Skip to main content

Advertisement

Log in

Structural and functional insights into sulfated galactans: a systematic review

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Sulfated galactans (SGs) are highly anionic marine galactose-composed homopolysaccharides. Although their structures vary among species, their main features are conserved among phyla. Green algal SGs are quite heterogeneous, although preponderantly composed of 3-β-D-Galp units. The red algal SGs (like agar and carrageen) are composed of repeating disaccharide units with different sulfation patterns which vary among species. The SGs from invertebrates such as sea urchins and ascidians (tunicates), and from the unique description of a sea-grass, are composed of well-defined repetitive units. Chains of 3-linked β-galactoses are highly conserved in some marine taxonomic groups, with a strong tendency toward 4-sulfation in algae and marine angiosperm, and 2-sulfation in invertebrates. These carbohydrates are extracellular components of the cell wall in plants, of the body wall in tunicates, and of the jelly coat in sea urchin eggs. In sea urchins, the SGs are also responsible to induce the acrosome reaction. However, the wide range of potential pharmacological uses, especially as anticoagulants and antithrombotics, is the main reason for the increasing interest in these sugars. Both natural and clinical actions of SGs have a direct relation to their structural features, since the intermolecular complexes between SG and target proteins are much more stereospecific than only electric charge-dependent. This review will present an overview about the principle structural and functional information of SGs. Other important aspects concerning occurrence, biology, phylogeny, and future directions, will also be reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

aPPT:

activated partial thromboplastin time

AR:

acrosome reaction

AT:

antithrombin

CAM:

chorioallantoic membrane

FGF-2:

fibroblast growth factor 2

HCII:

heparin cofactor II

IC50 :

inhibitory concentration 50%

SG:

sulfated galactan

MW:

molecular weight

5-Fu:

Fluorouracil

References

  1. Pomin, V.P., Mourão, P.A.: Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiology. 18, 1016–1027 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. Pomin, V.P.: An overview about the structure-function relationship of marine sulfated homopolysaccharides with regular chemical structures. Biopolymers. 91, 601–609 (2009)

    Google Scholar 

  3. Alves, A.P., Mulloy, B., Diniz, J.A., Mourão, P.A.: Sulfated polysaccharides from the egg jelly layer are species-specific inducers of acrosomal reaction in sperms of sea urchins. J. Biol. Chem. 272, 6965–6971 (1997)

    Article  CAS  PubMed  Google Scholar 

  4. Castro, M.O., Pomin, V.H., Santos, L.L., Vilela-Silva, A.C., Hirohashi, N., Pol-Fachin, L., Verli, H., Mourão, P.A.: A unique 2-sulfated beta-galactan from the EGG jelly of the sea urchin glyptocidaris crenularis: Conformation flexibility versus induction of the sperm acrosome reaction. J. Biol. Chem. (2009), in press

  5. Vilela-Silva, A.C., Hirohashi, N., Mourão, P.A.: The structure of sulfated polysaccharides ensures a carbohydrate-based mechanism for species recognition during sea urchin fertilization. Int. J. Dev. Biol. 52, 551–559 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. Mourão, P.A.: A carbohydrate-based mechanism of species recognition in sea urchin fertilization. Braz. J. Med. Biol. Res. 40, 5–17 (2007)

    Article  PubMed  Google Scholar 

  7. Matsuhiro, B., Conte, A.F., Damonte, E.B., Kolender, A.A., Matulewicz, M.C., Mejías, E.G., Pujol, C.A., Zúñiga, E.A.: Structural analysis and antiviral activity of a sulfated galactan from the red seaweed Schizymenia binderi (Gigartinales, Rhodophyta). Carbohydr. Res. 340, 2392–2402 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Talarico, L.B., Zibetti, R.G., Faria, P.C., Scolaro, L.A., Duarte, M.E., Noseda, M.D., Pujol, C.A., Damonte, E.B.: Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. Int. J. Biol. Macromol. 34, 63–71 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. Mazumder, S., Ghosal, P.K., Pujol, C.A., Carlucci, M.J., Damonte, E.B., Ray, B.: Isolation, chemical investigation and antiviral activity of polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta). Int. J. Biol. Macromol. 31, 87–95 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. Duarte, M.E., Noseda, D.G., Noseda, M.D., Tulio, S., Pujol, C.A., Damonte, E.B.: Inhibitory effect of sulfated galactans from the marine alga Bostrychia montagnei on herpes simplex virus replication in vitro. Phytomedicine 8, 53–58 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. Duarte, M.E., Cauduro, J.P., Noseda, D.G., Noseda, M.D., Gonçalves, A.G., Pujol, C.A., Damonte, E.B., Cerezo, A.S.: The structure of the agaran sulfate from Acanthophora spicifera (Rhodomelaceae, Ceramiales) and its antiviral activity. Relation between structure and antiviral activity in agarans. Carbohydr. Res. 339, 335–347 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. Chattopadhyay, K., Ghosh, T., Pujol, C.A., Carlucci, M.J., Damonte, E.B., Ray, B.: Polysaccharides from Gracilaria corticata: sulfation, chemical characterization and anti-HSV activities. Int. J. Biol. Macromol. 43, 346–351 (2008)

    Article  CAS  PubMed  Google Scholar 

  13. Cáceres, P.J., Carlucci, M.J., Damonte, E.B., Matsuhiro, B., Zuñiga, E.A.: Carrageenans from chilean samples of Stenogramme interrupta (Phyllophoraceae): structural analysis and biological activity. Phytochemistry 53, 81–86 (2000)

    Article  PubMed  Google Scholar 

  14. Talarico, L.B., Pujol, C.A., Zibetti, R.G., Faría, P.C., Noseda, M.D., Duarte, M.E., Damonte, E.B.: The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antiviral. Res. 66, 103–110 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, G., Sun, Y., Xin, H., Zhang, Y., Li, Z., Xu, Z.: In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus. Pharmacol. Res. 50, 47–53 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, G., Xin, H., Sheng, W., Sun, Y., Li, Z., Xu, Z.: In vivo growth-inhibition of S180 tumor by mixture of 5-Fu and low molecular lambda-carrageenan from Chondrus ocellatus. Pharmacol. Res. 51, 153–157 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, G., Sheng, W., Yao, W., Wang, C.: Effect of low molecular lambda-carrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu. Pharmacol. Res. 53, 129–134 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. Bürgermeister, J., Paper, D.H., Vogl, H., Linhardt, R.J., Franz, G.: LaPSvS1, a (1-->3)-beta-galactan sulfate and its effect on angiogenesis in vivo and in vitro. Carbohydr. Res. 337, 1459–1466 (2002)

    Article  PubMed  Google Scholar 

  19. Farias, W.R., Valente, A.P., Pereira, M.S., Mourão, P.A.: Structure and anticoagulant activity of sulfated galactans. Isolation of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates. J. Biol. Chem. 275, 29299–29307 (2000)

    Article  CAS  PubMed  Google Scholar 

  20. Pereira, M.S., Melo, F.R., Mourão, P.A.: Is there a correlation between structure and anticoagulant action of sulfated galactans and sulfated fucans? Glycobiology 12, 573–580 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. Pereira, M.S., Vilela-Silva, A.C., Valente, A.P., Mourão, P.A.: A 2-sulfated, 3-linked alpha-L-galactan is an anticoagulant polysaccharide. Carbohydr. Res. 337, 2231–2238 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. Pereira, M.G., Benevides, N.M., Melo, M.R., Valente, A.P., Melo, F.R., Mourão, P.A.: Structure and anticoagulant activity of a sulfated galactan from the red alga, Gelidium crinale. Is there a specific structural requirement for the anticoagulant action? Carbohydr. Res. 340, 2015–2023 (2005)

    Article  CAS  PubMed  Google Scholar 

  23. Mourão, P.A.: Use of sulfated fucans as anticoagulant and antithrombotic agents: future perspectives. Curr. Pharm. Des. 10, 967–981 (2004)

    Article  PubMed  Google Scholar 

  24. Mourão, P.A., Pereira, M.S.: Searching for alternatives to heparin: sulfated fucans from marine invertebrates. Trends Cardiovasc. Med. 9, 225–232 (1999)

    Article  PubMed  Google Scholar 

  25. Fonseca, R.J., Oliveira, S.N., Melo, F.R., Pereira, M.G., Benevides, N.M., Mourão, P.A.: Slight differences in sulfation of algal galactans account for differences in their anticoagulant and venous antithrombotic activities. Thromb. Haemost. 99, 539–545 (2008)

    CAS  PubMed  Google Scholar 

  26. Farias, E.H., Pomin, V.H., Valente, A.P., Nader, H.B., Rocha, H.A., Mourão, P.A.: A preponderantly 4-sulfated, 3-linked galactan from the green alga Codium isthmocladum. Glycobiology 18, 250–259 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. Bilan, M.I., Vinogradova, E.V., Shashkov, A.S., Usov, A.I.: Structure of a highly pyruvylated galactan sulfate from the Pacific green alga Codium yezoense (Bryopsidales, Chlorophyta). Carbohydr. Res. 342, 586–596 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. Love, J., Percival, E.: The polysaccharides of green seaweed Codium fragile: Part III A β-1,4-linked mannan. J. Chem. Soc. 3345–3350 (1964).

  29. Matsubara, K., Matsuura, Y., Bacic, A., Liao, M.-L., Hori, K., Miyazawa, K.: Anticoagulant properties of a sulfated galactan preparation from a marine green alga. Codium. Cylindricum. Biol. Macromol. 28, 395–399 (2001)

    Article  CAS  Google Scholar 

  30. Bixler, H.J.: The carrageenan connection IV. Brit. Food. J. 96, 12–17 (1994)

    Article  Google Scholar 

  31. Knutsen, S.H., Myslabodski, D.E., Larsen, B., Usov, A.I.: A modified system of nomenclature for red algal galactans. Bot. Mar. 37, 163–169 (1994)

    Article  CAS  Google Scholar 

  32. Lahaye, M.: Developments on gelling algal galactans, their structure and physico-chemistry. J. Appl. Phycol. 13, 173–184 (2001)

    Article  CAS  Google Scholar 

  33. Usov, A.I.: Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocoll. 12, 301–308 (1998)

    Article  CAS  Google Scholar 

  34. van de Velde, F., Pereira, L., Rollema, H.S.: The revised NMR chemical shift data of carrageenans. Carbohydr. Res. 339, 2309–2313 (2004)

    Article  PubMed  CAS  Google Scholar 

  35. Aquino, R.S., Landeira-Fernandez, A.M., Valente, A.-P., Andrade, L.R., Mourão, P.A.S.: Occurrence of sulfated galactans in marine angiosperms: Evolutionary implications. Glycobiology 15, 11–20 (2005)

    Article  CAS  PubMed  Google Scholar 

  36. Santos, J.A., Mulloy, B., Mourão, P.A.: Structural diversity among sulfated alpha-L-galactans from ascidians (tunicates). Studies on the species Ciona intestinalis and Herdmania monus. Eur. J. Biochem. 204, 669–677 (1992)

    Article  CAS  PubMed  Google Scholar 

  37. Mourão, P.A., Perlin, A.S.: Structural features of sulfated glycans from the tunic of Styela plicata Chordata-Tunicata: A unique occurrence of L-galactose in sulfated polysaccharides. Eur. J. Biochem. 166, 431–436 (1987)

    Article  PubMed  Google Scholar 

  38. Albano, R.M., Pavão, M.S., Mourão, P.A., Mulloy, B.: Structural studies of a sulfated L-galactan from Styela plicata (Tunicate): Analysis of the Smith-degraded polysaccharide. Carbohydr. Res. 208, 163–174 (1990)

    Article  CAS  PubMed  Google Scholar 

  39. Whittaker, R.H.: New concepts of kingdoms of organisms. Science 163, 150–160 (1969)

    Article  CAS  PubMed  Google Scholar 

  40. Amornrut, C., Toida, T., Imanari, T., Woo, E.-R., Park, H., Linhardt, R., Wu, S.J., Kim, Y.S.: A new sulfated beta-galactan from clams with anti-HIV activity. Carbohydr. Res. 321, 121–127 (1999)

    Article  CAS  PubMed  Google Scholar 

  41. Pavão, M.S.G., Albano, R.M., Lawsom, A.M., Mourão, P.A.: Structural heterogeneity among unique sulfated L-galactans from different species of ascidians (tunicates). J. Biol. Chem. 264, 9972–9979 (1989)

    PubMed  Google Scholar 

  42. Pavão, M.S.G., Mourão, P.A., Mulloy, B.: Structure of a unique sulfated alpha-L-galactofucan from the tunicate Clavelina. Carbohydr. Res. 208, 153–161 (1990)

    Article  PubMed  Google Scholar 

  43. Scudder, P., Tanq, P.W., Hounsell, E.F., Lawson, A.M., Mehmet, H., Feizi, T.: Isolation and characterization of sulphated oligosaccharides released from bovine corneal keratin sulphate by the action of endo-beta-galactosidase. Eur. J. Biochem. 157, 365–373 (1986)

    Article  CAS  PubMed  Google Scholar 

  44. Vacquier, V.D., Hirohashi, N.: Sea urchin spermatozoa. Methods Cell Biol. 74, 523–544 (2004)

    Article  CAS  PubMed  Google Scholar 

  45. Gunaratne, H.J., Moy, G.W., Kinukawa, M., Miyata, S., Mash, S.A., Vacquier, V.D.: The 10 sea urchin receptor for egg jelly proteins (SpREJ) are members of the polycystic kidney disease-1 (PKD1) family. BMC. Genomics. 8, 235 (2007)

    Article  PubMed  CAS  Google Scholar 

  46. Darszon, A., Acevedo, J.J., Galindo, B.E., Hernández-González, E.O., Nishigaki, T., Treviño, C.L., Wood, C., Beltrán, C.: Sperm channel diversity and functional multiplicity. Reproduction 161, 977–988 (2006)

    Article  CAS  Google Scholar 

  47. Darszon, A., López-Martínez, P., Acevedo, J.J., Hernández-Cruz, A., Treviño, C.L.: T-type Ca2+ channels in sperm function. In: Cell Calcium. 40:241–252 (2006)

  48. de la Sancha, C.U., Martinez-Cadena, G., López-Godínez, J., Castellano, L.E., Nishigaki, T., Darszon, A., García-Soto, J.: Rho-kinase (ROCK) in sea urchin sperm: Its role in regulating the intracellular pH during the acrosome reaction. Biochem. Biophys. Res. Commun. 364, 470–475 (2007)

    Article  PubMed  CAS  Google Scholar 

  49. Vacquier, V.D., Swanson, W.J., Hellberg, M.E.: What have we learned about sea urchin sperm bindin? Dev. Growth Differ. 37, 1–10 (1995)

    Article  CAS  Google Scholar 

  50. Cameron, R.A., Walkup, T.S., Rood, K., Moore, J.G., Davidson, E.H.: Specific in vitro interaction between recombinant Strongylocentrotus purpuratus bindin and a recombinant 45A fragment of the putative bindin receptor. Dev. Biol. 180, 348–352 (1996)

    Article  CAS  PubMed  Google Scholar 

  51. Glaser, R.W., Grüne, M., Wandelt, C., Ulrich, A.S.: Structure analysis of a fusogenic peptide sequence from the sea urchin fertilization protein bindin. Biochemistry 38, 2560–2569 (1999)

    Article  CAS  PubMed  Google Scholar 

  52. Kamei, N., Glabe, C.G.: The species-specific egg receptor for sea urchin sperm adhesion is EBR1, a novel ADAMTS protein. Gene. Dev. 17, 2502–2507 (2003)

    Article  CAS  PubMed  Google Scholar 

  53. Zigler, K.S.: The evolution of sea urchin sperm bindin. Int. J. Dev. Biol. 52, 791–796 (2008)

    Article  CAS  PubMed  Google Scholar 

  54. Hirohashi, N., Vacquier, V.D.: Egg sialoglycans increase intracellular pH and potentiate the acrosome reaction of the sea urchin sperm. J. Biol. Chem. 277, 8041–8047 (2002)

    Article  CAS  PubMed  Google Scholar 

  55. Jackson, J.R., Seed, M.P., Kircher, C.H., Willoughby, D.A., Winkler, J.D.: The codependence of angiogenesis and chronic inflammation. FASEB. J. 11, 457–465 (1997)

    CAS  PubMed  Google Scholar 

  56. Fareed, J.W., Hoppensteadt, D., Bick, R.L.: An update of heparins at the beginning of the new millennium. Sem. Thromb. Haemost. 26, 5–21 (2000)

    Article  CAS  Google Scholar 

  57. Guerrini, M., Beccati, D., Shriver, Z., Naggi, A., Viswanathan, K., Bisio, A., Capila, I., Lansing, J.C., Guglieri, S., Fraser, B., Al-Hakim, A., Gunay, N.S., Zhang, Z., Robinson, L., Buhse, L., Nasr, M., Woodcock, J., Langer, R., Venkataraman, G., Linhardt, R.J., Casu, B., Torri, G., Sasisekharan, R.: Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat. Biotechnol. 10, 1–7 (2008)

    Google Scholar 

  58. Kishimoto, T.K., Viswanathan, K., Ganguly, T., Elankumaran, S., Smith, S., Pelzer, K., Lansing, J.C., Sriranganathan, N., Zhao, G., Galcheva-Gargova, Z., Al-Hakim, A., Bailey, G.S., Fraser, B., Roy, S., Rogers-Cotrone, T., Buhse, L., Whary, M., Fox, J., Nasr, M., Dal Pan, G.J., Shriver, Z., Langer, R.S., Venkataraman, G., Austen, K.F., Woodcock, J., Sasisekharan, R.: Contaminated heparin associated with adverse clinical events and activation of the contact system. New. Engl. J. Med. 358, 2457–2467 (2008)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to kindly thank Prof. Megan Macnaughtan for the careful editing and Prof. James H. Prestegard for the post-doctoral position in his laboratory which allowed me to write this review there.

Conflict of interest statement

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor H. Pomin.

Additional information

This work was supported by the postdoctoral fellowship number 201019/2008-6 from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pomin, V.H. Structural and functional insights into sulfated galactans: a systematic review. Glycoconj J 27, 1–12 (2010). https://doi.org/10.1007/s10719-009-9251-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-009-9251-z

Keywords

Navigation