Skip to main content
Log in

Complex null geodesics in the extended Schwarzschild universe

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The generic null geodesic of the Schwarzschild–Kruskal–Szekeres geometry has a natural complexification, an elliptic curve with a cusp at the singularity. To realize that complexification as a Riemann surface without a cusp, and also to ensure conservation of energy at the singularity, requires a branched cover of the space-time over the singularity, with the geodesic being doubled as well to obtain a genus two hyperelliptic curve with an extra involution. Furthermore, the resulting space-time obtained from this branch cover has a Hamiltonian that is null geodesically complete. The full complex null geodesic can be realized in a natural complexification of the Kruskal–Szekeres metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adamo, T., Nakach, S., Tseytlin, A.A.: Scattering of Conformal Higher Spin Fields (2018). arXiv:1805.00394

  2. Battaglini, G.: Intorno ai sistemi di rette di primo ordine. Rend. Acc. Nap. 5, 24–87 (1866)

    MATH  Google Scholar 

  3. Battaglini, G.: Intorno ai sistemi di rette di secondo grado. Stamperia del Fibreno (1866)

  4. Battaglini, G.: Intorno ai sistemi di retter di primo grade. Giornale di Matematiche 6, 24–36 (1868)

    MATH  Google Scholar 

  5. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7(8), 2333 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Chandrasekhar, S.: The Mathematical Theory of Black Holes, vol. 69. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  7. Connes, A.: Noncommutative Geometry Year 2000. In Visions in Mathematics, pp. 481–559. Springer, Berlin (2000)

    MATH  Google Scholar 

  8. D’Ambrosio, F., Rovelli, C.: How Information Crosses Schwarzschild’s Central Singularity (2012). arXiv:1803.05015

  9. Dolgachev, I.V.: Classical Algebraic Geometry: A Modern View. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  10. Eddington, A.: A comparison of Whitehead’s and Einstein’s formulæ. Nature 113, 192 (1924)

    Article  ADS  Google Scholar 

  11. Einstein, A.: Bemerkungen zu der Arbeit: Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. Z. Math. Phys. 62, 260–261 (1914)

    Google Scholar 

  12. Einstein, A.: Die Feldgleichungen der gravitation. Sitzungsberichte der Königlich Preussichen Akademie der Wissenschaften (1915)

  13. Einstein, A., Grossmann, M.: Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. Z. Math. Phys. 62, 225 (1913)

    MATH  Google Scholar 

  14. Einstein, A., Grossmann, M.: Kovarianzeigenschaften der Feldgleichungen der auf die verallgemeinerte Relativitätstheorie gegründeten Gravitationstheorie. Z. Math. Phys. 63, 215–225 (1914)

    MATH  Google Scholar 

  15. Finkelstein, D.: Past–future asymmetry of the gravitational field of a point. Phys. Rev. 110, 965–967 (1958)

    Article  ADS  MATH  Google Scholar 

  16. Gibbons, G.W., Hawking, S.W.: Action integrals and partition functions in quantum gravity. Phys. Rev. D 15(10), 2752 (1977)

    Article  ADS  Google Scholar 

  17. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library. Wiley, New York (1994). Reprint of the 1978 original

  18. Hawking, S.W.: Gravitational radiation from colliding black holes. Phys. Rev. Lett. 26(21), 1344 (1971)

    Article  ADS  Google Scholar 

  19. Hilbert, D.: Die Grundlagen der Physik. Mathematische Annalen 92(1), 1–32 (1924)

    Article  MathSciNet  Google Scholar 

  20. Holland, J., Sparling, G.: Cosmology: Macro and Micro. arXiv:1411.4716 (2012)

  21. Iskovskikh, V.A., Prokhorov, Yu.G.: Fano Varieties. Algebraic Geometry, volume 47 of Encyclopaedia Mathematics Science (1999)

  22. Kruskal, M.D.: Maximal extension of Schwarzschild metric. Phys. Rev. 119(5), 1743 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Lemaître, G.: L’univers en expansion. Annales de la Société Scientifique de Bruxelles 53, 51–85 (1933)

    ADS  MATH  Google Scholar 

  24. Minkowski, H.: Raum und Zeit. Jahresbericht der Deutschen Mathematiker-Vereinigung 18, 75–88 (1909)

    MATH  Google Scholar 

  25. Penrose, R., Rindler, W.: Spinors and Space-Time. Vol. 2. Cambridge Monographs on Mathematical Physics, 2nd edn. Cambridge University Press, Cambridge (1988). Spinor and twistor methods in space-time geometry

  26. Schouten, J.A.: Über die konforme Abbildungen-dimensionaler Mannigfaltigkeiten mit quadratischer Maßbestimmung auf eine Mannigfaltigkeit mit euklidischer Maßbestimmung. Mathematische Zeitschrift 11(1–2), 58–88 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schwarzschild, K.: Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie. In: Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Phys.-Math. Klasse, pp. 424–434 (1916)

  28. Synge, J.L.: The gravitational field of a particle. In: Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, vol. 53, pp. 83–114 (1950)

  29. Szekeres, G.: On the singularities of a Riemannian manifold. Publicationes Mathematicae Debrecen 7, 285 (1960)

  30. Weyl, H.: Reine Infinitesimalgeometrie. Mathematische Zeitschrift 2, 384–411 (1918)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Holland.

Additional information

Dedicated to Professor James G. Holland, 1927–2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holland, J., Sparling, G. Complex null geodesics in the extended Schwarzschild universe. Gen Relativ Gravit 50, 86 (2018). https://doi.org/10.1007/s10714-018-2407-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2407-z

Keywords

Navigation