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Abstract Recently Pikovski et al. (Nat Phys 11:668, 2015) have proposed in an
intriguing universal decoherence mechanism, suggesting that gravitation may play a
conceptually important role in the quantum-to-classical transition, albeit vanishingly
small in everyday situations. Here we analyze information transfer induced by this
mechanism. We show that generically on short time-scales, gravitational decoherence
leads to a redundant information encoding, which results in a form of objectivization of
the center-of-mass position in the gravitational field. We derive the relevant time-scales
of this process, given in terms of energy dispersion and quantum Fisher information.
As an example we study thermal coherent states and show certain robustness of the
effect with the temperature. Finally, we draw an analogy between our objectivization
mechanism and the fundamental problem of point individuation in General Relativity
as emphasized by the Einstein’s Hole argument.

Keywords Gravitational decoherence · Quantum to classical transition · Quantum
entanglement in gravitational field

1 Introduction

Emergence of the classical world from quantum has been a long standing problem.
Theory of decoherence [1,2] is one of the attempts to resolve it. In the recent paper [3],
Pikovski et al. proposed a universal decoherence mechanism due to the gravitational
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time dilation [4]. Unlike some of the earlier proposals, e.g. due to Diósi [5] or Penrose
[6], the mechanism of Pikovski et al. does not require an immediate departure from
unitarity. It has generated a lively debate as to weather the effect is real [7–10] or is it
really gravity-related [9,11]. In this work we will not enter this discussion but rather
assume the mechanism of [3] to be true and examine the gravity-mediated information
transfer it entails.

Let us recall the idea behind the mechanism of Pikovski et al. [3]. In gravitational
field time flows differently depending on the position in the field, which leads to a
position-dependent gravitational redshift of frequencies. This effect has been one of
the classical tests of general relativity, starting with the experiment of Pound and
Rebka [12], and has been recently confirmed over an astonishingly small height dif-
ference of 33 cm in the Earth gravitational field [13]. Thus, systems which have some
natural frequencies associated with their dynamics, like harmonic oscillators, will
effectively couple to the position in the gravitational field. If we now promote this
reasoning to the quantum domain, then the position-frequency correlation will in gen-
eral lead to a position decoherence if (some of) the oscillatory degrees of freedom
are left unobserved. This, in turn, will lead to a loss of visibility, if one performs an
interferometric experiment, and this loss can be directly related to the proper time
difference at different heights. Since the gravitational coupling is weak, the effect
requires a macroscopic amount of oscillators N ∼ 1023 to obtain reasonable decoher-
ence rates (milliseconds for micrometric height differences) [3]. A surprising aspect
of the mechanism of Pikovski et al. is that there is no position information storage in
the local oscillator degrees of freedom (which we will simply call the environment)
if the latter are initially in a thermal equilibrium. Thus, decoherence happens without
a localized which-path information in the sense that a reduced state of any portion of
the environment is unchanged by the evolution, and for short times is driven by the
internal energy dispersion [3,14].

However, as pointed out by Zurek [15], decoherence alone is generally not enough
for the emergence of such an important aspect of the classical world as its objective
character. Briefly speaking, one has to show that during the decoherence process
there is a redundant transfer of information into the environment and this information
is accessible to multiple observers. Here, we perform such studies in the universal
gravitational decoherence model and show that many identical copies of the position
information can be deposited in the environment if the latter is in a non-stationary
state. Our main tool are the so called Spectrum Broadcast Structures (SBS) [16,17]—
an approach evolved from the quantum Darwinism idea [15,18] and based on direct
studies of, what we call, an extended state. This is a quantum state of the system
plus a part of its environment and its analysis goes beyond the standard methods of
the decoherence theory (e.g. the Master equation techniques), which deal with the
reduced state of the system only. Using the simplified model of [3], we solve for the
extended state and show that on short time-scales there are general regimes where
it approaches the SBS form. This in turn, implies that the universal gravitational
decoherence leads to a redundant position information storage in the environment and
hence its objectification [15,17]. The efficiency of this storage is governed by the
Quantum Fisher Information (QFI) (see e.g. [19]), analogously to decoherence being
dependent on the energy dispersion [3]. Going beyond the general short-time analysis
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(cf. [14,20]), we study in detail an example of the internal degrees of freedom prepared
in thermal coherent states and the information transfer efficiency as a function of the
temperature. We study the formation of the SBS and as a by-product derive a form of
an information gain – disturbance uncertainty relation.

An information storage in the internal degrees of freedom for interference experi-
ments in gravitational field has been already studied, e.g. in [21]. However, the internal
degrees of freedom were treated there in a standard for open quantum systems way—
were traced out and their effect on the visibility studied. This approach cannot show
how exactly information about the system is proliferated in the environment, e.g. if
there are many records of the same information being formed and information becomes
objective. Here we present a more refined analysis, dividing the internal degrees of
freedom into observed and unobserved parts, which allows to study such questions.

Let us also mention that there exist some general results within the quantum
Darwinism [22] and SBS [23] approaches concerning, so called, pure decoherence
Hamiltonians considered also here, and suggesting that the whole class leads to the
emergence of objectivity. However, in the first work, based on quantum Chernoff
information, the result is strictly speaking derived only for two-dimensional central
systems and is in part based on somewhat heuristic typicality arguments, concerning
quantum Chernoff information. Moreover [22] provides no timescales of the objecti-
fication process. The second mentioned result [23] is in turn based solely on statistical
arguments, the derived time-scales are very general in nature, and is again bounded
to finite dimensions only. Thus, to convincingly prove the appearance of objectivity
during the universal gravitational decoherence, one has to study the model in more
detail from the quantum-information perspective. This is what we do here. We end our
work with an intriguing and rather speculative analogy between the gravity-induced
information transfer and the, so called, point individuation in General Relativity (see
e.g. [24] for a modern review).

2 Extended state dynamics under the universal gravitational
decoherence

Let us begin with our main tool—Spectrum Broadcast Structures (SBS). We briefly
introduce them below, referring the reader to e.g. [16,17] for more information. SBS is
defined as a multipartite quantum state of the system plus a portion of its environment
of the following form:

�SBS =
∑

i

pi |i〉〈i | ⊗ �
(1)
i ⊗ · · · ⊗ �

(M)
i , (1)

with
�

(k)
i ⊥ �

(k)
i ′ �=i . (2)

Here |i〉 are the so called pointer states into which the system (the center of mass
here) has decohered, pi are the initial pointer probabilities, and �

(k)
i are states of the

fragments of the internal degrees of freedom. The condition (2), meaning that the
states �

(k)
i have orthogonal supports for different pointer index i , ensures that they
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are one shot perfectly distinguishable. This, together with (1), implies that the same
state of the decohered CM, labeled by the index i , can be read off from many portions
of the environment without any disturbance (on average) to the extended state. This,
in turn leads, to a form of an emergent objectivity [15,17] of the state of the system:
all the observers will see the same state of the system without disturbing neither the
state nor each other. Conversely, as proved under certain assumptions in [17], it can be
shown that demanding objectivity, in the sense of information redundancy and non-
disturbance in its extraction, leads to SBS. In this sense SBS are responsible for some
form of classicality—the emergent objectivity.

Our main goal is to show that during the universal gravitational decoherence there
are regimes such that the extended state of the center-of-mass (CM) of a decohering
particle plus a fraction of its internal degrees of freedom (serving as an environment)
approaches the SBS form (1)–(2). Following [3], we consider a compound system
with a large number of internal degrees of freedom, effectively described by uncoupled
harmonic oscillators (e.g. a large molecule), placed in a gravitational filed. We separate
the motion into the center-of-mass motion and the internal oscillations. With such a
division, the CM is treated as a (virtual) central system and the internal oscillators
as its environment. In this work, contrary to the previous studies [3,9,14], we will
assume that only a part of the internal oscillators can be traced out, while the other is
left for an observation. This in fact represents a very common situation of an indirect
observation [15] and forces us to study the extended state of the central system plus the
observed part of its environment [16,17]. Assuming applicability of the energy-mass
relation to the Klein–Gordon equation in a weak gravitational field and non-relativistic
velocities, the corresponding approximate Hamiltonian was derived in [3,25]:

Htot = Hcm(X, P) + H0

(
1 + �(X)

c2 − P2

2m2c2

)
, (3)

where Hcm is a center-of-mass Hamiltonian depending on the canonical variables
X, P , H0 is the internal (oscillatory) degrees of freedom Hamiltonian, and �(X) is
the Newtonian gravitational potential. The crucial step is now an assumption that this
is a valid Hamiltonian in the 1st quantization too, symbolically Htot → Ĥtot . Some
further simplifications can be made [3]: (i) neglecting Hcm as compared to the rest;
(ii) neglecting the special-relativistic kinematical term P2/2M2c2; (iii) assuming a
homogeneous gravitational field (e.g. from the Earth) �(X) = gX , where g is the
gravitational acceleration. This finally leads to the Hamiltonian:

Ĥtot ≈ Ĥ0 + Ĥint = Ĥ0 + �(X̂) ⊗ Ĥ0

c2 . (4)

Let us stress again that although motivated by the field-theoretical arguments [3] this is
a quantum mechanical Hamiltonian and we work in the 1st quatization. As we already
mentioned, H0 describes just a collection of N independent oscillators (one can think
of degrees of freedom of a large molecule [3]) so that (we neglect the zero-point
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energy):

Ĥ0 ≡
N∑

i=k

Ĥ0k =
N∑

i=k

h̄ωk n̂k, n̂k = â†
k âk . (5)

This evolution can be easily solved, recalling that �(X̂) = gX̂ and writing with the
full formality:

Ĥtot = 1 ⊗ H0 + X̂ ⊗ gĤ0

c2 =
∫

dX |X〉〈X | ⊗
∑

k

h̄

(
1 + gX

c2

)
ωk n̂k, (6)

where we used the expansions 1 = ∫
dX |X〉〈X |, X̂ = ∫

dX X |X〉〈X |. Calculation
of the exponential series of the above Hamiltonian is easy due to the orthogonality of
the position eigenstates. This finally gives the full system evolution:

Û (t) ≡ e−i t Ĥtot/h̄ =
∫

dX |X〉〈X | ⊗
[

N⊗

k=1

e−i tωk (X)n̂k

]
, (7)

where

ωk(X) ≡
(

1 + gX

c2

)
ωk (8)

are the red-shifted frequencies. We apply (7) to an initial state, assumed to be �tot (0) =
�0 ⊗ ⊗

i �0i , and divide the oscillators into two fractions: the observed one of a size
No and the unobserved, containing N⊥ oscillators, No + N⊥ = N . The exact sizes
are not important for our considerations, apart from No, N⊥ scaling with the total
number N (this defines what we call a macrofraction), as we will be tacitly assuming
a thermodynamic-type of a limit N → ∞ [16]. Tracing the unobserved part of the
environment, gives what we call the extended state and what will be our main object
of the study:

�ext (t) ≡ truno�tot

=
∫ ∫

dXdX ′�0(X, X ′)�t (�X)|X〉〈X ′| ⊗
⎡

⎣
⊗

k∈No

Û (k)
t (X)�0kÛ

(k)
t (X ′)†

⎤

⎦ , (9)

where �0(X, X ′) ≡ 〈X ′|�0|X〉,

Û (k)
t (X) ≡ exp[−iωk(X)t n̂k], (10)

and

�t (�X) ≡
N⊥∏

k=1

tr
[
Û (k)
t (X ′)†Û (k)

t (X)�0k

]
=

N⊥∏

k=1

tr

[
ei

g�Xωk t

c2 n̂k�0k

]
(11)
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is what can be called a partial decoherence factor [15]. Unlike in standard approaches to
open quantum systems, which is also the case of [3], here it arises due to tracing out only
a fraction of oscillators (their number denoted N⊥) and not the whole environment. It
controls a trace-norm decay of off-diagonal, in the position basis of the CM, operator
terms in �ext (t) [16,26]. We note that it depends only on the height separation �X ≡
X ′ − X .

3 General short-time approximation: the role of Quantum Fisher
Information and energy dispersion

Let us first perform a short-time analysis [3,14] for times such that all the phase
differences in (11) are small:

�φk ≡ g|�X |
c2 ωk t � 1 (12)

or equivalently for times much smaller than the time-dilation induced change of the
oscillation periods. This is the basic approximation we will use in the following two
Sections. Decoherence factor in this approximation has been found in [3,14] and reads:

|�t (�X)| ≈ exp

[
−
(

g�X√
2h̄c2

)2
( N⊥∑

i=1

�H2
0i

)
t2

]
, (13)

where �H2
0i ≡ tr(�0i Ĥ2

0i ) − [tr(�0i Ĥ0i )]2 is the variance of the i th oscillator energy,
calculated in the initial state �0i . Let us assume that the amount of the unobserved
oscillators is very large so that we may use the Law of Large Numbers to write the sum
above in a more compact form as an ensemble average over the unobserved oscillators.
This is somewhat similar e.g. to the usual introduction of a spectral density to describe
the environment [1,2]. Let the unobserved frequencies ω be distributed with some
probability p⊥(ω) such that the average 〈〈�H2

0 〉〉 ≡ ∫
dωp⊥(ω)�H2

0ω exists (note
that in general the initial states are also ω-dependent). Then:

|�t (�X)| ≈ exp

[
−N⊥g2�X2〈〈�H2

0 〉〉
2h̄2c4

t2

]
, (14)

giving the decoherence time in a form resembling the energy-time uncertainty relation:

τdec

√
N⊥〈〈�H2

0 〉〉 ≡
√

2h̄c2

g|�X | . (15)

This decoherence time will be within the validity of the used approximation (12) if
for all the relevant frequencies ω the cumulative energy variance is big enough:

N⊥〈〈�H2
0 〉〉 � (2h̄ω)2 . (16)
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Let us now study the distinguishability conditions (2). The post-interaction states
of the internal oscillators (we recall that some of them are left for observation and thus
cannot be traced out) read:

�
(i)
t (X) ≡ U (i)

t (X)�0iU
(i)
t (X)†. (17)

We are interested in the information they carry about the position X , as mea-
sured by their distinguishability Since U (i)

t (X) is generated by the red-shifted local
Hamiltonian Ĥ0i (X), it is obvious that any initial state �0i preserved by Ĥ0i (X),
[�0i , Ĥ0i (X)] = 0, will encode no information at all and this is the situation of [3].
However, here we assume a generic, mixed �0i . As a measure of state distinguisha-
bility we choose the state fidelity (also called generalized overlap or Bhattacharyya
coefficient) B(�, σ ) ≡ tr

√√
�σ

√
� [16,27]. There are of course other measures, for

example quantum Chernoff information, providing a tighter than the fidelity upper
bound on the probability of discrimination error (see e.g. [28]). However, as we are
ultimately interested in a perfect distinguishability (cf. (2)), the weaker character of
the bound is not so important as B → 0 implies that both quantum Chernoff infor-
mation and the probability of error vanish (in fact B provides also a lower bound for
the probability of error [27]). As B is easier to calculate (no optimization involved,
cf. [28]), we choose to work with it. Let us consider the fidelity:

Bi
t (�X) ≡ B[�(i)

t (X), �
(i)
t (X ′)], (18)

which is a function of the separation �X only, since the states �
(i)
t (X) differ by an

unitary rotation depending on �φi (12):

B[�(i)
t (X), �

(i)
t (X ′)] = tr

√√
ρ0iei�φi n̂i ρ0ie−i�φi n̂i

√
ρ0i . (19)

For short times (12), we develop B in a series in �X , using first the definition of
the Bures distance dB [29] B(�X) = 1 − 1/2[dB(�X)]2 and then the fact that an
infinitesimal Bures distance is given by 1/4 of the quantum Fisher information (QFI)
F(�0i ; Ĥ0i ) [30]. We get the following short-time approximation:

Bi
t (�X) ≈ 1 − t2

8

(
g�X

h̄c2

)2

F(�0i ; Ĥ0i ) ≈ exp

[
− t2

8

(
g�X

h̄c2

)2

F(�0i ; Ĥ0i )

]
.

(20)
By the famous quantum Cramer–Rao bound, F(�0i ; Ĥ0i ) sets the lower bound on
the precision of the experimental estimation of gt�X/(h̄c2). It thus has a very clear
operational meaning and a fundamental importance e.g. for the recently popular field
of quantum metrology [31]. F(�0i ; Ĥ0i ) can be given in terms of the eigenvalues and
eigenvectors of the initial state �0i = ∑

n λn|λn〉〈λn| as [19]:

F(�0i ; Ĥ0i ) = 2
∑

m,n

(λn − λm)2

λn + λm
|〈λn|Ĥ0i |λm〉|2. (21)
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We see that if the initial state of the environment �0i is diagonal in the basis of Ĥ0i , then
obviously F(�0i ; Ĥ0i ) = 0 and this degree of freedom is unable to encode position
information about the central system as mentioned earlier. This is an example of a
general phenomenon—If the environment is prepared in a state stationary w.r.t. the
system-environment coupling, the observers will not be able to decode any information
about the system using local measurements and thus such state will not get objective
in the sense discussed here.

Let us now consider more general, and in many cases more realistic, situation where
we allow for a grouping of the states (17) in order to concentrate information they carry.
This can be viewed as a sort of a coarse-graining of the internal degrees of freedom
[16] and represent a general situation where each observer has access to a subsystem
of the environment rather than a single degree of freedom. We thus divide the observed
part of the internal oscillators, which we stress is a different part of the environment
from the one giving rise to decoherence (11), into a number of smaller fractions,
called macrofractions, and denoted mac1, . . . ,macM. For simplicity we will assume
them to be all of an equal size Nmac, scaling with the total number of the observed
degrees of freedom Nmac ≡ μNo, 0 < μ < 1. More importantly, we assume Nmac

to be large enough to effectively use the Law of Large Numbers (LLN) again [32].
Those fractions may also be thought of as representing macroscopic portions of the
environment accessible to multiple observers and can be viewed as reflecting some sort
of detection thresholds, e.g. the equipment sensitivity [16,17]. Macrofraction states
are given by the products:

�mac
t (X) ≡

⊗

i∈mac

�
(i)
t (X) (22)

taken over all degrees of freedom in a given macrofraction. Since, crucially, fidelity sep-
arates w.r.t. the tensor product, B(

⊗
i �i ,

⊗
i σi ) = ∏

i B(�i , σi ), one easily obtains:

Bmac
t (�X) ≡ B[�mac

t (X), �mac
t (X ′)] =

∏

i∈mac

Bi
t (�X). (23)

Crucially, the product here is taken over different degrees of freedom than those enter-
ing the decoherence factor (11). Here this is a fraction of the observed degrees of
freedom, while in (11) those were the unobserved ones. This implies that the behav-
ior of distinguishability Bmac

t (�X) and the partial decoherence factor �t (�X) is in
general not correlated (as it would be if both quantities were calculated for the same
degrees of freedom when |�mac

t (�X)| ≤ Bmac
t (�X)), since each degree of freedom

can have a different dynamics (here—a different frequency ωi ) and couple differently
to the central system (CM here). Thus, both functions (11) and (23) must be calculated
independently [16]. In the short-time regime, we immediately obtain from (20):

Bmac
t (�X) ≈ exp

[
− t2

8

(
g�X

h̄c2

)2 ∑

i∈mac

F(�0i ; Ĥ0i )

]
(24)
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Just like before, to make the expression more compact, let us introduce a probability
pmac(ω) such that the average QFI 〈〈F0〉〉 ≡ ∫

dωpmac(ω)F[�0(ω); Ĥ0ω] exists. We
note that now this probability is concentrated over the frequencies corresponding to
a given macrofraction, which are in general different from the ones that define the
decoherence factor. We obtain a formula similar to (14) but with the average variance
substituted for the average quantum Fisher information:

Bmac
t (�X) ≈ exp

[
−Nmacg2�X2〈〈F0〉〉

8h̄2c4
t2
]

. (25)

The exponential decay of this approximation with Nmac can be viewed as a simple
justification for the introduced coarse-graining: while it may happen that the SBS
(1)–(2) is not formed on a “microscopic” level of single internal degrees of freedom,
it may still be approached at the coarse-grained level of macrofractions. Expression
(25) defines the distinguishability time-scale in analogy to the decoherence time-scale
(15):

τdst
√
Nmac〈〈F0〉〉 ≡

√
8h̄c2

g|�X | . (26)

Condition (12) is fulfilled when the cumulative QFI is large compared to the relevant
energies:

Nmac〈〈F0〉〉 � (8h̄ω)2 . (27)

We note that since F(�0i ; Ĥ0i ) ≤ 4�H2
0i [19], τdst ≥ τdec if we consider N⊥ = Nmac.

Thus, it is faster to decohere than to concentrate information in the environment (cf.
[23]). A brief comment is in order: The formulas (14, 25) are valid for arbitrary
initial states of the internal degrees of freedom. In the case of pure initial states,
the state fidelity reduces to the state overlap so both expressions become identical
functionally, although they depend on different degrees of freedom. Thus, pure initial
states, although fully captured by our analysis, are less interesting than mixed ones.

4 Spectrum Broadcast Structure formation for short times

We now study the consequences of the above results for the extended state (9). Our
main question is if the state (9) is close to the SBS form (1). We first note that the
decoherence and distingushability times strongly depend on the height separation
|�X |. One can view (14, 25) from another perspective: For a fixed time t satisfying
(12), there are characteristic coherence and indistinguishability lengths:

�X2
c ≡ 2h̄2c4

g2t2N⊥〈〈�H2
0 〉〉 , (28)

�X2
d ≡ 8h̄2c4

g2t2Nmac〈〈F0〉〉 (29)
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such that (cf. (14, 25)):

�t (�X) ≈ 0 for |�X | > �Xc, (30)

Bt (�X) ≈ 0 for |�X | > �Xd . (31)

We want to use this and approximate the double integral in (9) by discrete sums. We
fix t , and change the integration variables in (9) to X̄ ≡ (X+X ′)/2 and �X = X ′−X
so that X = X̄ − �X/2, X ′ = X̄ + �X/2, and:

∫ ∫
dXdX ′ ≡

∫ ∫
d X̄d�X. (32)

Then, since �t (�X) ≈ 0 for |�X | > �Xc, we can limit the �X integration range
and obtain:

�ext (t) =
∫

d X̄
∫ �Xc

−�Xc

d�X

�0
(
X̄ − �X/2, X̄ + �X/2

)
�t (�X)|X̄ − �X/2〉〈X̄ + �X/2| ⊗

⊗

i∈No

Û (i)
t (X̄ − �X/2)�0i Û

(i)
t (X̄ + �X/2)†. (33)

We now Taylor-expand the integrand in �X , treating it as a small quantity. This
can be done for the functions �0

(
X̄ − �X/2, X̄ + �X/2

)
, �t (�X) and the operator

Û (i)
t (X̄ −�X/2) as they are all analytic functions of their arguments, but not with the

vectors |X̄ − �X/2〉. Thus, in the leading order the integral (33) reads:

�ext (t) =
∫

d X̄�0(X̄ , X̄)

∫ �Xc

−�Xc

d�X |X̄ − �X/2〉〈X̄ + �X/2| ⊗
⊗

i∈No

Û (i)
t (X̄)�0i Û

(i)
t (X̄)† + O(�X2

c ) (34)

(we note that the contribution from the integration range X̄ ∼ �X is of the order of
�X2

c and is thus included in the last term). We now make use of the condition (31).
We break the first integral into intervals of equal lengths �Xd , centered at some points
X̄k : ∫

d X̄ f (X̄) =
∑

k

1

2

∫ �Xd

−�Xd

d�X̄ f (X̄k + �X̄/2), (35)

where �X̄ is the integration variable inside each interval. Assuming �Xd to be small,
we may repeat the above approximation, expanding everything that is smooth in �̄X
and keeping the lowest term. We obtain:
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�ext (t)

= 1

2

∑

k

p0(X̄k)

∫ �Xd

−�Xd

d�X̄
∫ �Xc

−�Xc

d�X

∣∣∣∣X̄k + �X̄ − �X

2

〉 〈
X̄k + �X̄ + �X

2

∣∣∣∣ ⊗
⊗

i∈No

�
(i)
t (X̄k) + O(�X2

c , �X2
d), (36)

where p0(X) ≡ �0(X, X) = 〈X |�0|X〉 and we used (17). Changing once again the
integration variables to sum and difference of �X,�X̄ , �± ≡ (�X ± �X̄)/2:

1

2

∫
d�X̄

∫
d�X ≡

∫
d�−

∫
d�+ (37)

we obtain:

�ext (t) =
∑

k

p0(X̄k)

∫ �̄

−�̄

d�+
∫ �̄

−�̄

d�−|X̄k + �−〉〈X̄k + �+| ⊗
⊗

i∈No

�
(i)
t (X̄k) + O(�X2

c ,�X2
d), (38)

where �̄ ≡ (�Xc + �Xd)/2. Note that the integrals in �± are separated now which
allows us to introduce the smeared position states:

|X̄; �̄〉 ≡
∫ �̄

−�̄

d�X |X + �X〉. (39)

Using them and the partition of No into the macrofractions, we can finally rewrite (38)
as:

�ext (t) =
∑

k

p0(X̄k)|X̄k; �̄〉〈X̄k; �̄| ⊗ �
mac1
t (X̄k) ⊗ · · · ⊗ �

macM
t (X̄k) + O(�X2

c ,�X2
d)

(40)

The macrofraction states �mac
t (X̄k) are by the above construction almost perfectly

distinguishable for different X̄k , since their separation is ∼ �Xd . Thus, the CM
position is decohered to within �̄ and is stored in the internal degrees of freedom
in many identical copies. The structure (40) is a version of the Spectrum Broadcast
Structure for continuous variables. Please note its coarse-grained character in the
variable X . Our analysis here is somewhat heuristic. Mathematically rigorous proof
would consist in showing how fast the actual extended state approaches some ideal
SBS depending on the decoherence and the fidelities. We will postpone this non-
trivial mathematical question to a more specialized publication, pointing that for finite
dimensional systems this question was solved in [26]. It is shown there that indeed
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the trace distance of the actual extended state to some ideal SBS is bounded by the
decoherence factor and the macroscopic fidelities.

5 An example of information encoding: displaced thermal environments

As an illustration of the above general reasoning, we consider the the internal degrees
of freedom to be prepared in thermal coherent states:

�0i = D̂(α)�
(i)
th D̂(α)†, (41)

where D̂(α) is the displacement operator (assumed here the same for all the oscillators)

and �
(i)
th ≡ e−β Ĥ0i /Zi , Zi ≡ tr(e−β Ĥ0i ), β ≡ 1/(kT ). Those states no longer commute

with Ĥ0i and we have:

�H2
0i = (�H2

0i )th + (h̄ωi |α|)2cth

(
βh̄ωi

2

)
, (42)

F(�0i ; Ĥ0i ) = 4(h̄ωi |α|)2th

(
βh̄ωi

2

)
, (43)

where 〈 Â〉th ≡ tr(�th Â) and cth(·), th(·) stand for the hyperbolic cotangent and the
hyperbolic tangent respectively. As a digression, we note that the reciprocal depen-
dence on the temperature of the non-thermal parts above, leads to a formal relation:

[�H2
0i − (�H2

0i )th]F(�0i ; Ĥ0i ) = 4(h̄ωi |α|)4. (44)

In light of the short-time expressions (13) and (20), it may be interpreted as a type of
an information gain-versus-disturbance relation (cf. e.g. [33]). Here, the disturbance
to the central system (in a form of a non-thermal contribution to the decoherence)
is characterized by �H2

0i − (�H2
0i )th , while the environment information gain by

F(�0i ; Ĥ0i ). The meaning of (44) here is that the hotter the environment is, the stronger
is its decohering power but the lesser is its information capacity [34]. One should stress
that (44) applies only for a specific case of displaced thermal states. Its validity and
form for more general states and relation to known results of a similar kind [21] will
be studied elsewhere.

One can go beyond the above short-time analysis and give a compact and exact
expressions for |�t (�X)| and Bt (�X) for arbitrary times. A direct calculation for a
single band ωi leads to:

|�i
t (�X)| = |�th

t (�X)|exp

[
−|α|2|�th

t (�X)|2cth

(
βh̄ωi

2

)
(1 − cos �φi )

]
, (45)
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where |�th
t (�X)| ≡ [1 + 2n̄i (n̄i + 1)(1 − cos �φi )]−1/2, n̄i ≡ 〈n̂i 〉th . Calculation of

Bi
t (�X) is more involved, we perform them in “Appendix A”, where we find:

Bi
t (�X) = exp

[
−|α|2th

(
βh̄ωi

2

)
(1 − cos �φi )

]
. (46)

The above single-band functions are periodic in time (hidden in �φi (12)) and obvi-
ously there is no SBS formation at the level of single environments. However, for
macrofractions, described by a collection of randomly distributed ωi [34], the corre-
sponding decoherence and fidelity factors become quasi-periodic functions of time:

|�t (�X)| =
N⊥∏

i=1

|�th
t (�X)|exp

[
−|α|2|�th

t (�X)|2cth

(
βh̄ωi

2

)
(1 − cos �φi )

]
,

(47)

Bmac
t (�X) = exp

[
−|α|2

Nmac∑

i=1

th

(
βh̄ωi

2

)
(1 − cos �φi )

]
, (48)

and the random phases �φi may lead to their effective damping. This, however,
depends on the temperature (apart from the other factors kept fixed) as e.g. for a high

temperature kBT
h̄ωi

→ ∞, |�i
t (�X)| = O

(
h̄ωi
kBT

)
while Bi

t (�X) = 1−O
(

h̄ωi
kBT

)
. For a

low temperature in turn, the initial states (41) become pure and Bi
t (�X) = |�i

t (�X)|,
which follows from B(|ψ〉〈ψ |, |φ〉〈φ|) = |〈ψ |φ〉|. An example of the intermediate
regime kBT ≈ h̄ωi is shown in Fig. 1 . We see that for big enough macrofraction sizes
(cf. [20]), both decoherence factor and fidelity decay, indicating the SBS formation.
We note a very long, compared to usual decoherence times, time-scale of this process,
caused by the weak nature of the gravitational coupling. The times become much
shorter for macroscopic (N ∼ 1023), rather than mesoscopic fraction sizes.

6 Conclusions

We have analyzed information transfer to the internal degrees of freedom during the
universal gravitational decoherence of [3], using the recently developed methods of
Spectrum Broadcast Structures [16,17]. We have shown that generically, on short time
scales there is an SBS formation, implying a redundant encoding of the center-of-mass
position in the internal degrees of freedom during the decoherence. Importantly, we
have derived the relevant time-scales of the process, given by the energy dispersion
and the Quantum Fisher Information. The role of the latter in the SBS formation
have not been recognized before. The resulting SBS has a natural coarse-grained
structure, appropriate for the continuous variable case, reflecting finite coherence and
distinguishability lengths.

Going beyond the short-time analysis, we have analyzed the case when the internal
degrees of freedom are prepared in a displaced thermal states. This breaks the symme-
try with respect to the free internal evolution and allows for the information encoding
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Fig. 1 (Color online) Time dependencies of |�t (�X)| (green dotted line) and Bt (�X) (solid magenta)
for intermediate temperatures T = 10K (kBT ≈ 3h̄ωmax ). Plot a shows a single-oscillator case, where
the observed and the unobserved fractions consist of a single oscillator each. The unobserved (traced out)
oscillator has a frequency of ω⊥ = 3.6 × 1011s−1, while the observed one ωo = 4.9 × 1011s−1, which
clearly demonstrate that they couple differently to the center of mass and it is possible that |�t (�X)| ≈ 1,
but Bt (�X) < 1. Plot b shows N⊥ = Nmac = 103 random oscillators, drawn independently for the
observed and the unobserved fractions from an uniform distribution over [1 . . . 5] × 1011s−1. The other
parameters are �X = 10−6m, |α| = 1, common to both plots. Note the extremely long decay times in (b)
due to the small macrofraction sizes as compared to the gravitational interaction strength

in the environment, unlike in the purely thermal case of [3]. We have shown that for
big enough macrofraction sizes, there are temperature regimes where the SBS is being
formed. As a by-product of this analysis we have derived a form of an information
gain-versus-disturbance relation (44).

We finish with some speculations on the analogy between the above information
transfer process and the, so called, point individuation in General Relativity. As empha-
sized by the famous Einstein’s Hole argument, active diffeomorphism invariance of
General Relativity forbids assigning a physical meaning not only to coordinate charts
but to very (mathematical) manifold points as well. This has led to a still active debate
over the ontology of space-time and physical objectivity of space-time points [24,35].
A way out of the situation is to define space-time points using coincidences of matter,
e.g. as intersection points of particles’ world-lines. This process is called space-time
point individuation (or objectivization), and the degrees of freedom used are called
individuating fields. The peculiarity of the theory is that individuation can be in prin-
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ciple achieved in a fully dynamical way by the metric field itself, provided it satisfies
the Einstein equations [36,37].

On the other hand, the SBS structure (40) encodes a certain form of point objec-
tivity as well: Indirect observation of the position through any of the environmental
macrofractions will always give the same result X̄k , leaving the CM located around X̄k

and without any disturbance, on average, to the global state. This observer-invariance
and non-disturbance (which may be viewed as a type of a time-invariance) can be
taken as a basis of an operational definition of objectivity [15], in this case of the
(approximate) position. Moreover, it can be shown that under some general assump-
tions the only state structure compatible with so defined objectivity is precisely the
SBS [17] and that it is generic for macroscopic quantum measurements [23]. An
intriguing question thus arises if the gravitational decoherence mechanism may also
lead, through the SBS, the the point individuation? This would be an example of a
quantum individuation.

There are of course some obvious differences. First of all, described here gravity-
generated SBS provides objectivization of points of space only, not of space-time
events (see however [6]). But we have used just a first correction to the non-relativistic
Schrödinger equation [25] rather than e.g. Tomonaga–Schwinger evolution law, which
could be a future direction. Second, by the very construction there is a finite precision
(28) and resolution (29) with which a point can be localized. Both of these parameters
parameters improve with the macrofraction size, which suggests that objective points
may be macroscopic phenomena and the objectivity breaks down at some microscopic
scales (cf. macro-objectivity idea [38]). Answers to these questions may shed some
light on what happens with the space-time at microscopic scales.
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Appendix A. Fidelity for displaced thermal states

Here we calculate B[�(i)
t (X), �

(i)
t (X ′)], where

�
(i)
t (X) = U (i)

t (X)�0iU
(i)
t (X ′)†, (A.1)

�0i = D̂(α)�
(i)
th D̂(α)† is the displaced thermal state andU (i)

t (X) = exp[−iωi (X)t n̂i ].
We start by rewriting the state as

�
(i)
t (X) = D̂(αe−iωi (X)t )�

(i)
th D̂(αe−iωi (X)t )†. (A.2)

To arrive at the above expression we inserted in (A.1) the resolution of identity
I = U (i)

t (X)†U (i)
t (X) between the left displacement operator and the state and
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its conjugate version between the state and right, conjugated, displacement opera-
tor. Then we used the fact that: (i) the unitary commutes with the thermal state (ii)
U (i)
t (X)D̂(α)U (i)

t (X)† = D̂(αe−iωi (X)t ). Dropping dependence on i and using (A.1)
we obtain:

B[�t (X), �t (X
′)] = tr

√√
�th D̂(ηt )�th D̂(ηt )†√�th, (A.3)

where
D̂(ηt ) ≡ D̂(α(e−iωi (X ′)t − eiωi (X)t )), (A.4)

and we have pulled the extreme left and right displacement operators out of both the
square roots and used the cyclic property of the trace to cancel them out. The phase
factors resulting from composition of remaining displacement operators cancel out as
both unitary operators under the square root are Hermitian conjugates of each other.
Next, we use the corresponding P-representation for the middle �th under the square
root in (A.3):

�th(n̄) ≡ 1

n̄

∫
d2γ

π
e− |γ |2

n̄ |γ 〉〈γ |, (A.5)

where n̄ = 1/(eβω − 1), β ≡ h̄/(kBT ). Indicating the Hermitian operator under the
square root in (A.3) by B̃t , we obtain:

B̃t =
∫

d2γ

π n̄
e− |γ |2

n̄
√

�th D̂(ηt )|γ 〉〈γ |D̂(ηt )
†√�th

=
∫

d2γ

π n̄
e− |γ |2

n̄
√

�th |γ + ηt 〉〈γ + ηt |√�th . (A.6)

The next step is to calculate explicitly the square root in the equation above. For this
aim we expand ρ0 in the Fock basis:

�th =
∑

k

n̄k

(k̄ + 1)n+1
|k〉〈k|. (A.7)

Replacing it in Eq. (A.6) we have:

B̃t =
∫

d2γ

π n̄
e− |γ |2

n̄
∑

i, j

λi j (n̄)〈 j |γ + ηt 〉〈γ + ηt |i〉| j〉〈i | (A.8)

with:

λi j (n̄) ≡
√

n̄i+ j

(n̄ + 1)i+ j+2 . (A.9)

Using the Fock basis | j〉 representation of coherent states one may explicit the scalar
product 〈 j |γ + ηt 〉. Accordingly Eq. (A.8) gets:

B̃t = 1
n̄+1e

− |ηt |2
1+2n̄

∫ d2γ
π n̄ e

− 1+2n̄
n̄(n̄+1)

∣∣∣γ+ n̄
1+2n̄ ηt

∣∣∣
2
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×
∣∣∣
√

n̄
n̄+1 (γ + ηt )

〉 〈√
n̄

n̄+1 (γ + ηt )

∣∣∣ . (A.10)

We now show that this equation is formally equivalent to that of a thermal state
introduced in Eq. (A.5). For this aim, we underline that we are interested in the square
root of the operator B̃t , rather than in itself. Therefore, there is a freedom of rotating
B̃t by a unitary operator, and in particular a displacement one:

Tr

[√
D̂ B̃t D̂†

]
= Tr

[
D̂
√
B̃t D̂

†
]

= Tr

[√
B̃t

]
. (A.11)

In particular we find:

∣∣∣∣∣

√
n̄

n̄ + 1
(γ + ηt )

〉
∝ D̂

(√
n̄

n̄ + 1

1 + n̄

1 + 2n̄

) ∣∣∣∣∣

√
n̄

n̄ + 1
(γ + n̄

1 + 2n̄
ηt )

〉
,

(A.12)

where we have omitted the irrelevant phase factor arising from the action of the dis-
placement. We replace Eq. (A.12) into Eq. (A.10). Dropping displacement operators
due to Eq. (A.11) and introducing the variable:

γ̃ =
√

n̄

n̄ + 1

(
γ + n̄

1 + 2n̄
ηt

)
(A.13)

one obtains:

B[�t (X), �t (X
′)] = e− 1

2
|ηt |2
1+2n̄√

1 + 2n̄
Tr

√

ρth

(
n̄2

1 + 2n̄

)
. (A.14)

In order to calculate explicitly the square root we recall the Fock expansion in Eq.
(A.7). Finally, we get:

B[�(i)
t (X), �

(i)
t (X ′)] = exp

[
−|α|2th

(
βh̄ωi

2

)
(1 − cos �φi )

]
. (A.15)
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