Skip to main content

Advertisement

Log in

Ionizing radiations increase the activity of the cell surface glycohydrolases and the plasma membrane ceramide content

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

We detected significant levels of β-glucosidase, β-galactosidase, sialidase Neu3 and sphingomyelinase activities associated with the plasma membrane of fibroblasts from normal and Niemann-Pick subjects and of cells from breast, ovary, colon and neuroblastoma tumors in culture. All of the cells subjected to ionizing radiations showed an increase of the activity of plasma membrane β-glucosidase, β-galactosidase and sialidase Neu3, in addition of the well known increase of activity of plasma membrane sphingomyelinase, under similar conditions. Human breast cancer cell line T47D was studied in detail. In these cells the increase of activity of β-glucosidase and β-galactosidase was parallel to the increase of irradiation dose up to 60 Gy and continued with time, at least up to 72 h from irradiation. β-glucosidase increased up to 17 times and β-galactosidase up to 40 times with respect to control. Sialidase Neu3 and sphingomyelinase increased about 2 times at a dose of 20 Gy but no further significant differences were observed with increase of radiation dose and time. After irradiation, we observed a reduction of cell proliferation, an increase of apoptotic cell death and an increase of plasma membrane ceramide up to 3 times, with respect to control cells. Tritiated GM3 ganglioside has been administered to T47D cells under conditions that prevented the lysosomal catabolism. GM3 became component of the plasma membranes and was transformed into LacCer, GlcCer and ceramide. The quantity of ceramide produced in irradiated cells was about two times that of control cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hakomori, S.I.: Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res. 56, 5309–5318 (1996)

    PubMed  CAS  Google Scholar 

  2. Hakomori, S.: Glycosylation defining cancer malignancy: new wine in an old bottle. Proc. Natl. Acad. Sci. U. S. A. 99, 10231–10233 (2002)

    Article  PubMed  CAS  Google Scholar 

  3. Dennis, J.W., Granovsky, M., Warren, C.E.: Glycoprotein glycosylation and cancer progression. Biochim. Biophys. Acta 1473, 21–34 (1999)

    Article  PubMed  CAS  Google Scholar 

  4. Moskal, J.R., Kroes, R.A., Dawson, G.: The glycobiology of brain tumors: disease relevance and therapeutic potential. Expert. Rev. Neurother. 9, 1529–1545 (2009)

    Article  PubMed  CAS  Google Scholar 

  5. Meany, D.L., Chan, D.W.: Aberrant glycosylation associated with enzymes as cancer biomarkers. Clin Proteomics. 8, 7 (2011)

    Article  PubMed  CAS  Google Scholar 

  6. Sonnino, S., Aureli, M., Loberto, N., Chigorno, V., Prinetti, A.: Fine tuning of cell functions through remodeling of glycosphingolipids by plasma membrane-associated glycohydrolases. FEBS Lett. 584, 1914–1922 (2010)

    Article  PubMed  CAS  Google Scholar 

  7. Aureli, M., Loberto, N., Bassi, R., Ferraretto, A., Perego, S., Lanteri, P., Chigorno, V., Sonnino, S., Prinetti, A.: Plasma membrane-associated glycohydrolases activation by extracellular acidification due to proton exchangers. Neurochem Res. (2011).

  8. Aureli, M., Masilamani, A.P., Illuzzi, G., Loberto, N., Scandroglio, F., Prinetti, A., Chigorno, V., Sonnino, S.: Activity of plasma membrane beta-galactosidase and beta-glucosidase. FEBS Lett. 583, 2469–2473 (2009)

    Article  PubMed  CAS  Google Scholar 

  9. Valaperta, R., Valsecchi, M., Rocchetta, F., Aureli, M., Prioni, S., Prinetti, A., Chigorno, V., Sonnino, S.: Induction of axonal differentiation by silencing plasma membrane-associated sialidase Neu3 in neuroblastoma cells. J. Neurochem. 100, 708–719 (2007)

    Article  PubMed  CAS  Google Scholar 

  10. Valaperta, R., Chigorno, V., Basso, L., Prinetti, A., Bresciani, R., Preti, A., Miyagi, T., Sonnino, S.: Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. FASEB J. 20, 1227–1229 (2006)

    Article  PubMed  CAS  Google Scholar 

  11. Aureli, M., Masilamani, A.P., Illuzzi, G., Loberto, N., Scandroglio, F., Prinetti, A., Chigorno, V., Sonnino, S.: Activity of plasma membrane beta-galactosidase and beta-glucosidase. FEBS Lett. 583, 2469–2473 (2009)

    Article  PubMed  CAS  Google Scholar 

  12. Aureli, M., Loberto, N., Chigorno, V., Prinetti, A., Sonnino, S.: Remodeling of sphingolipids by plasma membrane associated enzymes. Neurochem Res. (2010)

  13. Papini, N., Anastasia, L., Tringali, C., Croci, G., Bresciani, R., Yamaguchi, K., Miyagi, T., Preti, A., Prinetti, A., Prioni, S., Sonnino, S., Tettamanti, G., Venerando, B., Monti, E.: The plasma membrane-associated sialidase MmNEU3 modifies the ganglioside pattern of adjacent cells supporting its involvement in cell-to-cell interactions. J. Biol. Chem. 279, 16989–16995 (2004)

    Article  PubMed  CAS  Google Scholar 

  14. Kakugawa, Y., Wada, T., Yamaguchi, K., Yamanami, H., Ouchi, K., Sato, I., Miyagi, T.: Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc. Natl. Acad. Sci. U. S. A. 99, 10718–10723 (2002)

    Article  PubMed  CAS  Google Scholar 

  15. Kawamura, S., Sato, I., Wada, T., Yamaguchi, K., Li, Y., Li, D., Zhao, X., Ueno, S., Aoki, H., Tochigi, T., Kuwahara, M., Kitamura, T., Takahashi, K., Moriya, S., Miyagi, T.: Plasma membrane-associated sialidase (NEU3) regulates progression of prostate cancer to androgen-independent growth through modulation of androgen receptor signaling. Cell Death Differ. (2011)

  16. Ost, P., Cozzarini, C., De Meerleer, G., Fiorino, C., De Potter, B., Briganti, A., Nagler, E.V.T., Montorsi, F., Fonteyne, V. r., Di Muzio, N.: High-dose adjuvant radiotherapy after radical prostatectomy with or without androgen deprivation therapy. International Journal of Radiation Oncology*Biology*Physics

  17. Group, I. M. R. T. C. W.: Intensity-modulated radiotherapy: current status and issues of interest. International Journal of Radiation Oncology*Biology*Physics. 51, 880–914 (2001)

    Google Scholar 

  18. Fodor, A., Fiorino, C., Dell’Oca, I., Broggi, S., Pasetti, M., Cattaneo, G., Gianolli, L., Calandrino, R., Di Muzio, N.: PET-guided dose escalation tomotherapy in malignant pleural mesothelioma. Strahlentherapie und Onkologie. 1–8

  19. Zelefsky, M.J., Fuks, Z.V.I., Hunt, M., Lee, H.J., Lombardi, D., Ling, C.C., Reuter, V.E., Venkatraman, E.S., Leibel, S.A.: High dose radiation delivered by intensity modulated conformal radiotherapy improves the outcome of localized prostate cancer. J. Urol. 166, 876–881 (2001)

    Article  PubMed  CAS  Google Scholar 

  20. Kolesnick, R., Fuks, Z.: Radiation and ceramide-induced apoptosis. Oncogene 22, 5897–5906 (2003)

    Article  PubMed  CAS  Google Scholar 

  21. Santana, P., Pena, L.A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordon-Cardo, C., Schuchman, E.H., Fuks, Z., Kolesnick, R.: Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86, 189–199 (1996)

    Article  PubMed  CAS  Google Scholar 

  22. Gulbins, E., Kolesnick, R., Quinn, P.J., Kagan, V.E.: In: Harris, J.R., Biswas, B.B., Quinn, P., (eds.): Springer US, 2004. pp. 229–244

  23. Obeid, L.M., Linardic, C.M., Karolak, L.A., Hannun, Y.A.: Programmed cell death induced by ceramide. Science 259, 1769–1771 (1993)

    Article  PubMed  CAS  Google Scholar 

  24. Haimovitz-Friedman, A., Kan, C.C., Ehleiter, D., Persaud, R.S., McLoughlin, M., Fuks, Z., Kolesnick, R.N.: Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med. 180, 525–535 (1994)

    Article  PubMed  CAS  Google Scholar 

  25. Sonnino, S., Chigorno, V., Tettamanti, G.: Preparation of radioactive gangliosides, 3H or 14C isotopically labeled at oligosaccharide or ceramide moieties. Methods Enzymol. 311, 639–656 (2000)

    Article  PubMed  CAS  Google Scholar 

  26. Leroy, J.G., Ho, M.W., MacBrinn, M.C., Zielke, K., Jacob, J., O’Brien, J.S.: I-cell disease: biochemical studies. Pediatr. Res. 6, 752–757 (1972)

    Article  PubMed  CAS  Google Scholar 

  27. Aureli, M., Prioni, S., Mauri, L., Loberto, N., Casellato, R., Ciampa, M.G., Chigorno, V., Prinetti, A., Sonnino, S.: Photoactivable sphingosine as a tool to study membrane microenvironments in cultured cells. J Lipid Res. 51, 798–808 (2010)

    Article  PubMed  CAS  Google Scholar 

  28. Behrens, B.C., Hamilton, T.C., Masuda, H., Grotzinger, K.R., Whang-Peng, J., Louie, K.G., Knutsen, T., McKoy, W.M., Young, R.C., Ozols, R.F.: Characterization of a cis-diamminedichloroplatinum(II)-resistant human ovarian cancer cell line and its use in evaluation of platinum analogues. Cancer Res. 47, 414–418 (1987)

    PubMed  CAS  Google Scholar 

  29. Osmak, M., Eljuga, D.: The characterization of two human cervical carcinoma HeLa sublines resistant to cisplatin. Res Exp Med (Berl) 193, 389–396 (1993)

    Article  CAS  Google Scholar 

  30. Appierto, V., Cavadini, E., Pergolizzi, R., Cleris, L., Lotan, R., Canevari, S., Formelli, F.: Decrease in drug accumulation and in tumour aggressiveness marker expression in a fenretinide-induced resistant ovarian tumour cell line. Br. J. Cancer 84, 1528–1534 (2001)

    Article  PubMed  CAS  Google Scholar 

  31. Zisowsky, J., Koegel, S., Leyers, S., Devarakonda, K., Kassack, M.U., Osmak, M., Jaehde, U.: Relevance of drug uptake and efflux for cisplatin sensitivity of tumor cells. Biochem. Pharmacol. 73, 298–307 (2007)

    Article  PubMed  CAS  Google Scholar 

  32. Prinetti, A., Cao, T., Illuzzi, G., Prioni, S., Aureli, M., Gagliano, N., Tredici, G., Rodriguez-Menendez, V., Chigorno, V., Sonnino, S.: A glycosphingolipid/caveolin-1 signaling complex inhibits motility of human ovarian carcinoma cells. J. Biol. Chem. 286, 40900–40910 (2011)

    Article  PubMed  CAS  Google Scholar 

  33. Aureli, M., Loberto, N., Lanteri, P., Chigorno, V., Prinetti, A., Sonnino, S.: Cell surface sphingolipid glycohydrolases in neuronal differentiation and aging in culture. J. Neurochem. 116, 891–899 (2011)

    Article  PubMed  CAS  Google Scholar 

  34. Mehlen, P., Rabizadeh, S., Snipas, S.J., Assa-Munt, N., Salvesen, G.S., Bredesen, D.E.: The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature 395, 801–804 (1998)

    Article  PubMed  CAS  Google Scholar 

  35. Kubbies, M.: Flow cytometric recognition of clastogen induced chromatin damage in G0/G1 lymphocytes by non-stoichiometric Hoechst fluorochrome binding. Cytometry 11, 386–394 (1990)

    Article  PubMed  CAS  Google Scholar 

  36. Overkleeft, H.S., Renkema, G.H., Neele, J., Vianello, P., Hung, I.O., Strijland, A., van der Burg, A.M., Koomen, G.J., Pandit, U.K., Aerts, J.M.: Generation of specific deoxynojirimycin-type inhibitors of the non-lysosomal glucosylceramidase. J. Biol. Chem. 273, 26522–26527 (1998)

    Article  PubMed  CAS  Google Scholar 

  37. Wang, P., Zhang, J., Bian, H., Wu, P., Kuvelkar, R., Kung, T.T., Crawley, Y., Egan, R.W., Billah, M.M.: Induction of lysosomal and plasma membrane-bound sialidases in human T-cells via T-cell receptor. Biochem. J. 380, 425–433 (2004)

    Article  PubMed  CAS  Google Scholar 

  38. Prinetti, A., Basso, L., Appierto, V., Villani, M.G., Valsecchi, M., Loberto, N., Prioni, S., Chigorno, V., Cavadini, E., Formelli, F., Sonnino, S.: Altered Sphingolipid Metabolism in N-(4-Hydroxyphenyl)- retinamide-resistant A2780 Human Ovarian Carcinoma Cells. J. Biol. Chem. 278, 5574–5583 (2003)

    Article  PubMed  CAS  Google Scholar 

  39. Kolter, T., Sandhoff, K.: Sphingolipids-their metabolic pathways and the pathobiochemistry of nerodegenrative diseases. Angew. Chem. Int. Ed. 38, 1532–1568 (1999)

    Article  CAS  Google Scholar 

  40. Goni, F.M., Alonso, A.: Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim. Biophys. Acta 1758, 1902–1921 (2006)

    Article  PubMed  CAS  Google Scholar 

  41. Huschtscha, L.I., Bartier, W.A., Ross, C.E., Tattersall, M.H.: Characteristics of cancer cell death after exposure to cytotoxic drugs in vitro. Br. J. Cancer 73, 54–60 (1996)

    Article  PubMed  CAS  Google Scholar 

  42. Vaidya, J.S., Joseph, D.J., Tobias, J.S., Bulsara, M., Wenz, F., Saunders, C., Alvarado, M., Flyger, H.L., Massarut, S., Eiermann, W., Keshtgar, M., Dewar, J., Kraus-Tiefenbacher, U., Sütterlin, M., Esserman, L., Holtveg, H.M.R., Roncadin, M., Pigorsch, S., Metaxas, M., Falzon, M., Matthews, A., Corica, T., Williams, N.R., Baum, M.: Targeted intraoperative radiotherapy versus whole breast radiotherapy for breast cancer (TARGIT-A trial): an international, prospective, randomised, non-inferiority phase 3 trial. The Lancet. 376, 91–102

  43. Volterrani, F., Aldrighetti, D., Bolognesi, A., Di Muzio, N., Reni, M., Ronzoni, M., Fossati, V., Villa, E., Marassi, A., Veronesi, P., et al.: Analysis of the results of 264 cases of small breast carcinoma treated with conservative surgery and radiotherapy. Radiol Med 82, 322–327 (1991)

    PubMed  CAS  Google Scholar 

  44. Vojtesek, B., Lane, D.P.: Regulation of p53 protein expression in human breast cancer cell lines. J Cell Sci. 105(Pt 3), 607–612 (1993)

    PubMed  CAS  Google Scholar 

  45. Ward, J.F.: The complexity of DNA damage: relevance to biological consequences. Int. J. Radiat. Biol. 66, 427–432 (1994)

    Article  PubMed  CAS  Google Scholar 

  46. Coleman, C.N.: Beneficial liaisons: radiobiology meets cellular and molecular biology. Radiother. Oncol. 28, 1–15 (1993)

    Article  PubMed  CAS  Google Scholar 

  47. McMillan, T.J.: Residual DNA damage: what is left over and how does this determine cell fate? Eur. J. Cancer 28, 267–269 (1992)

    Article  PubMed  CAS  Google Scholar 

  48. Hall, E.J.: Molecular biology in radiation therapy: the potential impact of recombinant technology on clinical practice. Int. J. Radiat. Oncol. Biol. Phys. 30, 1019–1028 (1994)

    Article  PubMed  CAS  Google Scholar 

  49. Bedford, J.S.: Sublethal damage, potentially lethal damage, and chromosomal aberrations in mammalian cells exposed to ionizing radiations. Int. J. Radiat. Oncol. Biol. Phys. 21, 1457–1469 (1991)

    Article  PubMed  CAS  Google Scholar 

  50. Harnden, D.G.: The nature of ataxia-telangiectasia: problems and perspectives. Int. J. Radiat. Biol. 66, S13–19 (1994)

    Article  PubMed  CAS  Google Scholar 

  51. Deng, X., Yin, X., Allan, R., Lu, D.D., Maurer, C.W., Haimovitz-Friedman, A., Fuks, Z., Shaham, S., Kolesnick, R.: Ceramide biogenesis is required for radiation-induced apoptosis in the germ line of C. elegans. Science 322, 110–115 (2008)

    Article  PubMed  CAS  Google Scholar 

  52. Mesicek, J., Lee, H., Feldman, T., Jiang, X., Skobeleva, A., Berdyshev, E.V., Haimovitz-Friedman, A., Fuks, Z., Kolesnick, R.: Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell Signal. 22, 1300–1307

  53. Verheij, M., Bartelink, H.: Radiation-induced apoptosis. Cell Tissue Res. 301, 133–142 (2000)

    Article  PubMed  CAS  Google Scholar 

  54. Chigorno, V., Sciannamblo, M., Mikulak, J., Prinetti, A., Sonnino, S.: Efflux of sphingolipids metabolically labeled with [1-3H]sphingosine, L-[3-3H]serine and [9,10-3H]palmitic acid from normal cells in culture. Glycoconj. J. 23, 159–165 (2006)

    Article  PubMed  CAS  Google Scholar 

  55. Chigorno, V., Tettamanti, G., Sonnino, S.: Metabolic processing of gangliosides by normal and Salla human fibroblasts in culture. A study performed by administering radioactive GM3 ganglioside. J. Biol. Chem. 271, 21738–21744 (1996)

    Article  PubMed  CAS  Google Scholar 

  56. Chigorno, V., Pitto, M., Cardace, G., Acquotti, D., Kirschner, G.N., Sonnino, S., Ghidoni, R., Tettamanti, G.: Association of gangliosides to fibroblasts in culture: A study performed with GM1 [14C]-labelled at the sialic acid acetyl group. Glycoconj. J. V2, 279–291 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grant PRIN (Italy) to S.S.

Conflict of interest

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Sonnino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aureli, M., Bassi, R., Prinetti, A. et al. Ionizing radiations increase the activity of the cell surface glycohydrolases and the plasma membrane ceramide content. Glycoconj J 29, 585–597 (2012). https://doi.org/10.1007/s10719-012-9385-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-012-9385-2

Keywords

Navigation