought on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 49:157–165. doi:10.1007/s10725-006-9101-y

    Article  CAS  Google Scholar 

  • Roddick JG, Rijnenberg AL, Ikekawa N (1993) Developmental effects of 24-epibrassinolide in excised roots of tomato grown in vitro. Physiol Plant 87:453–458. doi:10.1111/j.1399-3054.1993.tb02493.x

    Article  CAS  Google Scholar 

  • Romani G, Marre MT, Bonetti A et al (1983) Effects of a brassinosteroid on growth and electrogenic proton extrusion in maize root segments. Physiol Plant 59:528–532. doi:10.1111/j.1399-3054.1983.tb06275.x

    Article  CAS  Google Scholar 

  • Shahbaz M, Ashraf M, Athar H (2008) Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regul 55:51–64. doi:10.1007/s10725-008-9262-y

    Article  CAS  Google Scholar 

  • Sondhi N, Bhardwaj ER, Kaur ES et al (2008) Isolation of 24-epibrassinolide from leaves of Aegle marmelos and evaluation of its antigenotoxicity employing Allium cepa chromosomal aberration assay. Plant Growth Regul 54:217–224. doi:10.1007/s10725-007-9242-7

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Usade B, Winter A et al (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol 146:1738–1758. doi:10.1104/pp.107.111781

    Article  PubMed  CAS  Google Scholar 

  • Symons GM, Ross JJ, Jager CE et al (2008) Brassinosteroid transport. J Exp Bot 59(1):17–24. doi:10.1093/jxb/erm098

    Article  PubMed  CAS  Google Scholar 

  • Tabur S, Demir K (2009) Cytogenetic response of 24-epibrassinolide on the root meristem cells of barley seeds under salinity. Plant Growth Reg 58:119–123. doi: 10.1007/s10725-008-9357-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Research Foundation of Istanbul University, Projects No: 618/15122006, UDP- 2405/2009 and T-1369.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nermin Gozukirmizi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kartal, G., Temel, A., Arican, E. et al. Effects of brassinosteroids on barley root growth, antioxidant system and cell division. Plant Growth Regul 58, 261–267 (2009). https://doi.org/10.1007/s10725-009-9374-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-009-9374-z

Keywords

Navigation