Skip to main content
Log in

Lipo-chitooligosaccharidic nodulation factors and their perception by plant receptors

  • MINI-REVIEW
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Lipo-chitooligosaccharides produced by nitrogen-fixing rhizobia are signaling molecules involved in the establishment of an important agronomical and ecological symbiosis with plants. These compounds, known as Nod factors, are biologically active on plant roots at very low concentrations indicating that they are perceived by specific receptors. This article summarizes the main strategies developed for the syntheses of bioactive Nod factors and their derivatives in order to better understand their mode of perception. Different Nod factor receptors and LCO-binding proteins identified by genetic or biochemical approaches are also presented, indicating perception mechanisms that seem to be more complicated than expected, probably involving multi-component receptor complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Promé, J.C., Dénarié, J.: Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344(6268), 781–784 (1990)

    Article  CAS  PubMed  Google Scholar 

  2. Dénarié, J., Debellé, F., Rosenberg, C.: Signaling and host range variation in nodulation. Annu. Rev. Microbiol. 46, 497–531 (1992)

    Article  PubMed  Google Scholar 

  3. Dénarié, J., Debellé, F., Promé, J.C.: Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem. 65, 503–535 (1996)

    Article  PubMed  Google Scholar 

  4. D’Haeze, W., Holsters, M.: Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12(6), 79R–105R (2002)

    Article  PubMed  Google Scholar 

  5. Maillet, F., Poinsot, V., André, O., Puech-Pages, V., Haouy, A., Gueunier, M., Cromer, L., Giraudet, D., Formey, D., Niebel, A., Martinez, E.A., Driguez, H., Bécard, G., Dénarié, J.: Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469(7328), 58–63 (2011)

    Article  CAS  PubMed  Google Scholar 

  6. Czaja, L.F., Hogekamp, C., Lamm, P., Maillet, F., Andres Martinez, E., Samain, E., Dénarié, J., Küster, H., Hohnjec, N.: Transcriptional responses towards diffusible signals from symbiotic microbes reveal MtNFP- and MtDMI3-dependent reprogramming of host gene expression by AM fungal LCOs. Plant Physiol. 159(4), 1671–1685 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Camps, C., Jardinaud, M.-F., Rengel, D., Carrère, S., Hervé, C., Debellé, F., Gamas, P., Bensmihen, S., Gough, C.: Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula. New Phytol. (2015). doi:10.1111/nph.13427

    PubMed  Google Scholar 

  8. Sun, J., Miller, J.B., Granqvist, E., Wiley-Kalil, A., Gobbato, E., Maillet, F., Cottaz, S., Samain, E., Venkateshwaran, M., Fort, S., Morris, R.J., Ané, J.-M., Dénarié, J., Oldroyd, G.E.D.: Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Plant Cell 27, 823–838 (2015)

  9. Price, N.P., Relic, B., Talmont, F., Lewin, A., Prome, D., Pueppke, S.G., Maillet, F., Dénarié, J., Prome, J.C., Broughton, W.J.: Broad-host-range Rhizobium species strain NGR234 secretes a family of carbamoylated, and fucosylated, nodulation signals that are O-acetylated or sulphated. Mol. Microbiol. 6(23), 3575–3584 (1992)

    Article  CAS  PubMed  Google Scholar 

  10. Nicolaou, K.C., Bockovich, N.J., Carcanague, D.R., Hummel, C.W., Even, L.F.: Total synthesis of the NodRm-IV factors, the rhizobium nodulation signals. J. Am. Chem. Soc. 114(22), 8701–8702 (1992)

    Article  CAS  Google Scholar 

  11. Bono, J.J., Riond, J., Nicolaou, K.C., Bockovich, N.J., Estevez, V.A., Cullimore, J.V., Ranjeva, R.: Characterization of a binding site for chemically synthesized lipo-oligosaccharidic NodRm factors in particulate fractions prepared from roots. Plant J. 7(2), 253–260 (1995)

    Article  CAS  PubMed  Google Scholar 

  12. Ikeshita, S., Sakamoto, A., Nakahara, Y., Nakahara, Y., Ogawa, T.: Synthesis of the root nodule-inducing factor NodRm-IV(C16:2, S) of Rhizobium meliloti and related compounds. Tetrahedron Lett. 35(19), 3123–3126 (1994)

  13. Tailler, D., Jacquinet, J.-C., Beau, J.-M.: Total synthesis of NodRm(S): a sulfated lipotetrasaccharide symbiotic signal from Rhizobium meliloti. J. Chem. Soc. Chem. Commun. 16, 1827–1828 (1994)

    Article  Google Scholar 

  14. Lai-Xi, W., Chuan, L., Qin-Wei, W., Yong-Zheng, H.: Total synthesis of the sulfated lipooligosaccharide signal involved in Rhizobium meliloti-alfalfa symbiosis. Tetrahedron Lett. 34(48), 7763–7766 (1993)

  15. Ikeshita, S., Nakahara, Y., Ogawa, T.: Synthetic studies on the lipooligosaccharide Nod Bj-IV (C18:1, Fuc, Gro) produced by Bradyrhizobium japonicum strain USDA61. Carbohydr. Res. 266(2), C1–C6 (1995)

    Article  CAS  PubMed  Google Scholar 

  16. Demont-Caulet, N., Maillet, F., Tailler, D., Jacquinet, J.C., Prome, J.C., Nicolaou, K.C., Truchet, G., Beau, J.M., Dénarié, J.: Nodule-inducing activity of synthetic Sinorhizobium meliloti nodulation factors and related lipo-chitooligosaccharides on alfalfa. Importance of the acyl chain structure. Plant Physiol. 120(1), 83–92 (1999)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gressent, F., Drouillard, S., Mantegazza, N., Samain, E., Geremia, R.A., Canut, H., Niebel, A., Driguez, H., Ranjeva, R., Cullimore, J., Bono, J.J.: Ligand specificity of a high-affinity binding site for lipo-chitooligosaccharidic Nod factors in Medicago cell suspension cultures. Proc. Natl. Acad. Sci. U. S. A. 96(8), 4704–4709 (1999)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Rasmussen, M.O., Hogg, B., Bono, J.J., Samain, E., Driguez, H.: New access to lipo-chitooligosaccharide nodulation factors. Org. Biomol. Chem. 2(13), 1908–1910 (2004)

    Article  CAS  Google Scholar 

  19. Samain, E., Drouillard, S., Heyraud, A., Driguez, H., Geremia, R.A.: Gram-scale synthesis of recombinant chitooligosaccharides in Escherichia coli. Carbohydr. Res. 302, 35–42 (1997)

    Article  CAS  PubMed  Google Scholar 

  20. Samain, E., Chazalet, V., Geremia, R.A.: Production of O-acetylated and sulfated chitooligosaccharides by recombinant Escherichia coli strains harboring different combinations of nod genes. J. Biotechnol. 72, 33–47 (1999)

    Article  CAS  PubMed  Google Scholar 

  21. Despras, G., Alix, A., Urban, D., Vauzeilles, B., Beau, J.-M.: From chitin to bioactive chitooligosaccharides and conjugates: access to Lipochitooligosaccharides and the TMG-chitotriomycin. Angew. Chem. Int. Ed. 53(44), 11912–11916 (2014)

    Article  CAS  Google Scholar 

  22. Bek, A.S., Sauer, J., Thygesen, M.B., Duus, J.O., Petersen, B.O., Thirup, S., James, E., Jensen, K.J., Stougaard, J., Radutoiu, S.: Improved characterization of Nod Factors and genetically based variation in LysM receptor domains identify amino acids expendable for Nod Factor recognition in Lotus spp. Mol. Plant Microbe Interact. 23(1), 58–66 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. Gadella Jr., T.W., Vereb Jr., G., Hadri, A.E., Rohrig, H., Schmidt, J., John, M., Schell, J., Bisseling, T.: Microspectroscopic imaging of nodulation factor-binding sites on living Vicia sativa roots using a novel bioactive fluorescent nodulation factor. Biophys. J. 72(5), 1986–1996 (1997)

  24. Goedhart, J., Rohrig, H., Hink, M.A., van Hoek, A., Visser, A.J., Bisseling, T., Gadella Jr., T.W.: Nod factors integrate spontaneously in biomembranes and transfer rapidly between membranes and to root hairs, but transbilayer flip-flop does not occur. Biochemistry 38(33), 10898–10907 (1999)

    Article  CAS  PubMed  Google Scholar 

  25. Goedhart, J., Hink, M.A., Visser, A.J., Bisseling, T., Gadella Jr., T.W.: In vivo fluorescence correlation microscopy (FCM) reveals accumulation and immobilization of Nod factors in root hair cell walls. Plant J. 21(1), 109–119 (2000)

    Article  CAS  PubMed  Google Scholar 

  26. Goedhart, J., Bono, J.-J., Bisseling, T., Gadella Jr., T.W.: Identical accumulation and immobilization of sulfated and nonsulfated Nod factors in host and nonhost root hair cell walls. Mol. Plant-Microbe Interact. 16(10), 884–892 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Morando, M.A., Nurisso, A., Grenouillat, N., Vauzeilles, B., Beau, J.-M., Cañada, F.J., Jiménez-Barbero, J., Imberty, A.: NMR and molecular modelling reveal key structural features of synthetic nodulation factors. Glycobiology 21(6), 824–833 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. Ben Amor, B., Shaw, S.L., Oldroyd, G.E., Maillet, F., Penmetsa, R.V., Cook, D., Long, S.R., Dénarié, J., Gough, C.: The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J. 34(4), 495–506 (2003)

    Article  CAS  Google Scholar 

  29. Madsen, E.B., Madsen, L.H., Radutoiu, S., Olbryt, M., Rakwalska, M., Szczyglowski, K., Sato, S., Kaneko, T., Tabata, S., Sandal, N., Stougaard, J.: A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425(6958), 637–640 (2003)

    Article  CAS  PubMed  Google Scholar 

  30. Radutoiu, S., Madsen, L.H., Madsen, E.B., Felle, H.H., Umehara, Y., Gronlund, M., Sato, S., Nakamura, Y., Tabata, S., Sandal, N., Stougaard, J.: Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425(6958), 585–592 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. Arrighi, J.-F., Barre, A., Ben Amor, B., Bersoult, A., Soriano, L.C., Mirabella, R., de Carvalho-Niebel, F., Journet, E.-P., Ghérardi, M., Huguet, T., Geurts, R., Dénarié, J., Rougé, P., Gough, C.: The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol. 142(1), 265–279 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Buist, G., Steen, A., Kok, J., Kuipers, O.P.: LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol. Microbiol. 68(4), 838–847 (2008)

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, X.-C., Wu, X., Findley, S., Wan, J., Libault, M., Nguyen, H.T., Cannon, S.B., Stacey, G.: Molecular evolution of Lysin motif-type receptor-like kinases in plants. Plant Physiol. 144(2), 623–636 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Lohmann, G.V., Shimoda, Y., Nielsen, M.W., Jörgensen, F.G., Grossmann, C., Sandal, N., Sörensen, K., Thirup, S., Madsen, L.H., Tabata, S., Sato, S., Stougaard, J., Radutoiu, S.: Evolution and regulation of the Lotus japonicus LysM receptor gene family. Mol. Plant-Microbe Interact. 23(4), 510–521 (2010)

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, X.-C., Cannon, S., Stacey, G.: Evolutionary genomics of LysM genes in land plants. BMC Evol. Biol. 9(183), 183 (2009)

    Article  PubMed Central  PubMed  Google Scholar 

  36. Catoira, R., Timmers, A.C., Maillet, F., Galera, C., Penmetsa, R.V., Cook, D., Dénarié, J., Gough, C.: The HCL gene of Medicago truncatula controls Rhizobium-induced root hair curling. Development 128(9), 1507–1518 (2001)

    CAS  PubMed  Google Scholar 

  37. Ardourel, M., Demont, N., Debellé, F., Maillet, F., de Billy, F., Prome, J.C., Dénarié, J., Truchet, G.: Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6, 1357–1374 (1994)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Geurts, R., Heidstra, R., Hadri, A.E., Downie, J.A., Franssen, H., Van Kammen, A., Bisseling, T.: Sym2 of pea is involved in a nodulation factor-perception mechanism that controls the infection process in the epidermis. Plant Physiol. 115(2), 351–359 (1997)

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Limpens, E., Franken, C., Smit, P., Willemse, J., Bisseling, T., Geurts, R.: LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302(5645), 630–603 (2003)

    Article  CAS  PubMed  Google Scholar 

  40. Smit, P., Limpens, E., Geurts, R., Fedorova, E., Dolgikh, E., Gough, C., Bisseling, T.: Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling. Plant Physiol. 145(1), 183–191 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Madsen, E.B., Antolín-Llovera, M., Grossmann, C., Ye, J., Vieweg, S., Broghammer, A., Krusell, L., Radutoiu, S., Jensen, O.N., Stougaard, J., Parniske, M.: Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5. Plant J. 65(3), 404–417 (2011)

    Article  CAS  PubMed  Google Scholar 

  42. Klaus-Heisen, D., Nurisso, A., Pietraszewska-Bogiel, A., Mbengue, M., Camut, S., Timmers, T., Pichereaux, C., Rossignol, M., Gadella, T.W.J., Imberty, A., Lefebvre, B., Cullimore, J.V.: Structure-function similarities between a plant receptor-like kinase and the human interleukin-1 receptor-associated kinase-4. J. Biol. Chem. 286, 11202–11210 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Mbengue, M., Camut, S., de Carvalho-Niebel, F., Deslandes, L., Froidure, S., Klaus-Heisen, D., Moreau, S., Rivas, S., Timmers, T., Hervé, C., Cullimore, J., Lefebvre, B.: The Medicago truncatula E3 Ubiquitin Ligase PUB1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodulation. Plant Cell 22(10), 3474–3488 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Miwa, H., Sun, J., Oldroyd, G.E.D., Downie, J.A.: Analysis of Nod-factor-induced calcium signaling in root hairs of symbiotically defective mutants of Lotus japonicus. Mol. Plant Microbe Interact. 19(8), 914–923 (2006)

    Article  CAS  PubMed  Google Scholar 

  45. Ehrhardt, D.W., Wais, R., Long, S.R.: Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85(5), 673–681 (1996)

    Article  CAS  PubMed  Google Scholar 

  46. Morieri, G., Martinez, E.A., Jarynowski, A., Driguez, H., Morris, R., Oldroyd, G.E.D., Downie, J.A.: Host-specific Nod-factors associated with Medicago truncatula nodule infection differentially induce calcium influx and calcium spiking in root hairs. New Phytol. 200(3), 656–662 (2013)

  47. Rival, P., de Billy, F., Bono, J.-J., Gough, C., Rosenberg, C., Bensmihen, S.: Epidermal and cortical roles of NFP and DMI3 in coordinating early steps of nodulation in Medicago truncatula. Development 139(18), 3383–3391 (2012)

    Article  CAS  PubMed  Google Scholar 

  48. Bensmihen, S., de Billy, F., Gough, C.: Contribution of NFP LysM domains to the recognition of Nod Factors during the Medicago truncatula/Sinorhizobium meliloti symbiosis. PLoS ONE 6(11), e26114 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Hayashi, T., Shimoda, Y., Sato, S., Tabata, S., Imaizumi-Anraku, H., Hayashi, M.: Rhizobial infection does not require cortical expression of upstream common symbiosis genes responsible for the induction of Ca2+ spiking. Plant J. 77(1), 146–159 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Madsen, L.H., Tirichine, L., Jurkiewicz, A., Sullivan, J.T., Heckmann, A.B..., Bek, A.S., Ronson, C.W., James, E.K., Stougaard, J.: The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun 1(10) (2010)

  51. Broghammer, A., Krusell, L., Blaise, M., Sauer, J., Sullivan, J.T., Maolanon, N., Vinther, M., Lorentzen, A., Madsen, E.B., Jensen, K.J., Roepstorff, P., Thirup, S., Ronson, C.W., Thygesen, M.B., Stougaard, J.: Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proc. Natl. Acad. Sci. U. S. A. 109(34), 13859–13864 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Etzler, M.E., Kalsi, G., Ewing, N.N., Roberts, N.J., Day, R.B., Murphy, J.B.: A Nod factor binding lectin with apyrase activity from legume roots. Proc. Natl. Acad. Sci. U. S. A. 96(10), 5856–5861 (1999)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Roberts, N.J., Morieri, G., Kalsi, G., Rose, A., Stiller, J., Edwards, A., Xie, F., Gresshoff, P.M., Oldroyd, G.E.D., Downie, J.A., Etzler, M.E.: Rhizobial and mycorrhizal symbioses in Lotus japonicus require lectin nucleotide phosphohydrolase, which acts upstream of calcium signaling. Plant Physiol. 161(1), 556–567 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Hogg, B.V., Cullimore, J.V., Ranjeva, R., Bono, J.J.: The DMI1 and DMI2 early symbiotic genes of Medicago truncatula are required for a high-affinity nodulation factor-binding site associated to a particulate fraction of roots. Plant Physiol. 140(1), 365–373 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Gressent, F., Mantegazza, N., Cullimore, J.V., Driguez, H., Ranjeva, R., Bono, J.J.: High-affinity Nod factor binding site from Phaseolus vulgaris cell suspension cultures. Mol. Plant Microbe Interact. 15(8), 834–839 (2002)

    Article  CAS  PubMed  Google Scholar 

  56. Fliegmann, J., Canova, S., Lachaud, C., Uhlenbroich, S., Gasciolli, V., Pichereaux, C., Rossignol, M., Rosenberg, C., Cumener, M., Pitorre, D., Lefebvre, B., Gough, C., Samain, E., Fort, S., Driguez, H., Vauzeilles, B., Beau, J.-M., Nurisso, A., Imberty, A., Cullimore, J., Bono, J.-J.: Lipo-chitooligosaccharidic symbiotic signals are recognized by LysM receptor-like kinase LYR3 in the legume Medicago truncatula. ACS Chem. Biol. 8(9), 1900–1906 (2013)

    Article  CAS  PubMed  Google Scholar 

  57. Genre, A., Chabaud, M., Balzergue, C., Puech-Pagès, V., Novero, M., Rey, T., Fournier, J., Rochange, S., Bécard, G., Bonfante, P., Barker, D.G.: Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol. 198(1), 190–202 (2013)

    Article  PubMed  Google Scholar 

  58. Liu, T., Liu, Z., Song, C., Hu, Y., Han, Z., She, J., Fan, F., Wang, J., Jin, C., Chang, J., Zhou, J.-M., Chai, J.: Chitin-induced dimerization activates a plant immune receptor. Science 336(6085), 1160–1164 (2012)

    Article  CAS  PubMed  Google Scholar 

  59. Wong, J.E.M.M., Midtgaard, S.R., Gysel, K., Thygesen, M.B., Sørensen, K.K., Jensen, K.J., Stougaard, J., Thirup, S., Blaise, M.: An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase. Acta Crystallogr. D Biol. Crystallogr. 71(3), 592–605 (2015)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Wan, J., Tanaka, K., Zhang, X.-C., Son, G.H., Brechenmacher, L., Nguyen, T.H.N., Stacey, G.: LYK4, a Lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis. Plant Physiol. 160(1), 396–406 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Cao, Y., Liang, Y., Tanaka, K., Nguyen, C.T., Jedrzejczak, R.P., Joachimiak, A., Stacey, G.: The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. ELife 3, e03766 (2014)

    Article  Google Scholar 

  62. Sánchez-Vallet, A., Saleem-Batcha, R., Kombrink, A., Hansen, G., Valkenburg, D.-J., Thomma, B.P.H.J., Mesters, J.R.: Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. ELife 2, e00790 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  63. Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., Shibuya, N.: Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. U. S. A. 103(29), 11086–11091 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Hayafune, M., Berisio, R., Marchetti, R., Silipo, A., Kayama, M., Desaki, Y., Arima, S., Squeglia, F., Ruggiero, A., Tokuyasu, K., Molinaro, A., Kaku, H., Shibuya, N.: Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proc. Natl. Acad. Sci. U. S. A. 111(3), 404–413 (2014)

    Article  Google Scholar 

  65. Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Nishizawa, Y., Minami, E., Okada, K., Yamane, H., Kaku, H., Shibuya, N.: Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64(2), 204–214 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Willmann, R., Lajunen, H.M., Erbs, G., Newman, M.-A., Kolb, D., Tsuda, K., Katagiri, F., Fliegmann, J., Bono, J.-J., Cullimore, J.V., Jehle, A.K., Götz, F., Kulik, A., Molinaro, A., Lipka, V., Gust, A.A., Nürnberger, T.: Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc. Natl. Acad. Sci. U. S. A. 108(49), 19824–19829 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Miyata, K., Kozaki, T., Kouzai, Y., Ozawa, K., Ishii, K., Asamizu, E., Okabe, Y., Umehara, Y., Miyamoto, A., Kobae, Y., Akiyama, K., Kaku, H., Nishizawa, Y., Shibuya, N., Nakagawa, T.: Bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Cell Physiol. 55, 1864–1872 (2014)

    Article  PubMed  Google Scholar 

  68. Gough, C., Jacquet, C.: Nod factor perception protein carries weight in biotic interactions. Trends Plant Sci. 18(10), 566–574 (2013)

    Article  CAS  PubMed  Google Scholar 

  69. Radutoiu, S., Madsen, L.H., Madsen, E.B., Jurkiewicz, A., Fukai, E., Quistgaard, E.M., Albrektsen, A.S., James, E.K., Thirup, S., Stougaard, J.: LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J. 26(17), 3923–3935 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. De Mita, S., Streng, A., Bisseling, T., Geurts, R.: Evolution of a symbiotic receptor through gene duplications in the legume–rhizobium mutualism. New Phytol. 201(3), 961–972 (2013)

    Article  PubMed  Google Scholar 

  71. Op den Camp, R., Streng, A., De Mita, S., Cao, Q., Polone, E., Liu, W., Ammiraju, J.S.S., Kudrna, D., Wing, R., Untergasser, A., Bisseling, T., Geurts, R.: LysM-type mycorrhizal receptor recruited for Rhizobium symbiosis in nonlegume Parasponia. Science 331(6019), 909–912 (2011)

    Article  Google Scholar 

  72. Gomez, S.K., Javot, H., Deewatthanawong, P., Torres-Jerez, I., Tang, Y., Blancaflor, E., Udvardi, M., Harrison, M.: Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol. 9(1), 10 (2009)

    Article  PubMed Central  PubMed  Google Scholar 

  73. De Mita, S., Streng, A., Bisseling, T., Geurts, R.: Evolution of a symbiotic receptor through gene duplications in the legume-rhizobium mutualism. New Phytol. 201(3), 961–972 (2014)

    Article  PubMed  Google Scholar 

  74. Zhang, X., Dong, W., Sun, J., Feng, F., Deng, Y., He, Z., Oldroyd, G.E.D., Wang, E.: The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant J. 81(2), 258–267 (2015)

    Article  CAS  PubMed  Google Scholar 

  75. Nakagawa, T., Kaku, H., Shimoda, Y., Sugiyama, A., Shimamura, M., Takanashi, K., Yazaki, K., Aoki, T., Shibuya, N., Kouchi, H.: From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume–Rhizobium symbiosis. Plant J. 65(2), 169–180 (2011)

    Article  CAS  PubMed  Google Scholar 

  76. Delaux, P.-M., Séjalon-Delmas, N., Bécard, G., Ané, J.-M.: Evolution of the plant-microbe symbiotic “toolkit”. Trends Plant Sci. 18(6), 298–304 (2013)

    Article  CAS  PubMed  Google Scholar 

  77. Liang, Y., Tóth, K., Cao, Y., Tanaka, K., Espinoza, C., Stacey, G.: Lipochitooligosaccharide recognition: an ancient story. New Phytol. 204(2), 289–296 (2014)

    Article  CAS  PubMed  Google Scholar 

  78. Maolanon, N.N., Blaise, M., Sørensen, K.K., Thygesen, M.B., Cló, E., Sullivan, J.T., Ronson, C.W., Stougaard, J., Blixt, O., Jensen, K.J.: Lipochitin oligosaccharides immobilized through oximes in glycan microarrays bind LysM proteins. ChemBioChem 15, 425–434 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank C. Gough and J. Cullimore (LIPM, Toulouse) for critical reading of the manuscript. We acknowledge funding on LCO signaling in our group by the the French National Research Agency contracts “SYMNALING” (ANR-12-BSV7-0001) and “NICE CROPS” (ANR-14-CE18-0008) and by the French Laboratory of Excellence project "TULIP" (ANR-10-LABX-41; ANR-11-IDEX-0002-02).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Bono.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fliegmann, J., Bono, JJ. Lipo-chitooligosaccharidic nodulation factors and their perception by plant receptors. Glycoconj J 32, 455–464 (2015). https://doi.org/10.1007/s10719-015-9609-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9609-3

Keywords

Navigation