Skip to main content

Advertisement

Log in

Use of a novel anti-proliferative compound coated on a biopolymer to mitigate platelet-derived growth factor-induced proliferation in human aortic smooth muscle cells: comparison with sirolimus

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Drug eluting stents (DES) have become a common mode of treatment for stenosis in coronary arteries. However, currently, the use of sirolimus/paclitaxel-coated DES has come under scrutiny, because of their pro-thrombotic effects leading to potential adverse outcomes in the long run. We have previously documented that d-threo-1-phenyl-2-decanoylamino-3-morholino propanol (D-PDMP); an inhibitor of glucosylceramide synthase and lactosylceramide (LacCer) synthase markedly inhibited platelet-derived growth factor (PDGF)-induced cell proliferation. We have fabricated DES wherein, D-PDMP or sirolimus was coated on to a double layer of poly (lactic-co-glycolic acid) on a bare metal stent. The in vitro release of D-PDMP from biopolymer and its consequent effect on PDGF induced proliferation and apoptosis was assessed in human aortic smooth muscle cells (ASMC). D-PDMP was released from biopolymers in a dose-dependent fashion and was accompanied with a decrease in PDGF-induced cell proliferation, but not apoptosis. In contrast, sirolimus markedly increased apoptosis in these cells in addition to inhibiting proliferation. Our mechanistic studies revealed that D-PDMP, but not sirolimus decreased the cellular level of glucosyl and lactosylceramide that accompanied inhibition of PDGF-induced cell proliferation. Our short-term (14 days) in vivo studies in rabbits also attested to the safety and biocompatibility of the D-PDMP coated stents. Our data reveal the superiority of D-PDMP coated biopolymers over sirolimus coated biopolymers in mitigating ASMC proliferation. Such D-PDMP coated stents may be useful for localized delivery of drug to mitigate neo-vascular hyperplasia and other proliferative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DPDMP:

d-threo-1-phenyl-2-decanoylamino-3-morholino propanol

PDGF:

platelet-derived growth factor

LacCer:

lactosylceramide

GLcCer:

glucosylceramide

HPLC:

high performance liquid chromatography

PLGA:

polylactic-co-glycolic acid

TNF:

tissue necrosis factor

ASMC:

aortic smooth muscle cells

DES:

drug eluting stents

References

  1. AHA/ACC Clinical Performance Measures, Chronic Stable Coronary Artery Disease (2003)

  2. Anis, R.R., Karsch, K.R., Oberhoff, M.: An update on clinical and pharmacological aspects of drug-eluting stents. Cardiovasc. Hematol. Disord. Drug Targets 6, 245–255 (2006)

    PubMed  CAS  Google Scholar 

  3. Serruys, P.W., de Jaegere, P., Kiemeneij, F., Macaya, C., Rutsch, W., Heyndrickx, G., et al.: A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N. Engl. J. Med. 331, 489–495 (1994). doi:10.1056/NEJM199408253310801

    Article  PubMed  CAS  Google Scholar 

  4. Fischman, D.L., Leon, M.B., Baim, D.S., Schatz, R.A., Savage, M.P., Penn, I., et al.: A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N. Engl. J. Med. 331, 496–501 (1994). doi:10.1056/NEJM199408253310802

    Article  PubMed  CAS  Google Scholar 

  5. Holmes, D.R., Vliestra, R.E., Smith, H.C., Vetrovec, G.W., Kent, K.M., Cowley, M.J., et al.: Restenosis after percutaneous transluminal coronary angioplasty (PTCA), a report from the PTCA Registry of the National Heart, Lung, and Blood Institute. Am. J. Cardiol. 53, 77C–81C (1984). doi:10.1016/0002-9149(84)90752-5

    Article  PubMed  Google Scholar 

  6. Ong, A.T., McFadden, E.P., Regar, E., de Jaegere, P.P., van Domburg, R.T., Serruys, P.W.: Late angiographic stent thrombosis (LAST) events with drug-eluting stents. J. Am. Coll. Cardiol. 45, 2088–2092 (2005). doi:10.1016/j.jacc.2005.02.086

    Article  PubMed  CAS  Google Scholar 

  7. Pfisterer, M., Brunner-La Rocca, H.B., Buser, P.T., Rickenbacher, P., Hunziker, P., Mueller, C., et al.: BASKET-LATE investigators. Late clinical events after clopidogrel discontinuation may limit the benefit of drug-eluting stents, an observational study of drug-eluting stents versus bare-metal stents. J. Am. Coll. Cardiol. 48, 2584–2591 (2006). doi:10.1016/j.jacc.2006.10.026

    Article  PubMed  CAS  Google Scholar 

  8. Nordmann, A.J., Briel, M., Bucher, H.C.: Mortality in randomized controlled trials comparing drug-eluting vs. bare metal stents in coronary artery disease, a meta-analysis. Eur. Heart J. 27, 2784–2814 (2006). doi:10.1093/eurheartj/ehl282

    Article  PubMed  CAS  Google Scholar 

  9. Camenzind, E., Steg, G., Wijns, W.: Safety of drug-eluting stents, a meta-analysis of 1st generation DES programs. Presented at the European Society of Cardiology 2006 World Congress, Barcelona, September 2–6 (2006)

  10. Luscher, T.F., Steffel, J., Eberli, F.R., Joner, M., Nakazawa, G., Tanner, F.C., et al.: Drug-eluting stent and coronary thrombosis, biological mechanisms and clinical implications. Circulation 115, 1051–1058 (2007). doi:10.1161/CIRCULATIONAHA.106.675934

    Article  PubMed  Google Scholar 

  11. Stone, G.W., Moses, J.W., Ellis, S.G., Schofer, J., Dawkins, K.D., Morice, M.C., et al.: Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N. Engl. J. Med. 356, 998–1008 (2007). doi:10.1056/NEJMoa067193

    Article  PubMed  CAS  Google Scholar 

  12. Maisel, W.H.: Unanswered questions-drug-eluting stents and the risk of late thrombosis. N. Engl. J. Med. 356, 981–984 (2007). doi:10.1056/NEJMp068305

    Article  PubMed  CAS  Google Scholar 

  13. Shuchman, M.: Trading restenosis for thrombosis? New questions about drug-eluting stents. N. Engl. J. Med. 355, 1949–1952 (2006). doi:10.1056/NEJMp068234

    Article  PubMed  CAS  Google Scholar 

  14. Groeneveld, P.W., Suh, J.J., Matta, M.A.: The costs and quality-of-life outcomes of drug-eluting coronary stents a, systematic review. J. Interv. Cardiol. 20, 1–9 (2007). doi:10.1111/j.1540-8183.2007.00214.x

    Article  PubMed  Google Scholar 

  15. Katritsis, D.G., Karvouni, E., Ioannidis, J.P.: Meta-analysis comparing drug-eluting stents with bare metal stents. Am. J. Cardiol. 95, 640–643 (2005). doi:10.1016/j.amjcard.2004.10.041

    Article  PubMed  CAS  Google Scholar 

  16. Slavin, L., Chhabra, A., Tobis, J.M.: Drug-eluting stents, preventing restenosis. Cardiol. Rev. 15, 1–12 (2007). doi:10.1097/01.crd.0000200844.16899.fc

    Article  PubMed  Google Scholar 

  17. Mintz, G.S., Popma, J.J., Pichard, A.D., Kent, K.M., Satler, L.F., Wong, C., et al.: Arterial remodeling after coronary angioplasty, a serial intravascular ultrasound study. Circulation 94, 35–43 (1996)

    PubMed  CAS  Google Scholar 

  18. Hoffmann, R., Mintz, G.S., Dussaillant, G.R., Popma, J.J., Pichard, A.D., Satler, L.F., et al.: Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation 94, 1247–1254 (1996)

    PubMed  CAS  Google Scholar 

  19. Kornowski, R., Hong, M.K., Tio, F.O., Bramwell, O., Wu, H., Leon, M.B.: In-stent restenosis, contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J. Am. Coll. Cardiol. 31, 224–230 (1998). doi:10.1016/S0735-1097(97)00450-6

    Article  PubMed  CAS  Google Scholar 

  20. Curfman, G.D.: Sirolimus eluting coronary stents. N. Engl. J. Med. 346, 1770–1771 (2002). doi:10.1056/NEJM200206063462302

    Article  PubMed  Google Scholar 

  21. De Scheerder, I.K., Wilczek, K.L., Verbeken, E.V., Vandorpe, J., Lan, P.N., Schacht, E., et al.: Biocompatibility of polymer-coated oversized metallic stents implanted in normal porcine coronary arteries. Atherosclerosis 114, 105–114 (1995). doi:10.1016/0021-9150(94)05472-U

    Article  PubMed  Google Scholar 

  22. Rechavia, E., Litvack, F., Fishbien, M.C., Nakamura, M., Eigler, N.: Biocompatibility of polyurethane-coated stents, tissue and vascular aspects. Cathet. Cardiovasc. Diagn. 45, 202–207 (1998). doi:10.1002/(SICI)1097-0304(199810)45:2<202::AID-CCD20>3.0.CO;2-L

    Article  PubMed  CAS  Google Scholar 

  23. Van der Giessen, W.J., Lincoff, A.M., Schwartz, R.S., van Beusekom, H.M., Serruys, P.W., Holmes Jr., D.R., et al.: Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 94, 1690–1697 (1996)

    PubMed  Google Scholar 

  24. Venkatraman, S., Boey, F.Y.C.: Release profiles in drug-eluting stents, issues and uncertainties. J. Control. Release 120, 149–160 (2007). doi:10.1016/j.jconrel.2007.04.022

    Article  PubMed  CAS  Google Scholar 

  25. Ranade, S.V., Miller, K.M., Richard, R.E.: Physical characterization of controlled release of paclitaxel from the TAXUS™ Express2™ drug-eluting stent. J. Biomed. Mater. Res. A 71, 625–634 (2004). doi:10.1002/jbm.a.30188

    Article  PubMed  Google Scholar 

  26. Finn, A.V., Kolodgie, F.D., Harnek, J., Guerrero, L.J., Acampado, E., Tefera, K., et al.: Differential response of delayed healing and persistent inflammation at sites of overlapping sirolimus- or paclitaxel-eluting stents. Circulation 112, 270–278 (2005). doi:10.1161/CIRCULATIONAHA.104.508937

    Article  PubMed  CAS  Google Scholar 

  27. Joner, M., Finn, A.V., Farb, A., Mont, E.K., Kolodgie, F.D., Ladich, E., et al.: Pathology of drug-eluting stents in humans, delayed healing and late thrombotic risk. J. Am. Coll. Cardiol. 48, 193–202 (2006). doi:10.1016/j.jacc.2006.03.042

    Article  PubMed  Google Scholar 

  28. Ross, R.: The pathogenesis of atherosclerosis, a perspective for the1990s. Nature 363, 801–809 (1993). doi:10.1038/362801a0

    Article  Google Scholar 

  29. Libby, P., Ridker, P.M., Maseri, A.: Inflammation and atherosclerosis. Circulation 105, 1135–1143 (2002). doi:10.1161/hc0902.104353

    Article  PubMed  CAS  Google Scholar 

  30. Bhunia, A.K., Arai, T., Bulkley, G., Chatterjee, S.: Lactosylceramide mediates tumor necrosis factor-α-induced intercellular adhesion molecule-1 (ICAM-1) expression and the adhesion of neutrophil in human umbilical vein endothelial cells. J. Biol. Chem. 273(51), 34349–34357 (1998). doi:10.1074/jbc.273.51.34349

    Article  PubMed  CAS  Google Scholar 

  31. Arai, T., Bhunia, A.K., Chatterjee, S., Bulkley, G.B.: Lactosylceramide stimulates human neutrophils to upregulate Mac-1, adhere to endothelium, and generate reactive oxygen metabolites in vitro. Circ. Res. 82, 540–547 (1998)

    PubMed  CAS  Google Scholar 

  32. Rajesh, M., Kolmakova, A., Chatterjee, S.: Novel role of lactosylceramide in vascular endothelial growth factor mediated angiogenesis in human endothelial cells. Circ. Res. 97(8), 796–804 (2005). doi:10.1161/01.RES.0000185327.45463.A8

    Article  PubMed  CAS  Google Scholar 

  33. Kolmakova, A., Chatterjee, S.: Platelet derived growth factor recruits lactosylceramide to induce cell proliferation in UDP Gal,GlcCer, β1→4Galactosyltransferase (GalT-V) mutant Chinese hamster ovary cells. Glycoconj. J. 22, 401–407 (2005). doi:10.1007/s10719-005-3351-1

    Article  PubMed  CAS  Google Scholar 

  34. Chatterjee, S.: Lactosylceramide stimulates aortic smooth muscle cell proliferation. Biochem. Biophys. Res. Commun. 181, 554–561 (1991). doi:10.1016/0006-291X(91)91225-2

    Article  PubMed  CAS  Google Scholar 

  35. Bhunia, A.K., Han, H., Snowden, A., Chatterjee, S.: Lactosylceramide stimulates Ras-GTP loading, kinases (MEK, Raf), p44 mitogen-activated protein kinase, and c-fos expression in human aortic smooth muscle cells. J. Biol. Chem. 271, 10660–10666 (1996). doi:10.1074/jbc.271.18.10660

    Article  PubMed  CAS  Google Scholar 

  36. Bhunia, A.K., Han, H., Snowden, A., Chatterjee, S.: Redox-regulated signaling by lactosylceramide in the proliferation of human aortic smooth muscle cells. J. Biol. Chem. 272, 15642–15649 (1997). doi:10.1074/jbc.272.25.15642

    Article  PubMed  CAS  Google Scholar 

  37. Chatterjee, S.: Oxidized low density lipoproteins and lactosylceramide both stimulate the expression of proliferating cell nuclear antigen and the proliferation of aortic smooth muscle cells. Indian J. Biochem. Biophys. 34, 56–60 (1997)

    PubMed  CAS  Google Scholar 

  38. Chatterjee, S., Bhunia, A.K., Snowden, A., Han, H.: Oxidized low density lipoproteins stimulate galactosyltransferase activity, ras activation, p44 mitogen activated protein kinase and c-fos expression in aortic smooth muscle cells. Glycobiology 7, 703–710 (1997). doi:10.1093/glycob/7.5.703

    Article  PubMed  CAS  Google Scholar 

  39. Chatterjee, S.: Sphingolipids in atherosclerosis and vascular biology. Arterioscler. Thromb. Vasc. Biol. 18, 1523–1533 (1998)

    PubMed  CAS  Google Scholar 

  40. Chatterjee, S.: Assay of lactosylceramide synthase and comments on its potential role in signal transduction. Methods Enzymol. 311, 73–81 (2000). doi:10.1016/S0076-6879(00)11068-7

    Article  PubMed  CAS  Google Scholar 

  41. Gombotz, W.R., Pettit, D.K.: Biodegradable polymers for protein and peptide drug delivery. Bioconjug. Chem. 6, 332–351 (1995). doi:10.1021/bc00034a002

    Article  PubMed  CAS  Google Scholar 

  42. Leenslag, J.W., Pennings, A.J., Bos, R.R., Rozema, F.R., Boering, G.: Resorbable materials of poly(l-lactide). Biomaterials 8, 70–73 (1987). doi:10.1016/0142-9612(87)90034-2

    Article  PubMed  CAS  Google Scholar 

  43. Jurgens, C.H., Kricheldorf, H.R., Kreiser-Saunders, I.: Development of a biodegradable wound covering and first clinical results. In: Walenkamp, G.H.I.M. (ed.) Biomaterials in Surgery, pp. 112–120. Thieme, New York (1998)

    Google Scholar 

  44. Hubbell, J.A.: Biomaterials in tissue engineering. Biotechnology 13, 565–576 (1995). doi:10.1038/nbt0695-565

    Article  PubMed  CAS  Google Scholar 

  45. Pan, C.J., Tang, J.J., Weng, Y.J., Wang, J., Huang, N.: Preparation, characterization and anticoagulation of curcumin-eluting controlled biodegradable coating stents. J. Control. Release 116, 42–49 (2006). doi:10.1016/j.jconrel.2006.08.023

    Article  PubMed  CAS  Google Scholar 

  46. Sternberg, K., Kramer, S., Nischan, C., Grabow, N., Langer, T., Hennighausen, G., et al.: In vitro study of drug-eluting stent coatings based on poly(L-lactide) incorporating cyclosporine A—drug release, polymer degradation and mechanical integrity. J. Mater. Sci. Mater. Med. 18, 1423–1432 (2007). doi:10.1007/s10856-007-0148-8

    Article  PubMed  CAS  Google Scholar 

  47. Pasterkamp, G., de Kleijn, D.P., Borst, C.: Arterial remodeling in atherosclerosis, restenosis and after alteration of blood flow, potential mechanisms and clinical implications. Cardiovasc. Res. 45, 843–852 (2000). doi:10.1016/S0008-6363(99)00377-6

    Article  PubMed  CAS  Google Scholar 

  48. Welt, F.G., Rogers, C.: Inflammation and restenosis in the stent era. Arterioscler. Thromb. Vasc. Biol. 22, 1769–1776 (2002). doi:10.1161/01.ATV.0000037100.44766.5B

    Article  PubMed  CAS  Google Scholar 

  49. Fingar, D.C., Blenis, J.: Target of rapamycin (TOR), an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23, 3151–3371 (2004). doi:10.1038/sj.onc.1207542

    Article  PubMed  CAS  Google Scholar 

  50. Jefferies, H.B., Thomas, G., Thomas, G.: Elongation factor-1 α mRNA is selectively translated following mitogenic stimulation. J. Biol. Chem. 269, 4367–4372 (1994)

    PubMed  CAS  Google Scholar 

  51. Gingras, A.C., Raught, B., Sonenberg, N.: mTOR signaling to translation. Curr. Top. Microbiol. Immunol. 279, 169–197 (2004)

    PubMed  CAS  Google Scholar 

  52. Gingras, A.C., Raught, B., Sonenberg, N.: eIF4 initiation factors, effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913–963 (1999). doi:10.1146/annurev.biochem.68.1.913

    Article  PubMed  CAS  Google Scholar 

  53. Braun-Dullaeus, R.C., Mann, M.J., Seay, U., Zhang, L., von Der Leyen, H.E., Morris, R.E., et al.: Cell cycle protein expression in vascular smooth muscle cells in vitro and in vivo is regulated through phosphatidylinositol 3-kinase and mammalian target of rapamycin. Arterioscler. Thromb. Vasc. Biol. 7, 1152–1158 (2001). doi:10.1161/hq0701.092104

    Article  Google Scholar 

  54. Marks, A.R.: Rapamycin, signaling in vascular smooth muscle. Transplant. Proc. 35(suppl 3), 231S–233S (2003). doi:10.1016/S0041-1345(03)00243-4

    Article  PubMed  CAS  Google Scholar 

  55. Marks, A.R.: Sirolimus in prevention of in-stent restenosis in a coronary artery. N. Engl. J. Med. 349, 1307–1309 (2003). doi:10.1056/NEJMp038141

    Article  PubMed  CAS  Google Scholar 

  56. Schachner, T., Oberhuber, A., Zou, Y., Tzankov, A., Ott, H., Laufer, G., et al.: Rapamycin treatment is associated with an increased apoptosis rate in experimental vein grafts. Eur. J. Cardiothorac. Surg. 27, 302–306 (2005). doi:10.1016/j.ejcts.2004.11.008

    Article  PubMed  Google Scholar 

  57. Giordano, A., Avellino, R., Ferraro, P., Romano, S., Corcione, N., Romano, M.F.: Rapamycin antagonises NF-kb nuclear translocation activated by TNF-a in primary vascular smooth muscle cells and enhances apoptosis. Am. J. Physiol. Heart Circ. Physiol. 290, H2459–H2465 (2006). doi:10.1152/ajpheart.00750.2005

    Article  PubMed  CAS  Google Scholar 

  58. Matter, C.M., Chadjichristos, C.E., Meier, P., von Lukowicz, T., Lohmann, C., Schuler, P.K., et al.: Role of endogenous FAS (CD95/Apo-1)ligand in balloon induced apoptosis, inflammation and neointimal formation. Circulation 113, 1879–1887 (2006). doi:10.1161/CIRCULATIONAHA.106.611731

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Merlin Medical, Singapore for the assistance in the evaluation of crimped stents, as well as for the helpful discussions. This work was supported via funds from the Economic development board of Singapore, A*STAR and from the Johns Hopkins University, School of Medicine Institutional Funds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subbu S. Venkatraman or Subroto Chatterjee.

Additional information

Yong-Dan Tang, Ambarish Pandey, Subbu S. Venkatraman, and Subroto Chatterjee contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, YD., Pandey, A., Kolmakova, A. et al. Use of a novel anti-proliferative compound coated on a biopolymer to mitigate platelet-derived growth factor-induced proliferation in human aortic smooth muscle cells: comparison with sirolimus. Glycoconj J 26, 721–732 (2009). https://doi.org/10.1007/s10719-008-9192-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9192-y

Keywords

Navigation