Skip to main content

Advertisement

Log in

Each GPI-anchored protein species forms a specific lipid raft depending on its GPI attachment signal

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

We previously reported a method, termed enzyme-mediated activation of radical sources (EMARS) for analysis of co-clustered molecules with horseradish peroxidase (HRP) fusion proteins expressed in living cells. This method is featured by radical formation of labeling reagents by HRP. In the current study, we have employed another labeling reagent, fluorescein-conjugated tyramide (FT) instead of the original arylazide compounds. Although hydrogen peroxide is required for the activation of FT, the labeling efficiency by HRP and the nonspecific reactions by endogenous enzyme(s) have been dramatically improved compared with the original fluorescein arylazide. This revised EMARS method has enabled visualization of co-clustered molecules in the endoplasmic reticulum and Golgi membranes with confocal microscopy. By using this method, we have found that GPI-anchored proteins, decay accelerating factor (DAF) and Thy-1 are exclusively co-clustered with HRP-DAFGPI and HRP-Thy1GPI, in which GPI attachment signals of DAF and Thy-1 have been connected to HRP, respectively. Furthermore, the N-glycosylation types of DAF and Thy-1 have been found to correspond to those of HRP-DAFGPI and HRP-Thy1GPI, respectively. These results indicate that each GPI-anchored protein species forms a specific lipid raft depending on its GPI attachment signal, and that the EMARS method can segregate individual lipid rafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lingwood, D., Simons, K.: Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010). doi:10.1126/science.1174621

    Article  CAS  PubMed  Google Scholar 

  2. Kusumi, A., Fujiwara, T.K., Morone, N., Yoshida, K.J., Chadda, R., Xie, M., Kasai, R.S., Suzuki, K.G.N.: Membrane mechanisms for signal transduction: the coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes. Semin. Cell Dev. Biol. 23, 126–144 (2012). doi:10.1016/j.semcdb.2012.01.018

    Article  CAS  PubMed  Google Scholar 

  3. Vereb, G., Szöllosi, J., Matkó, J., Nagy, P., Farkas, T., Vigh, L., Mátyus, L., Waldmann, T.A., Damjanovich, S.: Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc. Natl. Acad. Sci. U. S. A. 100, 8053–8058 (2003). doi:10.1073/pnas.1332550100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Brown, D.A., London, E.: Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111–136 (1998). doi:10.1146/annurev.cellbio.14.1.111

    Article  CAS  PubMed  Google Scholar 

  5. Simons, K., Toomre, D.: Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39 (2000). doi:10.1126/science.1174621

    Article  CAS  PubMed  Google Scholar 

  6. Harris, T.J.C., Siu, C.H.: Reciprocal raft-receptor interactions and the assembly of adhesion complexes. Bioessays 24, 996–1003 (2002). doi:10.1002/bies.10172

    Article  CAS  PubMed  Google Scholar 

  7. Tsui-Pierchala, B.A., Encinas, M., Milbrandt, J., Johnson, E.M.: Lipid rafts in neuronal signaling and function. Trends Neurosci. 25, 412–417 (2002). doi:10.1016/S0166-2236(02)02215-4

    Article  CAS  PubMed  Google Scholar 

  8. Miyagawa-Yamaguchi, A., Kotani, N., Honke, K.: Expressed glycosylphosphatidylinositol-anchored horseradish peroxidase identifies co-clustering molecules in individual lipid raft domains. PLoS ONE 9, e93054 (2014). doi:10.1371/journal.pone.0093054

    Article  PubMed Central  PubMed  Google Scholar 

  9. Miyagawa-Yamaguchi, A., Kotani, N., Honke, K.: Segregation of lipid rafts reviealed by the EMARS method using GPI-anchored HRP fusion proteins. Trends. Glycosci. Glycotech. 26, 59–69 (2014). doi:10.4052/tigg.26.59

    Article  CAS  Google Scholar 

  10. Kotani, N., Gu, J., Isaji, T., Udaka, K., Taniguchi, N., Honke, K.: Biochemical visualization of cell surface molecular clustering in living cells. Proc. Natl. Acad. Sci. U. S. A. 105, 7405–7409 (2008). doi:10.1073/pnas.0710346105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Honke, K., Kotani, N.: The enzyme-mediated activation of radical source reaction: a new approach to identify partners of a given molecule in membrane microdomains. J. Neurochem. 116, 690–695 (2011). doi:10.1111/j.1471-4159.2010.07027.x

    Article  CAS  PubMed  Google Scholar 

  12. Honke, K., Kotani, N.: Identification of cell-surface molecular interactions under living conditions by using the enzyme-mediated activation of radical sources (EMARS) method. Sensors 12, 16037–16045 (2012). doi:10.3390/s121216037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Jiang, S., Kotani, N., Ohnishi, T., Miyagawa-Yamguchi, A., Tsuda, M., Yamashita, R., Ishiura, Y., Honke, K.: A proteomics approach to the cell-surface interactome using the enzyme-mediated activation of radical sources reaction. Proteomics 12, 54–62 (2012). doi:10.1002/pmic.201100551

    Article  CAS  PubMed  Google Scholar 

  14. Bobrow, M.N., Harris, T.D., Shaughnessy, K.J., Litt, G.J.: Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J. Immunol. Methods 125, 279–285 (1989). doi:10.1016/0022-1759(89)90104-X

    Article  CAS  PubMed  Google Scholar 

  15. Adams, J.C.: Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J. Histochem. Cytochem. 40, 1457–1463 (1992). doi:10.1177/40.10.1527370

    Article  CAS  PubMed  Google Scholar 

  16. Rhee, H.W., Zou, P., Udeshi, N.D., Martell, J.D., Mootha, V.K., Carr, S.A., Ting, A.Y.: Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 15, 1328–1331 (2013). doi:10.1126/science.1230593

    Article  Google Scholar 

  17. Matsui, T., Nakayama, H., Yoshida, K., Shinmyo, A.: Vesicular transport route of horseradish C1a peroxidase is regulated by N- and C-terminal propeptides in tobacco cells. Appl. Microbiol. Biotechnol. 62, 517–522 (2003). doi:10.1007/s00253-003-1273-z

    Article  CAS  PubMed  Google Scholar 

  18. Schikorski, T.: Horseradish peroxidase as a reporter gene and as a cell-organelle-specific marker in correlative light-electron microscopy. Methods Mol. Biol. 657, 315–327 (2010). doi:10.1007/s00253-003-1273-z

    Article  CAS  PubMed  Google Scholar 

  19. Aikawa, R., Komuro, I., Yamazaki, T., Zou, Y., Kudoh, S., Tanaka, M., Shinojima, I., Hiroi, Y., Yazaki, Y.: Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J. Clin. Invest. 100, 1813–1821 (1997). doi:10.1172/JCI119709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Bendayan, M.: Worth its weight in gold. Science 291, 1363–1365 (2001). doi:10.1126/science.291.5507.1363

    Article  CAS  PubMed  Google Scholar 

  21. Orlean, P., Menon, A.K.: Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J. Lipid Res. 48, 993–1011 (2007). doi:10.1194/jlr.R700002-JLR200

    Article  CAS  PubMed  Google Scholar 

  22. Chen, R., Knez, J.J., Merrick, W.C., Medof, M.E.: Comparative efficiencies of C-terminal signals of native glycophosphatidylinositol (GPI)-anchored proteins in conferring GPI-anchoring. J. Cell. Biochem. 84, 68–83 (2002). doi:10.1002/jcb.1267

    Article  Google Scholar 

  23. Eisenhaber, B., Bork, P., Eisenhaber, F.: Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase. Protein Eng. Des. Sel. 11, 1155–1161 (1998). doi:10.1093/Protein/11.12.1155

    Article  CAS  Google Scholar 

  24. Paladino, S., Lebreton, S., Tivodar, S., Campana, V., Tempre, R., Zurzolo, C.: Different GPI-attachment signals affect the oligomerisation of GPI-anchored proteins and their apical sorting. J. Cell Sci. 121, 4001–4007 (2008). doi:10.1242/jcs.036038

    Article  CAS  PubMed  Google Scholar 

  25. Fujita, M., Kinoshita, T.: GPI-anchor remodeling: potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochim. Biophys. Acta 1821, 1050–1058 (2012). doi:10.1016/j.bbalip.2012.01.004

    Article  CAS  PubMed  Google Scholar 

  26. Lukacik, P., Roversi, P., White, J., Esser, D., Smith, G.P., Billington, J., Williams, P.A., Rudd, P.M., Wormald, M.R., Harvey, D.J., Crispin, M.D.M., Radcliffe, C.M., Dwek, R.A., Evans, D.J., Morgan, B.P., Smith, R.A.G., Lea, S.M.: Complement regulation at the molecular level: the structure of decay-accelerating factor. Proc. Natl. Acad. Sci. U. S. A. 101, 1279–1284 (2004). doi:10.1073/pnas.0307200101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Brodbeck, W.G., Kuttner-Kondo, L., Mold, C., Medof, M.E.: Structure/function studies of human decay-accelerating factor. Immunology 101, 104–111 (2000). doi:10.1046/j.1365-2567.2000.00086.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Parekh, R.B., Tse, A.G., Dwek, R.A., Williams, A.F., Rademacher, T.W.: Tissue-specific N-glycosylation, site-specific oligosaccharide patterns and lentil lectin recognition of rat Thy-1. EMBO J. 6, 1233–1244 (1987)

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Devasahayam, M., Catalino, P.D., Rudd, P.M., Dwek, R.A., Barclay, A.N.: The glycan processing and site occupancy of recombinant Thy-1 is markedly affected by the presence of a glycosylphosphatidylinositol anchor. Glycobiology 9, 1381–1387 (1999)

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Honke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyagawa-Yamaguchi, A., Kotani, N. & Honke, K. Each GPI-anchored protein species forms a specific lipid raft depending on its GPI attachment signal. Glycoconj J 32, 531–540 (2015). https://doi.org/10.1007/s10719-015-9595-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9595-5

Keywords

Navigation