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ABSTRACT

We construct the gauge invariant potentials of Hermitian Gravity [1] and derive the linearized equations
of motion they obey. A comparison reveals a striking similarity to the Bardeen potentials of general relativity.
We then consider the response to a point particle source, and discuss in what sense the solutions of Hermitian
Gravity reduce to the Newtonian potentials. In a rather intriguing way, the Hermitian Gravity solutions
exhibit a generalized reciprocity symmetry originally proposed by Born in the 1930s. Finally, we consider
the trajectories of massive and massless particles under the influence of a potential. The theory correctly
reproduces the Newtonian limit in three dimensions and the nonrelativistic acceleration equation. However,
it differs from the light deflection calculated in linearized general relativity by 25%. While the specific
complexification of general relativity by extension to Hermitian spaces performed here does not agree with
experiment, it does possess useful properties for quantization and is well-behaved around singularities as
described in [1]. Another form of complex general relativity may very well agree with experimental data.
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1 Introduction

In this paper we consider the dynamics of scalar potentials in linearized Hermitian Gravity (HG) recently
proposed in Ref. [1]. HG enlarges the symmetry of general relativity (GR) by formulating gravity as a
geometric theory on phase space {xµ, pµ}, where µ = 0, 1, .., D − 1, and D is the number of space-time
dimensions. Hermitian Gravity is a generalization of general relativity formulated on an eight dimensional
phase space {xµ, pν}, where xµ and pν are a priori mutually independent coordinates. Arguably, the simplest
realization of such an idea are curved Hermitian complex spaces in D complex dimensions, where zµ =
(xµ + ıyµ)/

√
2 and zµ̄ = (xµ − ıyµ)/

√
2 are the holomorphic and antiholomorphic coordinates 1 on the

(Hermitian) manifold M with the distance function

ds2 = Cµν̄dz
µdzν̄ + Cµ̄νdz

µ̄dzν . (1)

This line element (and the corresponding metric tensor C) is invariant under the action of the almost complex
structure operator J :

J [ds2] = ds2 . (2)

The operator J is defined by
J [dzµ] = −ıdzµ , J

[

dzµ̄
]

= ıdzµ̄ , (3)

where

dzµ =
1√
2
(dxµ + ıdyµ) , dzµ̄ =

1√
2
(dxµ − ıdyµ) , dyµ =

GN

c3
dpµ . (4)

Hermitian spaces are complex curved spaces M endowed with a Hermitian metric C which obeys (3). As
a consequence of the J-symmetry 2 of the line element (2), the holomorphic and antiholomorphic metric
components of the metric tensor vanish, Cµν = Cµ̄ν̄ = 0. One can achieve that e.g. by adding a suitable
constraint action 3. The reciprocity symmetry is then imposed at the level of the equations of motion (on-
shell). Equivalently, one can solve the constraint equations Cµν = 0, insert the solution into the action,
to obtain an effective action, which has no dependence on Cµν (but it contains dependence on a Lagrange
multiplier tensor).

The symmetry of HG is indeed much larger than the diffeomorphism invariance of GR, in that the
Hermitian line element (1) is invariant under arbitrary (holomorphic) complex coordinate transformations,
zµ → z̃µ(zρ) = (∂z̃µ(zρ)/∂zα)dzα, and it reduces to diffeomorphism invariance in the low energy limit,
pµ → 0.

Since GR is an extremely successful and well tested theory, the natural question that arises is in what
sense GR needs to be improved, and why should Hermitian Gravity be the desired fix. In order to begin
answering this question, we recall that the main motivation for HG dates back to an old idea of Max Born [2].
Albeit Born’s presentation of his reciprocity symmetry is in places unclear, from his papers one can conclude
the following. Born was inspired by the symmetry of Hamilton’s equations 4

dxi =
∂H

∂pi
dτ , dpi = −∂H

∂xi
dτ , (5)

where τ denotes an affine time. These equations are invariant under the following simultaneous transforma-
tion of the cotangent phase space at a point,

∂

∂xi
→ ∂

∂pi
,

∂

∂pi
→ − ∂

∂xi
(6)

and of the tangent phase space,
dxi → dpi , dpi → −dxi . (7)

1The momentum coordinates pµ are related to yµ through the relation yµ = (GN /c3)pµ.
2In the Hermitian Gravity theory considered in this paper, the J-symmetry and reciprocity symmetry have identical meaning,

and hence will be used interchangeably.
3See Eq. (19) for a particular realization of the constraint action.
4In modern mathematical language, the Hamiltonian dynamics leaves the symplectic structure – defined as the two form

dxi ∧ dpj – invariant.
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Notice further that the canonical quantization relation,

[

x̂i, p̂j
]

≡ x̂ip̂j − p̂j x̂
i = ı~δij (8)

also obeys reciprocity symmetry in the following sense. Let us now rewrite the operators x̂i and p̂j as a
sum of their classical values xi ≡ 〈Ω|x̂i|Ω〉, pj ≡ 〈Ω|p̂j |Ω〉, where |Ω〉 denotes quantum state, and their
fluctuating quantum parts {δx̂i, δp̂j} as, x̂i = xi + δx̂i and p̂j = pj + δp̂j . We can now rewrite (8) in terms
of the fluctuating parts only as,

[

δx̂i, δp̂j
]

= ı~δij . (9)

From this we immediately see that the fluctuating parts {δx̂i, δp̂j} obey reciprocity symmetry,

δx̂i → δp̂i , δp̂i → −δx̂i , (10)

which in form (but only in form!) resembles (7). The meaning of (10) is however quite different from
that of the classical symmetry (7). Indeed, Eq. (10) tells us that canonical quantization is such that the
resulting quantum fluctuations obey reciprocity symmetry. This realization is particularly exciting, since
it gives hope that the quantum theory of gravity might possess reciprocity symmetry. If true, this would
elevate reciprocity symmetry to a fundamental symmetry of Nature, and it would help us in finding out how
to correctly quantize gravity. Born has realised that the reciprocity transformation (7) maps low energy
(sub-Planckian) physics to high energy (super-Planckian) physics, and vice versa. Since it was not clear how
to make the action of matter, force, or gravitational fields invariant under such a symmetry, Born’s idea has
not attracted much attention. In Ref. [1], it was realized that Hermitian spaces (M, C), manifolds endowed
with complex metrics, with the identification (4), represent a natural generalization of Born’s reciprocity
symmetry, whereby the 3-dimensional 1-forms and vectors in (7) and (6), respectively, are replaced by the
4-vectors of Eqs. (3–4), where by a suitable rescaling the dimensions of xµ and pµ are made equal. Just as
in Eq. (7), the Hermitean space reciprocity symmetry is realized on one-forms

J [dxµ] =
GN

c3
dpµ , J [dpµ] = − c3

GN

dxµ . (11)

Analogous relations hold for the vector fields,

J

[

∂

∂zµ

]

= ı
∂

∂zµ
, J

[

∂

∂zµ̄

]

= −ı ∂
∂zµ̄

,

which imply J [∂/∂xµ] = ∂/∂yµ and J [∂/∂yµ] = −∂/∂xµ.
It it convenient to introduce an eight-dimensional notation [1], which we indicate by bold quantities and

Latin indices which run from 0 to 2D−1. In eight-dimensional notation the line element (1) becomes simply

ds2 = dzmCmnz
n
≡ dz · C · dz, zm =

(

zµ, zµ̄
)T

. (12)

The eight-dimensional metric

C =

(

0 Cµν̄

Cµ̄ν 0

)

,

is symmetric under transposition, Cmn = Cnm, while the four-dimensional sectors are Hermitian, C† = C,
which implies the off-diagonal sectors are related through complex conjugation: Cµ̄ν = C∗

µν̄ and Cµ̄ν = Cνµ̄.
By variation of the Hermitian line element, one can derive the Hermitian geodesic equations from which the
Christoffel connection follows

Γr

mn
= 1

2
Crs (∂mCsn + ∂nCms − ∂sCmn), (13)

while the Riemann tensor is given by

Rs

mln
= ∂lΓ

s

nm
− ∂nΓ

s

lm
+ Γs

la
Γa

nm
− Γs

na
Γa

lm
. (14)
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The Christoffel symbols and Riemann tensor in eight dimensions satisfy the same symmetries as in general
relativity, as can readily be seen by interchanging indices. It is straightforward to calculate the Einstein
tensor

Gmn = Rmn −
1

2
CmnR.

The Ricci tensor Rr

mrn
≡ Rmn and Ricci scalar R ≡ Rm

m
= ζmnRnm are procured through the proper

contractions of the Riemann tensor.
The paper is organized as follows. In section 2 we calculate the linearized Einstein tensor. In section 3

and in Appendix A we show how to construct the gauge invariant Bardeen potentials of Hermitian Gravity
and derive the corresponding linearized vacuum equations. In section 4 we solve for the potentials of a point
static mass both in two and three (complex) spatial dimensions. Requiring reciprocity symmetry brings us
naturally to phase space potentials. The Newtonian limit of GR is recovered by integrating phase space
potentials over the momenta. Finally, in section 5 we consider the motion of a spinless massive test particle
and of a massless particle (photon).

2 Linearized Hermitian Gravity

Just as in GR, a first step towards the Newtonian limit is to linearize the theory. For simplicity we shall
linearize around the flat Minkowski metric ζmn such that the metric Cmn decomposes as

Cmn = ζmn + Hmn (zr),

where ζmn is an 8× 8 symmetric metric whose 4× 4 blocks are,

ζmn =

(

ζµν ζµν̄

ζµ̄ν ζµ̄ν̄

)

, (15)

where ζµ̄ν = diag(−1, 1, 1, 1) = ζµν̄ and ζµν = diag(0, 0, 0, 0) = ζµ̄ν̄ , and Hmn is a small space-time-
momentum-energy dependent contribution, ‖Hmn‖ ≪ 1.

Upon keeping only terms up to linear order in Hmn, the Christoffel symbols (13) simplify to,

Γρ
µν =

1

2
Cλ̄ρ

(

∂µCνλ̄ + ∂νCµλ̄

)

=
1

2
ζλ̄ρ

(

∂µHνλ̄ + ∂νHµλ̄

)

,

Γρ
µ̄ν =

1

2
Cλ̄ρ (∂µ̄Cνλ̄ − ∂λ̄Cνµ̄) =

1

2
ζλ̄ρ (∂µ̄Hνλ̄ − ∂λ̄Hνµ̄) ,

Γρ
µν̄ =

1

2
Cλ̄ρ

(

∂ν̄Cµλ̄ − ∂λ̄Cµν̄

)

=
1

2
ζλ̄ρ

(

∂ν̄Hµλ̄ − ∂λ̄Hµν̄

)

,

Γρ̄
µ̄ν̄ =

1

2
C ρ̄λ (∂µ̄Cλν̄ + ∂ν̄Cλµ̄) =

1

2
ζ ρ̄λ (∂µ̄Hλν̄ + ∂ν̄Hλµ̄) ,

Γρ̄
µν̄ =

1

2
C ρ̄λ (∂µCλν̄ − ∂λCµν̄) =

1

2
ζ ρ̄λ (∂µHλν̄ − ∂λHµν̄) ,

Γρ̄
µ̄ν =

1

2
C ρ̄λ (∂νCλµ̄ − ∂λCνµ̄) =

1

2
ζ ρ̄λ (∂νHλµ̄ − ∂λHνµ̄) ,

Γρ
µ̄ν̄ = 0,

Γρ̄
µν = 0. (16)

Introducing the Christoffel symbols into the Riemann tensor it is straightforward to calculate the Einstein
tensor. In terms of holomorphic and anti-holomorphic components, the various components of the Einstein
tensor are given by

Gµν =
1

2

(

∂µ∂
λ̄H̃λ̄ν + ∂ν∂

λ̄H̃λ̄µ

)

,

Gµ̄ν̄ =
1

2

(

∂µ̄∂
λH̃λν̄ + ∂ν̄∂

λH̃λµ̄

)

,

Gµ̄ν =
1

2
∂µ̄∂

λ̄H̃λ̄ν +
1

2
∂ν∂

ρH̃ρµ̄ − 1

2
�H̃νµ̄ − ζµ̄ν∂

ρ∂σ̄H̃σ̄ρ,

Gµν̄ =
1

2
∂µ∂

λH̃λν̄ +
1

2
∂ν̄∂

ρ̄H̃ρ̄µ − 1

2
�H̃ν̄µ − ζµν̄∂

ρ∂σ̄H̃σ̄ρ, (17)
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where the trace-reversed metric perturbation 5, H̃mn = Hmn −
1

2
ζmnH , has been employed to simplify

the equations and the d’ Alembertian is � = −2∂0∂0̄ +∇2 (the Laplacian is defined as ∇2 =
∑3

i=1 2∂i∂ī).
The Hermitian-Einstein equation

Gµν̄ = κTµν̄ , (18)

describes the dynamics of the system. The constant κ, which in GR equals 8πGN in units where c = 1, is
determined in section 4.2 below by requiring that HG reproduces the correct Newtonian limit. Equation (18)
can be obtained by varying the action

S = SHG + Sc + Sm

SHG =
1

2κ

∫

d4zd4z̄
√
CR , Sc =

1

2κ

∫

d4zd4z̄
√
C(λµνC

µν + λµ̄ν̄C
µ̄ν̄) , (19)

where C = det[Cmn], Sc is a constraint action and Sm is the matter field action. Notice that varying
the constraint action yields Cµν = 0, which imposes reciprocity symmetry at the level of the equations of
motion (on shell). This way R = R[Cµν̄ ] is not a function of Cµν . In this case, Gµν and Gµ̄ν̄ in general
do not vanish. The Einstein tensor does however obey the Bianchi identity, ∇mGmn = 0, and so does the
constraint tensor, ∇mλmn = 0, which implies that the constraint tensor must be covariantly conserved,
∇µλµν = 0 = ∇µ̄λµ̄ν̄ . The action (19) is constructed in such a way that the number of undetermined field
components equals the number of equations, which is a necessary condition for mathematical consistency
of the theory. Another possibility is Holomorphic Gravity, in which a contraint action analogous to (19)
imposes on-shell constraints Cµν̄ = Cµ̄ν . This theory has been studied in some detail in Ref. [3].

3 Bardeen Potentials

When looking at linearized theory in general relativity, it is useful to decompose the perturbations in terms
of the scalar (S), vector (V), and tensor (T) perturbations such that [4]

hµν = hSµν + hVµν + hTµν .

In studying what kind of potential is generated by a point mass, it is only necessary to consider scalar
perturbations which correspond to fluctuations of mass density with respect to the background field. Vector
and tensor perturbation can be produced e.g. by amplified vacuum fluctuations of vector and gravitational
fields in inflation. In macroscopic systems, vector perturbation are sourced by a time dependent dipole
of some localized mass distribution, while tensor perturbations (gravitational waves) are sourced by a time
dependent quadrupole of a mass distribution. Typical astronomical sources of vector and tensor perturbations
are rotating binary stars. For the scalar perturbations, the perturbation metric can be expressed in terms
of the scalar fields E,B, φ and ψ

hSµν =









−2φ ∂1B ∂2B ∂3B
∂1B 2 (−ψ + ∂1∂1E) 2∂1∂2E 2∂1∂3E
∂2B 2∂2∂1E 2 (−ψ + ∂2∂2E) 2∂2∂3E
∂3B 2∂3∂1E 2∂3∂2E 2 (−ψ + ∂3∂3E)









.

The fields that make up the metric perturbation are not invariant under gauge transformations, i.e. coordi-
nate transformations generated by xµ → xµ+ξµ(xν), where ξµ(xν) is an infinitessimal vector field 6. One can
show that it is possible to construct so-called gauge invariant potentials. The advantage of a gauge invariant
formulation is that the remaining potentials represent physical quantities invariant under diffeomorphisms.
In general relativity for a flat background metric, the gauge invariant potentials, also known as Bardeen
potentials, are given by

ΦGR = φ+ ∂0 (B − ∂0E) , ΨGR = ψ . (20)

One can introduce an analogous construction in Hermitian Gravity which satisfies the symmetries of the
theory. An analysis of these symmetries indicates the E, φ, and ψ fields must be real, while the field B is not

5In the case of Hermitian Gravity, the trace-reversed perturbation satisfies H̃ = −3H.
6For the case of scalar perturbations, ξµ(xν) =

(

ξ0, ∂iξ
)T

.

4



imposed with any such constraint and thus has its own complex conjugate B̄. Under these conditions,
the Hermitian Gravity analog of the Bardeen decomposition for the scalar metric perturbation can be
constructed:

HS
µ̄ν =









−2φ ∂1B ∂2B ∂3B
∂1̄B̄ 2 (−ψ + ∂1̄∂1E) 2∂1̄∂2E 2∂1̄∂3E
∂2̄B̄ 2∂2̄∂1E 2 (−ψ + ∂2̄∂2E) 2∂2̄∂3E
∂3̄B̄ 2∂3̄∂1E 2∂3̄∂2E 2 (−ψ + ∂3̄∂3E)









. (21)

Under an infinitesimal transformation zm
→ zm + ξm(zn), the metric perturbation transforms as follows

Hmn (zm) → H ′

mn
= Hmn − ∂mξn − ∂nξm , ξn = ζmnξ

m . (22)

The coordinate transformation consists of a holomorphic and an antiholomorphic vector field ξm =
(

ξµ(zν), ξ̄µ(zµ̄)
)T

. This is a condition which must be imposed in order to keep the metric Hermitian (i.e.
to maintain Cµν = 0 and Cµ̄ν̄ = 0) under coordinate transformations. Equation (22) implies the following
gauge transformations for the scalar fields 7

2φ → 2φ− ∂0ξ
0 − ∂0̄ξ

0̄,

−∂̄ıB̄ → −∂̄ıB̄ + ∂0∂iξ − ∂̄ıξ
0̄,

−∂iB → −∂iB + ∂0̄∂̄ıξ̄ − ∂iξ
0,

ψ → ψ,

−2∂i∂̄E → −2∂i∂̄E + ∂i∂jξ + ∂̄ı∂̄ξ̄. (23)

Computationally, it is much simpler to work with the trace-reversed metric which was introduced in the
Einstein equations (17–18). The new trace-reversed fields φ̃ and ψ̃ transform as

2φ̃ = 6ψ −∇2E −→ 2φ̃+ (∂j)
2 ξ + (∂ī)

2 ξ̄,

2ψ̃ = −4ψ + 2φ+∇2E −→ 2ψ̃ − ∂0ξ
0 − ∂0̄ξ

0̄ − (∂k)
2 ξ − (∂k̄)

2 ξ̄,

while the two other fields, E and B, remain unchanged under trace reversal. Now one can determine the
dynamics of the fields are governed by the equations (17) resulting through the choice of energy-momentum
tensor as described in (18). In preparation for the following section on the Newtonian limit, we will use 8

Tµ̄ν = diag (−ρ, 0, 0, 0), so that the equations in (17) simplify to

�2φ̃ =
1

2

(

∂0∇2B + ∂0̄∇2B̄
)

+ 2∇2ψ̃ −∇4E + 2κρ,

�∂iB = −∂0∂0̄∂iB − 2∂0̄∂iψ̃ + ∂0̄∂i∇2E + 2∂0̄∂iφ̃+
1

2
∂i∇2B,

�∂īB̄ = −∂0∂0̄∂īB̄ − 2∂0∂īψ̃ + ∂0∂ī∇2E + 2∂0∂īφ̃+
1

2
∂ī∇2B̄,

2�
(

ψ̃δij̄ − ∂i∂j̄E
)

= ∂0̄∂i∂j̄B̄ + ∂0∂i∂j̄B + 4∂i∂j̄ ψ̃ − 2∂i∂j̄∇2E

−δij̄
(

4∂0∂0̄φ̃+ ∂0∇2B + ∂0̄∇2B̄ + 2∇2ψ̃ −∇4E
)

.

(24)

In Appendix A we show that, by making the appropriate combinations of the fields, one can construct gauge
invariant potentials, namely

Φ = φ+ ∂0 (B − ∂0̄E) , Ψ = ψ , (25)

which are remarkably similar to the Bardeen potentials of GR (20). The gauge invariant potentials of HG (25)
satisfy the following equations of motion for the rest frame of a perfect fluid

�Φ = � (φ+ ∂0 (B − ∂0̄E)) =
2κρ

3
,

�Ψ = �ψ =
κρ

3
.

7For scalar perturbations, one can use ξi = ∂iξ.
8This corresponds to the energy-momentum tensor of a perfect fluid in the rest frame.
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In the next section, a massive static point-like source will be considered such that ρ takes on the form of a
delta function with some mass attached to it.
As previously stated, it is not yet certain whether or not one is allowed to fix the parts of the Einstein tensor
Gµν and Gµ̄ν̄ to zero. Such a choice imposes that the de Donder gauge condition ∂mHmn is also null.
However, unlike general relativity, this quantity is gauge invariant in Hermitian Gravity. For more in depth
information regarding this constraint and the resultant calculation for the Bardeen potentials, see Appendix
B.

4 Newtonian Limit

Following the introduction of the linearized theory of Hermitian Gravity and the use of Bardeen potentials,
the gauge invariant scalar potentials in the case of a non-zero energy density are

�Φ =
2κρHG

3
, �Ψ =

κρHG

3
. (26)

The constant κ has yet to be determined and will be done so by solving (26) for the case of the static
point-like mass for the gauge invariant energy density ρHG. In general relativity, this energy density is given
by ρN = Mδ3(~x ). In Hermitian Gravity, the corresponding general relativistic limit can be obtained by
considering the point-like source on the six-dimensional phase space spanned by {~z, ~̄z}

ρHG =Mδ3(~z)δ3(~̄z),

and subsequently integrating out the momenta contributions

ρN =M

∫

d3yδ3(~z )δ3(~̄z ) .

By taking the non-relativistic limit in d complex dimensions 9, Eq. (26) reduces to

∇2Φ =
2κ

3
Mδd(~z )δd(~̄z ), (27)

where d = D − 1 represents the number of complex, spatial dimensions 10.

4.1 Two-Dimensional Case

The first case to be considered is the d = 2 dimensional case. The spherical coordinates on U(2) are obtained
by the use of the following coordinates:

z1 = z cos(φ) ≡ 1√
2
Reıα cos(φ) , (z ∈ C, R ∈ R+, 0 ≤ α, φ < 2π)

z2 = z sin(φ)eıθ ≡ 1√
2
Reı(α+θ) sin(φ) , (0 ≤ θ < 2π) (28)

and analogously for z1̄ = (z1)∗, z2̄ = (z2)∗. In order to solve Eq. (27) in these spherical coordinates, it will
be necessary to find the transformed Laplacian ∇2 in these coordinates. This can be achieved as follows.
The coordinate transformation from zm

→ xm(zm) (m = 1, 2, 3, 4; zm = (zi, z ī)T , xm = (R, φ, α, θ)T )
implies

dzm = ∂z
m

∂xn
dxn

which in matrix notation reads
d~z = Dd~x , d~x = D−1d~z , (29)

9This is equivalent to 2d real dimensions.
10D is the number of complex space-time dimensions.
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where D is the transformation matrix represented by

D =
1√
2









eıα cos(φ) −Reıα sin(φ) ıReıα cos(φ) 0

eı(α+θ) sin(φ) Reı(α+θ) cos(φ) ıReı(α+θ) sin(φ) ıReı(α+θ) sin(φ)
e−ıα cos(φ) −Re−ıα sin(φ) −ıRe−ıα cos(φ) 0

e−ı(α+θ) sin(φ) Re−ı(α+θ) cos(φ) −ıRe−ı(α+θ) sin(φ) −ıRe−ı(α+θ) sin(φ)









, .

and D−1 is the inverse of this matrix satisfying D−1D = I4. The Jacobian of the coordinate transforma-
tion (29) is

J = |det[D]| = R3| sin(φ) cos(φ)| .

From (29), one can easily see that

∇~z = (D−1)T∇~x , ∇~x = DT∇~z .

The transposed inverse matrix reads

(D−1)T =
1√
2















e−ıα cos(φ) − e−ıα sin(φ)
R

e−ıα

ıR cos(φ) − e−ıα

ıR cos(φ)

e−ı(α+θ) sin(φ) e−ı(α+θ) cos(φ)
R

0 e−ı(α+θ)

ıR sin(φ)

eıα cos(φ) − eıα sin(φ)
R

− eıα

ıR cos(φ)
eıα

ıR cos(φ)

eı(α+θ) sin(φ) eı(α+θ) cos(φ)
R

0 − eı(α+θ)

ıR sin(φ)















.

Using the above matrix, it is possible to determine the Laplace operator in (27) in spherical U(2) coordi-
nates (28) through straightforward calculation. The result is

∇2 =
∂2

∂R2
+

3

R

∂

∂R
+

1

R2

[

∂2

∂φ2
+ 2 cot(2φ)

∂

∂φ

+
1

cos2(φ)

∂2

∂α2
+

1

sin2(φ) cos2(φ)

∂2

∂θ2
− 2

cos2(φ)

∂

∂α

∂

∂θ

]

. (30)

The Laplacian can alternatively be calculated by using

∇2 =
1√
C
∂i

(√
C Cij̄ ∂j̄

)

, (31)

where C = det[Cij̄ ] is the determinant of the spatial part of the metric and Cij̄ is the inverse metric satis-

fying Cil̄Cl̄j = δij . This relation is valid in general relativity (for gij) and, using it for the two dimensional
case above, one can verify that this analogous construction holds true in Hermitian Gravity. This method is
computationally much quicker and for this reason it will be adopted henceforth for the three-dimensional case.

We shall now show how the Laplacian (30) can be broken into two reciprocally invariant parts. But
before we do that, let us consider the spatial line element dℓ2 in the angular coordinates (cf. Eq. (28))

z1 = z cos(φ) , z2 = z sin(φ)eıθ , z =
R√
2
eıα .

After some simple algebra we obtain,

d~ℓ
2
= dzdz̄ + zz̄

[

(dφ)2 + sin2(φ)(dθ)2
]

+ ı [zdz̄ − z̄dz] sin2(φ)dθ . (32)

Since the following relations can be shown to be true

J [dR] = R(dα+ sin2(φ)dθ) ; J [R(dα+ sin2(φ)dθ)] = −dR,
J [dφ] = − sin(φ) cos(φ)dθ ; J [sin(φ) cos(φ)dθ] = dφ,

7



equation (32) can be broken into two reciprocally invariant pieces as follows:

d~ℓ
2
= [dz + ız sin2(φ)dθ][dz̄ − ız̄ sin2(φ)dθ] + zz̄

[

(dφ)2 + sin2(φ) cos2(φ)(dθ)2
]

.

The first term on the right hand side is the radial part while the second is the angular reciprocally invariant
contribution. Notice that, within the radial part, the angular and radial coordinate elements dz, dz̄, and dθ

are mixed. This is to be contrasted with GR, where d~ℓ
2

GR = dR2 +R2(dφ)2 is diagonal and no such mixing
occurs.

Just like the line element (32), the Laplacian (30) can also be broken into two reciprocally invariant parts.
This can be shown most readily with Eq. (28) by using the quantity z = R√

2
eıα, the complex radius, and its

complex conjugate. The derivatives with respect to these coordinates in terms of the Cartesian derivatives
are

∂

∂z
= cos(φ)

∂

∂z1
+ sin(φ)eıθ

∂

∂z2
,

∂

∂z̄
= cos(φ)

∂

∂z1̄
+ sin(φ)e−ıθ ∂

∂z2̄
,

∂

∂θ
= ız sin(φ)eıθ

∂

∂z2
− ız̄ sin(φ)e−ıθ ∂

∂z2̄
, (33)

∂

∂φ
= −z sin(φ) ∂

∂z1
− z̄ sin(φ)

∂

∂z1̄
+ z cos(φ)eıθ

∂

∂z2
+ z̄ cos(φ)e−ıθ ∂

∂z2̄
.

Recalling that the almost complex structure operator J acts as

J
[ ∂

∂zi

]

= ı
∂

∂zi
, J

[ ∂

∂z ī

]

= −ı ∂
∂z ī

, (i = 1, 2),

one can conclude from Eqs. (33) the action of J on ∂/∂z and ∂/∂z̄

J
[ ∂

∂z

]

= ı
∂

∂z
, J

[ ∂

∂z̄

]

= −ı ∂
∂z̄

.

Furthermore, one can check that ∂/∂z and ∂/∂z̄ commute

[ ∂

∂z
,
∂

∂z̄

]

= 0 .

This then implies that the reciprocally invariant radial Laplacian operator is

∇2
rad = 2

∂

∂z

∂

∂z̄
= 2 cos2(φ)

∂

∂z1
∂

∂z1̄
+ 2 sin2(φ)

∂

∂z2
∂

∂z2̄

+ sin(2φ)e−ıθ ∂

∂z1
∂

∂z2̄
+ sin(2φ)eıθ

∂

∂z2
∂

∂z1̄
. (34)

Since the entire Laplacian ∇2 is reciprocally invariant, the angular part of the Laplacian, ∇2
ang = ∇2−2∂z∂z̄,

or equivalently

∇2
ang = 2 sin2(φ)

∂

∂z1
∂

∂z1̄
+ 2 cos2(φ)

∂

∂z2
∂

∂z2̄

− sin(2φ)e−ıθ ∂

∂z1
∂

∂z2̄
− sin(2φ)eıθ

∂

∂z2
∂

∂z1̄
, (35)

must be as well. When expressed in terms of the coordinates {R,α, φ, θ} defined in Eq. (28), the relations (34–
35) become

∇2
rad = 2

∂

∂z

∂

∂z̄
=

∂2

∂R2
+

1

R

∂

∂R
+

1

R2

∂2

∂α2
(36)

∇2
ang =

2

R

∂

∂R
+

1

R2

[

∂2

∂φ2
+ 2 cot(2φ)

∂

∂φ
+ tan2(φ)

∂2

∂α2
(37)

+
1

sin2(φ) cos2(φ)

∂2

∂θ2
− 2

cos2(φ)

∂

∂α

∂

∂θ

]

.

8



The simplest way to derive Eqs. (36–37) is to use the coordinate transformation

z =
R√
2
eıα =

1√
2
(rx + ıry) (38)

and

∇2
rad = 2

∂

∂z

∂

∂z̄
=

∂2

∂r2x
+

∂2

∂r2y
.

Remarkably, from this form of the radial Laplacian and the coordinates (38) it is clear that the radial
reciprocally invariant part of the Laplacian corresponds to a ‘flat’ space Laplacian of the complex plane
defined by the two dimensional hypersurface,

z1z1̄ + z2z2̄ = zz̄ . (39)

However, the complex plane (39) is not a flat embedding into the space {z1, z1̄, z2, z2̄}. This can be seen
from the angular part of the Laplacian (37) which contains both ∂/∂R and ∂/∂α derivatives.

The reciprocally invariant radial solutions then correspond to the solutions of the equations

(

∂2

∂R2
+

1

R

∂

∂R
+

1

R2

∂2

∂α2

)

Φ =
2κ

3
Mδ2(~z )δ(~̄z ), (40)

(

2

R

∂

∂R
+

1

R2

[

∂2

∂φ2
+ 2 cot(2φ)

∂

∂φ
+ tan2(φ)

∂2

∂α2
(41)

+
1

sin2(φ) cos2(φ)

∂2

∂θ2
− 2

cos2(φ)

∂

∂α

∂

∂θ

])

Φ = 0 .

These equations represent reciprocally invariant solutions which propagate on the reciprocally invariant radial
hyperplane (39) only. While the first equation is derived from purely radial components, it should not be
forgotten that the angular invariant equation also contains a 2

R
∂
∂R

term, indicating that the zz̄ hypersurface
cannot be isolated through reciprocal invariance. Rather, it is embedded and curved in the other two
dimensions. Thus, the reciprocally invariants equations do not purely split into radial and angular parts.
Since we desire to study the Newtonian limit, in which the potential Φ should be only radially dependent
(the gravitational force does not depend on angles), it will be necessary to use the full Laplacian.

As a result, it is more beneficial to consider a different problem. First, observe that in fact the point
mass density source in (40) corresponds to a point source in phase space. This can be seen by recalling
~z = (1/

√
2)(~x+ ı~y ), ~y = (GN/c

3)~p and

δ2(~z )δ2(~̄z ) = δ2(~x )δ2(~y ),

such that for the point source density
ρHG =Mδ2(~z )δ2(~̄z ), (42)

the general relativistic mass density is obtained by integrating (42) over the momenta

G2
N

c6

∫

d2p δ2(~z )δ2(~̄z ) =Mδ2(~x ) ≡ ρGR.

In other words, the Hermitian Gravity point source (42) represents a point source in phase space {~x, ~p }, and
therefore the Hermitian Gravity potential Φ represents a phase space potential (a distribution function) from
which one obtains the limit of general relativity by integrating Φ over the momenta. Before illustrating this
procedure in the two-dimensional case, consider again the Laplace equation (27) in Cartesian coordinates,
which in d = 2 spatial dimensions reads

(

∂2

∂~x 2
+

∂2

∂~y 2

)

Φ =
2κ

3
Mδ2(~x )δ2(~y ) . (43)

9



Integrating this over ~y, using Gauss’s theorem for the ~y integral, and assuming that the surface term
∫

dS1
y(d/dry)Φ = [2πry(d/dry)Φ]ry→∞ (ry = ‖~y ‖) does not contribute, the integrated potential

φx(~x ) ≡
∫

d2yΦ,

satisfies the following Poisson equation

∇2
~x φx(~x) =

2κ

3
Mδ2(~x ) . (44)

This is just the Newtonian limit of GR in the case 2κ
3 = 4πGN , where GN is Newton’s gravitational constant,

and has a well known solution

φx → φN = φ0 +GNM ln

(

r2

µ2

)

. (45)

Here, φ0 is a constant that can be set to zero by suitably choosing the scale µ and r = ‖~x‖. Of course, the
integration over ~y breaks the reciprocity symmetry. This also explains in what sense the reciprocity symmetry
is realized in general relativity. It is further of interest to investigate the consequences of integrating Eq. (43)
over the positions rather than the momenta. Defining the momentum space ‘potential’ by φp(~p ) ≡

∫

d2xΦ,
and assuming the surface term [2πr(d/dr)Φ]r→∞ (r = ‖~x ‖) vanishes, one obtains the momentum space
Laplace equation

∇2
~p φp(~p ) =

2κ

3
Mδ2(~p ) , (46)

with the solution

φp = φp0 +GNM ln

(

p2

µ2
p

)

, (µp = (c3/GN )µ , p = ‖~p ‖) . (47)

Comparing Eqs. (44) and (46) and the corresponding solutions (45) and (47), one can observe how Max Born’s
original idea is realized in linearized Hermitian Gravity. According to Max Born, reciprocity symmetry should
be implemented in the (quantum) theory of gravity which states the dynamical equations of gravity (and
thus also the solutions) should be invariant under the reciprocity transformations (cf. Eqs. (7) and (11))

~x→ GN

c3
~p , ~p→ − c3

GN

~x . (48)

In fact, the implementation of the reciprocity symmetry harnesses a larger symmetry than originally pre-
supposed by Born. This concept is illustrated by solving the Laplace equation (27), which does not respect
the radial-angular split of Eqs. (40–41). Assuming the solution does not depend on any of the angular
components, only the radial part of the Laplace operator (30) survives

(

d2

dR2
+

3

R

d

dR

)

Φ(R) =
1

R3

d

dR
R3 d

dR
Φ(R) =

2κ

3
Mδ2(~z )δ2(~̄z ) .

The general solution outside of the source, R 6= 0, is of the form

Φ(R) = Φ0 +
Φ1

R2
,

where Φ0 is a physically unimportant, constant potential which can be set to zero, and Φ1 is the second
constant of integration. This constant can be determined by making use of the Gauss theorem

∫

d2zd2z̄∇2Φ =

∫ 2π

0

dα

∫ 2π

0

dθ

∫ 2π

0

dφ
| sin(2φ)|

2

∫ ∞

0

dRR3 1

R3

d

dR

(

R3 d

dR

)

Φ

= 8π2

[

R3 d

dR

φ1
R2

]

R→∞
= −16π2φ1 =

2κ

3
M , (49)

such that the integration constant is fixed at φ1 = − κM
24π2 . The constant κ can be fixed by requiring that the

correct Newtonian limit (Poisson equation) is recovered in the three dimensional case (see section 4.2); the
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result is κ = 48πGN . The factor 8π2 in Eq. (49) comes from the integration over U(2) whose unit volume
is Vol[U(2)] = 8π2, which is to be compared with the volume of SO(2) occuring in GR, Vol[SO(2)] = 2π.
Thus, the gauge invariant potential for a static point-like mass is given by

Φ = − κM

24(πR)2
= − κM

48π2zz̄
= − κM

24 (π)
2 (
r2 + (GNp/c3)2

) . (50)

First, notice this phase space potential differs from the solution (45) of general relativity. Yet, in con-
trast to the Newton potential given by (45), the Hermitian Gravity potential (50) respects the reciprocity
symmetry (48). In fact, the discrete symmetry (48) is promoted here to a U(1) symmetry:

z → zeıα , z̄ → z̄e−ıα (α ∈ [0, 2π)) . (51)

It is not known whether the solutions of Eqs. (40) exhibit the same enhanced symmetry.
As discussed above, the Hermitian Gravity potential (50) is in fact a phase space potential that has to

be integrated over to reach the general relativistic limit. Performing this integration for equation (50):

φ =

∫

d2yΦ = −κM
12π

∫ Y

0

rydry
r2 + r2y

= −κM
24π

ln(r2 + r2y)|
ry=Y

ry=0 =
κM

24π
ln
( r2

r2 + Y 2

)

, (52)

where Y has been added as an ultraviolet regulator. The result (52) diverges logarithmically as Y tends to
infinity. The solution does not satisfy the differential equation (44) for finite values of Y . This, in fact, does
not pose a problem, because one can reintroduce the integration constant Φ0 which was previously chosen
to be zero such that the full solution reads

φ =
κM

24π
ln
( r2

r2 + Y 2

)

+ 2πΦ0Y
2,

and by giving Φ0 an appropriate, infinitesimally small value determined by the equation

(−κM
24π

ln(r2 + Y 2) + 2πΦ0Y
2

)

∣

∣

∣

∣

∣

Y→∞
=

−κM
24π

ln(µ2).

One obtains the regular limit as Y goes to infinity

φ =
κM

24π
ln(

r2

µ2
), (53)

which for the suitable value 11 of κ→ 24πGN reproduces (45), the Newtonian limit of general relativity

φGR(r) → 2GNM ln
( r

µ

)

. (54)

Thus, it has been shown that integrating out the momenta and solving the Poisson equation give completely
equivalent results, regardless of the order the operations are performed in. In both cases, the momentum
‘radius’ was taken to the infinite limit. In deriving (53), it was necessary for the result to be a proper solution
of the Poisson equation, while in deriving (45) the infinite limit was used to omit the surface term.
The linearized theory result is, of course, incorrect. In full general relativity a point mass in two spatial
dimensions sources a conical singularity at the particle location, but no gravitational field away from the
particle. It is of interest to find out the gravitational potential in full Hermitian Gravity. This will be left
for a future publication; the three-dimensional case of linearized Hermitian Gravity will now be addressed.

11According to the analysis of section 4.2 this is not the correct value of κ.
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4.2 Three-Dimensional Case

The three-dimensional case, d=3, is in many ways similar to the two-dimensional case. The three-dimensional
complex space {~z, ~̄z} can be spanned by six real dimensions {R, θ, φ, α, β, γ} representing a polar coordinate
basis. In terms of this basis, the Cartesian coordinates can be written as

z1 =
R√
2
eıαeıβ sin (φ) sin (θ), z1̄ =

R√
2
e−ıαe−ıβ sin (φ) sin (θ)

z2 =
R√
2
eıα cos (φ) sin (θ), z2̄ =

R√
2
e−ıα cos (φ) sin (θ)

z3 =
R√
2
eıαeıγ cos (θ), z3̄ =

R√
2
e−ıαe−ıγ cos (θ)

In this case, the Laplacian will be calculated using (31). To do so, the (spatial part of the) metric needs to
be derived first. The infinitesimal transformations corresponding to the above coordinates are given by:

dz1 =
1√
2

(

eıαeıβ sin (φ) sin (θ)dR+Reıαeıβ cos (φ) sin (θ)dφ+Reıαeıβ sin (φ) cos (θ)dθ

+ıReıαeıβ sin (φ) sin (θ)dα+ ıReıαeıβ sin (φ) sin (θ)dβ
)

,

dz2 =
1√
2

(

eıα cos (φ) sin (θ)dR−Reıα sin (φ) sin (θ)dφ

+Reıα cos (φ) cos (θ)dθ + ıReıα cos (φ) sin (θ)dα
)

,

dz3 =
1√
2

(

eıαeıγ cos (θ)dR−Reıαeıγ sin (θ)dθ

+ıReıαeıγ cos (θ)dα+ ıReıαeıγ cos (θ)dγ
)

,

and their complex conjugates. The above are inserted into the metric in Cartesian coordinates, ds2 =
2
(

dz1dz1̄ + dz2dz2̄ + dz3dz3̄
)

, to obtain the metric in polar coordinates

ds2 = dR2 +R2 sin2 (θ)dφ2 +R2dθ2 +R2dα2 + R2 sin2 (φ) sin2 (θ)dβ2

+R2 cos2 (θ)dγ2 + 2R2 sin2 (φ) sin2 (θ)dαdβ + 2R2 cos2 (θ)dαdγ,

or, equivalently, in matrix notation

Cij̄ =

















1 0 0 0 0 0
0 R2 0 0 0 0
0 0 R2 sin2 (θ) 0 0 0
0 0 0 R2 R2 sin2 (φ) sin2 (θ) R2 cos2 (θ)
0 0 0 R2 sin2 (φ) sin2 (θ) R2 sin2 (φ) sin2 (θ) 0
0 0 0 R2 cos2 (θ) 0 R2 cos2 (θ)

















.

From this, the quantities necessary for calculating the Laplacian can straightforwardly be found. The
determinant C is found to be

C = R10
(

cos2 (φ) sin2 (φ) cos2 (θ) sin6 (θ)
)

,

while the inverse of the spatial metric yields

Cij̄ =



















1 0 0 0 0 0
0 1

R2 0 0 0 0
0 0 1

R2 sin2 (θ)
0 0 0

0 0 0 1
R2 cos2 (φ) sin2 (θ)

−1
R2 cos2 (φ) sin2 (θ)

−1
R2 cos2 (φ) sin2 (θ)

0 0 0 −1
R2 cos2 (φ) sin2 (θ)

4
R2 sin2 (2φ) sin2 (θ)

1
R2 cos2 (φ) sin2 (θ)

0 0 0 −1
R2 cos2 (φ) sin2 (θ)

1
R2 cos2 (φ) sin2 (θ)

1
R2 cos2 (φ) sin2 (θ) +

1
R2 cos2 (θ)



















.
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Combining the above results with (31), one readily finds the Laplacian to be

∇2 =
∂2

∂R2
+

5

R

∂

∂R
+

1

R2

∂2

∂θ2
+

1

R2
(3 cot (θ)− tan (θ))

∂

∂θ

+
1

R2 sin2 (θ)

(

∂2

∂φ2
+ 2 cot (2θ)

∂

∂φ
+

4

sin2 (2φ)

∂2

∂β2
+ tan2 (θ)

∂2

∂γ2

)

+
1

R2 cos2 (φ) sin2 (θ)

(

∂2

∂α2
− 2

∂

∂α

∂

∂β
− 2

∂

∂α

∂

∂γ
+ 2

∂

∂β

∂

∂γ
+

∂2

∂γ2

)

.

Proceeding along similar lines as in the two-dimensional case, the differential equation (27) generated by
this Laplacian will be solved for a d = 3 static point-like source on phase space

ρHG =Mδ3 (~z) δ3
(

~̄z
)

.

It is possible to split the three-dimensional Laplacian into two reciprocally invariant parts. The radial,
reciprocally invariant piece stays the same as in (40), while (41) changes suitably to represent the entire
Laplacian with (40) removed. These equations are even more laborious than before, and thus seem to be
too difficult to solve at this moment. Instead, it is possible to solve the Laplacian for a potential which does
not depend on the angular variables for which (27) simplifies to

1

R5

d

dR

(

R5 d

dR

)

Φ(R) =
2κ

3
Mδ3(~z )δ3(~̄z) . (55)

Away from the source, such that R 6= 0, the general solution is given by

Φ = Φ0 +
Φ1

R4
.

Once again, the constant Φ0 can be set to zero 12 and Gauss’s theorem is applied to fix the integration
constant Φ1 by considering an integration in (55) over the six-dimensional phase space

∫

d3z

∫

d3z̄∇2Φ =

∫ 2π

0

dα

∫ 2π

0

dβ

∫ 2π

0

dγ

∫ 2π

0

dφ

∫ π

0

dθ

∫ ∞

0

dR

×
∣

∣cos (φ) sin (φ) cos (θ) sin3 (θ)
∣

∣

d

dR

(

R5 d

dR

)

Φ(R)

= 8π3

∫ ∞

0

dR
d

dR

(

R5 d

dR

)

Φ(R) = 8π3

(

R5 d

dR

)

∣

∣

∣

∣

∣

R→∞
Φ(R)

= −32π3Φ1 =
2κ

3
κM,

where Vol[U(3)]= 8π3 has been used, upon which the constant Φ1 is found to be

Φ1 =
−κM
48π3

.

Thus the solution for the phase space potential with constants fixed is

Φ =
−κM
48π3R4

=
−κM

192π3(zz̄)2
. (56)

Just as in the two-dimensional case, this solution respects the U(1) reciprocity symmetry (51). To obtain
the potential of general relativity, the momenta are integrated over 13

φGR =

∫ ∞

0

d3yΦ =

∫ ∞

0

dry4πr
2
yΦ(R) = −

∫ ∞

0

dry
κMr2y

12π2
(

r2 + r2y
)

=
−κM
48πr

,

12Unlike in the two-dimensional case, it will not be necessary to keep Φ0 for reasons of convergence.
13Here, the relations R2 = ~x2 + ~y2, r = ||~x||, and ry = ||~y|| are made use of.
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and one determines κ = 48πGN which results in the correct Newtonian limit of general relativity

φGR = −GNM

r
.

Hence, it has been shown that Hermitian Gravity does indeed reproduce the same Newtonian limit as general
relativity, provided κ = 48πGN . In this case the potential (56) is completely fixed,

Φ = − GNM

4π2(zz̄)2
, zz̄ =

R2

2
.

Moreover, upon inserting κ = 48πGN into the two-dimensional potential (53), one obtains φGR → 4GNM ln(r/µ) =
2φGR, which is a factor of two larger than the GR potential (54). This could in principle be used as a test to
distinguish between GR and HG, since a straight cosmic string in Hermitian Gravity will generate a deficit
angle that is twice as large as that of general relativity.
Previously, there have been no known solutions 14 to a theory of Hermitian Gravity, but by going to the lin-
earized theory the first such solution has been found. This opens perspectives for other linearized solutions,
such as gravitational waves.

5 Motion of Massive Particles and Light Deflection

Having derived the solutions to the gauge invariant potentials in the previous section, it is now possible to
compute the motion of massive particles and massless particles (light deflection). For the non-relativistic

massive particle, one assumes that the particle moves slowly with respect to the speed of light, dzi

dτ
≪ dz0

dτ

and dzī

dτ
≪ dz0̄

dτ
, and the field acting on the particle is static such that ∂0Cmn = 0 and ∂0̄Cmn = 0. In

addition, we continue to work in the framework where the gravitational field is weak, which we have already
used in linearizing the theory. The geodesic equation is given by

d
2
z
r

dτ2
= Γr

mn

dz
m

dτ

dz
n

dτ
, (57)

and the Christoffel symbols are given in equation (16). Under the above conditions, the various equations
of motion obtained from the geodesic equation are

d2z0

dτ2
= 0,

d2z0̄

dτ2
= 0,

d2zi

dτ2
=
dz0

dτ

dz0̄

dτ
∂īH0̄0,

d2z ī

dτ2
=
dz0

dτ

dz0̄

dτ
∂iH0̄0.

Using the metric (21) and the condition 15 Cmn
dzm

dτ
dzn

dτ
= −1, which in this case simplifies to dz0

dτ
dz0
dτ

= − 1
2 ,

the above equations become

d2z0

dτ2
= 0,

d2z0̄

dτ2
= 0,

d2zi

dτ2
= −∂īΦ,

d2z0̄

dτ2
= −∂iΦ.

To obtain the general relativistic limit for the spatial equations of motion, it is necessary to integrate the
phase space potential Φ over the momenta. Introducing this integration, the equation for zi can also be
written in terms of its real and imaginary parts by going to the x− y basis

d2xi

dτ2
+ ı

d2yi

dτ2
= −

∫

d3y
(

∂xi − ı∂yi

)

Φ. (58)

14According to Nakahara [5]. It should be noted however that Ref. [5] defines Hermitian geometry by requiring that all
covariant derivatives acting on a vielbein vanish, ∇µeaν = 0,∇µ̄eaν = 0. These conditions then generate different connection
coefficients than the ones used here, which are consistent with the weaker conditions: ∇µCαβ̄ = 0, ∇µ̄Cαβ̄ = 0 [1].

15In the limit dyµ → 0, this properly corresponds to the condition in general relativity gµν
dxµ

dτ
dxν

dτ
= −1.
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The imaginary part of the equation, ıd
2yi

dτ2 =
∫

d3y ı∂yiΦ, represents a boundary term which can be ne-
glected 16. On the other hand, the real part of equation (58) gives

d2xi

dτ2
= −

∫

d3y ∂xΦ.

Previously, the relation between the phase space potential and the general relativistic potential in the three-
dimensional case was found: φGR =

∫

d3yΦ. Applying this, the above equation simplifies to

d2xiGR

dτ2
= −∂xφGR,

which is exactly the acceleration equation for a massive particle in the non-relativistic static limit of general
relativity 17. Hence, the correct result has been reproduced in Hermitian Gravity.
For light deflection, we work within the same framework of weak and time-independent fields, but no longer
is the assumption of non-relativistic velocities valid. It can be shown for time-independent fields from the
decomposition of the Bardeen potentials in section 3 that the dynamics are generated by

∇2φ =
2κρ

3
, ∇2ψ =

κρ

3
, E = 0, B = 0. (59)

Thus, the metric takes on the form Hµν̄ = diag (−2φ,−2ψ,−2ψ,−2ψ). For this metric, the geodesic equation
(57) generates the following accelerations

d2z0

dτ2
= −2Γ0

0i

dz0

dτ

dzi

dτ
− 2Γ0

0̄i

dz0

dτ

dz ī

dτ
= −4

dz0

dτ

dzi

dτ
∂iφ,

d2zi

dτ2
= −Γi

ja

dzj

dτ

dza

dτ
− 2Γi

00̄

dz0

dτ

dz0̄

dτ
− 2Γi

j̄a

dz j̄

dτ

dza

dτ
= 4

dzi

dτ

dzj

dτ
∂jψ − 2

dz0

dτ

dz0̄

dτ
∂īφ− 2

dza

dτ

dzā

dτ
∂īψ,

(60)

and their complex conjugates. From the line element Cµν̄
dzµ

dτ
dzν̄

dτ
= 0, one can conclude dzµ

dτ

dzµ
dτ

= 0 and thus
dz0

dτ
dz0
dτ

= dzi

dτ
dzi
dτ

at zeroth order 18 upon which the second equation above reduces to

d2zi

dτ2
= 4

dzi

dτ

dzj

dτ
∂jψ − 2

dzj

dτ

dzj
dτ

∂īφ− 2
dzj

dτ

dzj
dτ

∂īψ.

These are to be compared with the accelerations found in general relativity

d2x0GR

dτ2
= −2

dx0GR

dτ

dxiGR

dτ
∂iφGR, (61)

d2xiGR

dτ2
= 2

dxiGR

dτ

dxjGR

dτ
∂jφGR − 2ηjk

dxjGR

dτ

dxkGR

dτ
∂iφGR. (62)

As before, it is beneficial to rewrite the equations in Hermitian Gravity in the x− y basis. The acceleration
of the time direction then reads 19

d2x0

dτ2
+ i

d2y0

dτ2
= −2

dx0 + idy0

dτ

dxi + idyi

dτ

(

∂xi − i∂yi

)

φ.

16To see this, one can consider the integral in polar coordinates, neglecting the derivative temporarily

∫ ∞

0

dry 4πr2yΦ = −

∫ ∞

0

dry
GNMr2y

π
(

x2 + r2y
)2

=

GNM

(

ry

2

(

x2+r2y

) +
arctan

(

ry
x

)

2x

)

π

∣

∣

∣

∣

∣

∣

ry=∞

ry=0

.

The first term drops out in both limits while the second term leaves GNM

4x
, where we have made use of arctan(∞) = π

2
. Acting

on this with the ∂y derivative that we have previously ignored, we find as a result
d2yi

GR

dτ2 = 0.
17The subscript GR has been used to accentuate this correspondence.
18It is valid to approximate this relation to zeroth order, since in equation (60) the indices are raised and lowered with the

Minkowski metric. Using the full metric would generate additional second-order correction terms which are negligible.
19The relevant transformations here are zµ = 1√

2
(xµ + iyµ) and ∂

∂zµ
= 1√

2

(

∂
∂xµ − i ∂

∂yµ

)

.
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This expression is more complicated than the corresponding one in general relativity. However, if one
considers the limit for sub-Planckian scales, where the momenta yµ ≈ 0 are negligible and very slowly
changing such that dyµ

dτ
= 0, then one obtains the result (61) from general relativity 20

d2x0

dτ2
= −2

dx0

dτ

dxi

dτ
∂xiφGR. (63)

For the spatial geodesic equation, the same coordinate change generates

d2xi

dτ2
+ i

d2yi

dτ2
= 2

dxi + idyi

dτ

dxj + idyj

dτ

(

∂xj − i∂yj

)

ψ − dxj + idyj

dτ

dxj + idyj
dτ

(

∂xi + i∂yi

)

φ

−dx
j + idyj

dτ

dxj + idyj
dτ

(

∂xi + i∂yi

)

ψ.

Taking once again the sub-Planckian limit and performing an integration over the allowed momenta to obtain
the GR potentials

d2xi

dτ2
= 2

dxi

dτ

dxj

dτ
∂xjψGR − dxj

dτ

dxj
dτ

∂xiφGR − dxj

dτ

dxj
dτ

∂xiψGR, (64)

where we observe that this result is actually quite different than in GR. If one takes φ = ψ, then indeed the
general relativistic limit (62) is obtained 21. However, from the equations of motion (59), it can be concluded
for any local source that φ = 2ψ in the case of Hermitian Gravity. The natural way to proceed then will be
to see by what magnitude light is deflected in this theory.

To begin, we consider the equation of motion for the zero component (63). Introducing the notation ẋ0 = dx0

dτ
,

a simple rewriting yields

ẍ0

ẋ0
= −2

dxi

dτ
∂xiφGR.

Integrating both sides with respect to τ leads to

ln

(

ẋ0

v0

)

= −2

∫

dxi

dτ
∂xiφGR dτ = −2

∫

∇φGR · d~x = −2∆φGR. (65)

Here the quantity ∆φGR is just the change in φGR over the region of integration and v0 is the initial velocity
of the time direction. If we consider some massive source at (0, 0, 0) in coordinates (x||, x⊥, z) 22, then at
any spatial point infinitely far away from this source the potential φGR vanishes, i.e. φGR(∞) = 0. Hence, if
the integration in (65) is chosen to be from −∞ to ∞, the result ∆φGR will be null. Analogously if instead
the integration is fixed from −∞ to some point a, then ∆φGR will be exactly the value of φGR(a). As a
result, we can (re)introduce the function φGR(x):

ln

(

ẋ0

v0

)

= −2

∫ x

−∞
∇φGR · d~x = −2φGR(x).

Exponentiating both sides of the equation produces

ẋ0 = exp (−2φGR(x)) ≈ 1− 2φGR(x).

The above equation implies that, for an observer at infinity, a particle travelling from infinity to the source
will experience time dilation. Since ẋ0 is unity at both x = −∞ and x = ∞, it is a conserved quantity along

20In the massive case, the y-acceleration d2yµ

dτ2 was found to be zero as a result of solving the integration (58). It is not as
straightforward to show that this is true for the massless case, however we will show that the above conditions for sub-Planckian
scales will lead to consistent results.

21The quantity on the right hand side of equation (62) is actually nothing more than double the transverse gradient, the
total gradient of the particle’s motion with the longitudinal component removed. As will be shown, it describes how a photon
passing by a massive source has its path altered orthogonally to the direction it is moving in such that it bends. The overall
factor of two is a significant factor, which has been experimentally verified scrutinously, and distinguishes Einstein’s general
relativity from Newton’s theory (where the overall factor is not present).

22The coordinates x⊥, x||, and z form an orthonormal basis in three-dimensional space.
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this path. We consider now that this massless particle begins at point (b,−∞, 0), travelling strictly along
the x|| axis towards the point (b, 0, 0). In the absence of the source, the particle would continue travelling
purely along the x|| axis. However, with the source present, the x⊥ coordinate is also affected 23. For this
scenario, the geodesic equations for the spatial components (64) can be expressed as

ẍ⊥ = 2ẋ⊥
(

ẋ⊥∂⊥ψGR + ẋ||∂||ψGR

)

−
(

(ẋ⊥)2 + (ẋ||)2
)

(∂⊥φGR + ∂⊥ψGR) ,

ẍ|| = 2ẋ||
(

ẋ⊥∂⊥ψGR + ẋ||∂||ψGR

)

−
(

(ẋ⊥)2 + (ẋ||)2
)

(

∂||φGR + ∂||ψGR

)

, (66)

where ∂⊥ = ∂
∂x⊥ and ∂|| =

∂
∂x|| . Combining the relations ẋ0 = 1− 2φGR and Cµν̄

dzµ

dτ
dzν̄

dτ
= 0, we find up to

first order in corrections
(ẋ0)2 = (ẋ⊥)2 + (ẋ||)2 = 1− 4φGR. (67)

Because we want to compare this to the light deflection generated by the Sun, we know the deflection angle
will be very small. This angle α(x) is the tangent of the particle’s transverse and parallel velocities, ẋ⊥

and ẋ|| respectively, so that α(x) = tan
(

ẋ⊥

ẋ||

)

. For very small angles, this can be well approximated as

α(x) = ẋ⊥

ẋ|| . By manipulating (67) with the use of α, it can be shown that ẋ|| varies due to the source’s
presence up to first order

(α2 + 1)(ẋ||)2 = 1− 4φGR ⇒ ẋ|| = 1 +O(φGR) +O(α2),

where the O(α2) term is negligible. It also implies, in conjunction with the definition of α for small deflection
angles, that ẋ⊥ ∼ α. With the above, it is now possible to examine the geodesic equations (66) by virtue of
orders of magnitude. As has been the case throughout all of linearized Hermitian Gravity, only terms up to
first order in corrections are kept 24. Integrating the second of the pair of equations provides a statement
about the change in the parallel velocity ∆ẋ||:

∆ẋ|| = 2

∫

(1 +O(φGR))α(x)∂⊥ψGR dτ + 2

∫

(1 +O(φGR)) ∂||φGR · dx||

−
∫

(1 +O(φGR))∂|| (φGR + ψGR) dτ.

The first term on the right hand side vanishes by virtue of the fact that both ψGR and α are small, and
thus it is second order in corrections. In the second term, one can immediately discard the O(φGR) term
and integrate the remainder (it is just an integral of a derivative), 2

∫

∂||φGR · dx|| = 2∆ψGR. As described
earlier, the change of φGR, and so also ψGR, over the path the particle follows from negative infinity to
infinity is zero. Thus the second term is also negligible. Finally, we multiply the third term by an overall

factor of ẋ||

ẋ|| =
ẋ||

1+O(φGR) . The numerator in this factor allows us to also rewrite this last term’s lowest (first)

order component as the integral of a derivative. Consequently it also disappears and we find that up to first
order in corrections ∆ẋ|| = 0. This result is equivalent to the result in general relativity. If there was indeed
some first order correction to this result, it would be measurable through the apparent redshifting of the
photons while they pass the Sun.
The first of the equations (66) can be treated the same way. We observe that the first two terms are both
of order α2 or higher due to the common factor of ẋ⊥ and the potential ψGR inside the parentheses. The
third term vanishes for the same reason except that it is of order α3, since the distributive factor is (ẋ⊥)2.
Thus the final term remains in which we ignore the order φGR contribution from (ẋ||)2, since it is negligible
together with the fields. The only first order contribution is given by

ẋ⊥ = −
∫

∂⊥ (φGR + ψGR) dτ,

which upon application of the relation α(x) = ẋ⊥

ẋ|| , leads to the desired result

α(x) ≈ −
∫

∂⊥ (φGR + ψGR) dτ.

23The z coordinate is left unaffected, since both the source and the particle are at z = 0. In essence, the motion is just
two-dimensional.

24Any term of the form O(α2), O(αφGR), or O(φ2
GR) is negligible.
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In the case of general relativity, one has φGR = ψGR and consequently αGR ≈ −2
∫

∂⊥φGR dτ . However,
for Hermitian Gravity the potentials obey a different relationship φGR = 2ψGR and the resultant deflection
angle

αHG ≈ −3

2

∫

∂⊥φGR dτ =
3

4
αGR,

finds itself exactly between the predictions of the Newtonian theory and general relativity. This contradicts
the experimentally justified factor of two. The early experiments starting with Eddington’s expedition in
1919, of which the merit is a continuing controversy, were quite imprecise. The factor 3

4 found here could
have been inside the margin of error for these experiments. The more precise experiments from the late
1960’s onwards clearly rule out such a possibility though as the value has been determined to be γ = 1.0002
with an estimated standard error of 0.002 [6]. The factor γ is one that is conventionally chosen for light
deflection studies (it is one of the ten dimensionless constants in the PPN formalism [7]) and its value for
general relativity is γ = 1 (in Newton’s theory, γ=0). These modern experiments were performed on Earth
using VLBI (very-long-baseline-interferometry), as well as in space with the use of the satellites Viking,
Hipparcos, and more recently Cassini.

We have found that the theory correctly predicts the Newtonian limit and the nonrelativistic acceleration
equation. However, it does not properly account for light deflection. The fundamental root of this problem is
the relationship between the gauge invariant fields Φ = 2Ψ. The factor of two is a result of the dimensionality
of the theory, and it produces the incorrect factor for the deflection angle. Since other relativistic corrections
(Post-Newtonian) will similarly depend on Ψ, it is to be expected that they will also differ from general
relativity. It is not yet known whether there is a method to fix this issue.

One possible resolution lies in a different method of complexifying general relativity. As has been observed
in a previous paper [1], Hermitian Gravity displays favorable properties around singularities while also
containing the reciprocity symmetry expected upon quantization. As has been shown here, Hermitian Gravity
does successfully retain Newton’s theory and it is quite possible that a more involved complexification scheme,
rather than an extension to complex Hermitian spaces, can be employed to develop a complex gravitational
theory which also correctly reproduces (linearized) general relativity.

Appendix A: Constructing Gauge Invariant Potentials

One constructs the gauge invariant potentials by combining the gauge transformed fields (23) such that the
fields ξµ cancel out. There are in fact several gauge invariant combinations one can compose

Ji = ∂i

(

∂0B + 2ψ̃ −∇2E
)

,

J̄ī = ∂ī

(

∂0̄B̄ + 2ψ̃ −∇2E
)

,

K = 2∂0φ̃+
1

2
∇2B̄,

K̄ = ∂0̄φ̃+
1

2
∇2B,

L = 2φ̃+∇2E,

M = ∇2

(

∂0E − 1

2
B̄

)

,

M̄ = ∇2

(

∂0̄E − 1

2
B

)

,

Ni = 2∂i

(

φ̃+ ψ̃ +
1

2
∂0B

)

,

N̄ī = 2∂ī

(

φ̃+ ψ̃ +
1

2
∂0̄B̄

)

. (68)

Shortly it will be shown that not all of these quantities are independent of each other. Furthermore, it is
not possible to rewrite the vector combinations as derivatives of scalars, i.e. Ji 6= ∂iJ , since the quantity J
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is not gauge invariant. However, the vector combinations do satisfy the symmetry ∂jJi = ∂iJj . Thus the
above set of equations represents a (over)complete set of quantities, which we will use to contruct a gauge
invariant formulation. The equations of motion (24) can be used in conjunction with the gauge invariant
combinations (68) in order to construct equations that are manifestly gauge invariant. For example, the first
and fourth equation 25 of (24) can be used to produce

1

6
�L = �

(

1

3
φ̃+

1

6
∇2E

)

= �ψ =
κρ

3
. (69)

This is the first gauge invariant potential. Since in terms of the original fields it is closely related to ψ, it
shall be called Ψ = φ̃ + 1

2∇2E. Notice that, while the gauge invariant potential is similar to the case of
general relativity (20), the equation of motion is quite different from general relativity where it is given by
�ΨGR = κρ. The equations of motion for the other gauge invariant combinations are given by 26:

�Ji = �

(

∂0∂iB + 2∂iψ̃ − ∂i∇2E
)

= −∂0∂0∂0̄∂iB − 2∂0∂0̄∂iψ̃ + ∂0∂0̄∂i∇2E − 2∂0∂0̄∂iφ̃− 1

2
∂0̄∂i∇2B̄

= −∂0̄ (∂0Ji + ∂iK) ,

�Ni = �

(

2∂iφ̃+ 2∂iψ̃ + ∂0∂iB
)

= −1

2
∂0̄∂i∇2B̄ − 2∂0∂0̄∂iφ̃− ∂0∂0∂0̄∂iB − 2∂0∂0̄∂iψ̃ + ∂0∂0̄∂i∇2E − 2κ∂iρ

= −∂0̄ (∂0Ji + ∂iK)− 2κ∂iρ,

�K = �

(

2∂0φ̃+
1

2
∇2B̄

)

,

= ∂0∇2ψ̃ + ∂0∇2φ̃− 1

2
∂0∇4E +

1

2
∂0∂0∇2B +

1

4
∇4B̄ − 2κ∂0ρ

= ∂0∂īJi +
1

2
∇2K − 2κ∂0ρ,

�M = �

(

∂0∇2E − 1

2
∇2B̄

)

= −∂0∇2

(

ψ̃ + φ̃− 1

2
∇2E

)

− 1

2
∂0∂0∇2B − 1

4
∇4B̄

= −
(

1

2
∇2K + ∂0∂īJi

)

.

In the case where ρ = 0, the two vector and two scalar combinations are, in fact, equivalent under the
operation of the d’ Alembertian. In other words, �Ji = �Ni → Ji = Ni + f(z, z̄), which implies that
they are equivalent up to some function f which satisfies �f(z, z̄) = 0, while � (K +M) = 0 has a similar
solution. Both of these equivalences stem from the fact �L = 0, which allows one to transform φ̃ into E and
vice versa through the the d’ Alembertian as can be seen from (69). In terms of dynamics, only three of the
gauge invariant combinations (excluding conjugate fields) are then actually independent. L has already been
exhausted to form one gauge invariant potential, and thus one must look to Ji and K to construct another.
Indeed, this is possible by considering

� (∂0̄K + ∂īJi) = −2κ∂0∂0̄ρ.

In terms of the trace-reversed fields this is

�

(

2∂0∂0̄φ̃+
1

2
∇2
(

∂0̄B̄ + ∂0B
)

+∇2ψ̃ − 1

2
∇4E

)

= 2κ∂0∂0̄ρ. (70)

25In the fourth equation, one makes use of the equation of motion for E only, which corresponds to the terms on the right
hand side which do not have a δij̄ term.

26The equations for the barred fields follow from complex conjugation.
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By using the relation �L− 2κρ = 0, the φ̃ term can be re-expressed in terms of E and all that remains is

�∇2
(

−2∂0∂0̄E + ∂0B + ∂0̄B̄ + 2ψ̃ −∇2E
)

= 0. (71)

At this point it is useful to simplify the equations of motion for the B field 27 in (24) by identifying the B
containing terms on the right-hand side of the equation as − 1

2�∂iB and thus

�∂iB = 4∂0̄∂i

(

φ̃− ψ̃ +
1

2
∇2E

)

.

From this, the following relation is easily derived

�∇2B = 4∂0̄∇2

(

φ̃− ψ̃ +
1

2
∇2E

)

,

from which one can conclude

�∇2∂0̄B̄ = �∇2∂0B,

where it becomes clear that ∂0B is a real quantity. Hence this can be introduced into (71)

�∇2
(

−2∂0∂0̄E + 2∂0B + 2ψ̃ −∇2E
)

= 0.

One last reduction can be made by reconsidering the equation (70). The 2∂0∂0̄φ̃ term can be expressed as
−�φ̃+∇2φ̃. By plugging in the equation for �φ̃ from (24) and using �∇2φ̃ = − 1

2�∇4E + κ∇2ρ, one finds

�∇2
(

∂0B −∇2E
)

= 0. (72)

The above relation permits the omission of two terms in (71) and the final solution reads

�∇2
(

−2∂0∂0̄E + ∂0B + 2ψ̃
)

= 0.

This equation has the solution 28

�

(

−2∂0∂0̄E + ∂0B + 2ψ̃
)

+ g(z0, z0̄) = 0. (73)

However, since the topic of interest concerns localized mass sources, there should be no arbitrary time-
dependent functions, because the fields should vanish infinitely far from the source. As a result, g must be
a constant which can be fixed to zero. Consequently, the following relation remains

�

(

−2∂0∂0̄E + ∂0B + 2ψ̃
)

= 0.

Rewriting this in terms of the original fields, we observe that it contains both contributions from φ and ψ

�
(

−2∂0∂0̄E + ∂0B − 4ψ + 2φ+∇2E
)

= 0.

Using (69), the ψ contribution can be rewritten in terms of κρ:

�
(

−2∂0∂0̄E + ∂0B + 2φ+∇2E
)

=
4κρ

3
, (74)

which upon inclusion of the relation (72) reduces to 29

� (φ+ ∂0B − ∂0∂0̄E) =
2κρ

3
.

27This was not done previously, since it is easier to form gauge invariant combinations by leaving it in the form given in (24).
28For localized distributions, ∇2g(~z, ~̄z) = 0.
29Strictly speaking, this requires another ∇2 in (74), however this is just the ∇2 that has already been integrated over in

(73).
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Associating with this expression a gauge invariant quantity Φ satisfying �Φ = 2κρ
3 we have

Φ = φ+ ∂0 (B − ∂0̄E) .

As with the other gauge invariant potential, this one is also strikingly similar to the corresponding ΦGR in
(20). However, the gauge invariant potentials in Hermitian Gravity are quite different than in GR. In general
relativity it is found that ΦGR = ΨGR, but in HG the relation differs by a factor of two, Φ = 2Ψ. While in
GR one has to solve the equations

�ΦGR = � (φ+ ∂0 (B − ∂0E)) = κρ,

�ΨGR = �ψ = κρ,

in Hermitian Gravity the dynamics are generated by

�Φ = � (φ+ ∂0 (B − ∂0̄E)) =
2κρ

3
,

�Ψ = �ψ =
κρ

3
.

These are the equations that shall be used to recover the Newtonian limit.

Appendix B: Constrained Bardeen Potentials

The holomorphic and anti-holomorphic sectors of the Einstein tensor are given by

Gµν =
1

2

(

∂µ∂
λ̄H̃λ̄ν + ∂ν∂

λ̄H̃λ̄µ

)

,

Gµ̄ν̄ =
1

2

(

∂µ̄∂
λH̃λν̄ + ∂ν̄∂

λH̃λµ̄

)

.

If the condition ∂mHmn = 0 is satisfied, then Gµν = Gµ̄ν̄ = 0. To satisfy this condition is not so straight-
forward however, since in Hermitian Gravity this quantity does not transform under gauge transformations

∂mHmn → ∂mHmn. (75)

In general relativity, one is able to impose the de Donder gauge ∂µhµν = 0 using gauge degrees of freedom.
In Hermitian Gravity, this is not possible and setting (75) to zero corresponds to a physical choice rather
than a gauge choice. Assuming this provides the correct physical picture, this significantly simplifies the
Bardeen potential calculations. The Einstein tensor (17) reduces to

Gµν = 0,

Gµ̄ν̄ = 0, (76)

Gµ̄ν = −1

2
�H̃µ̄ν ,

Gµν̄ = −1

2
�H̃µν̄ .

From the mixed sectors (holomorphic + anti-holomorphic components), one obtains the following equations
of motion from (18) for Tµ̄ν = diag (−ρ, 0, 0, 0), a perfect fluid in the rest frame

�φ̃ = κρ,

�∂iB̄ = 0,

�

(

ψ̃δij̄ − ∂i∂j̄E
)

= 0.

For the holomorphic and antiholomorphic parts, the following equations are generated 30

G00 = −∂0K,

G0i =
1

2
(∂iK + ∂0Ji) = 0,

Gij = ∂jJi = 0,

30Here the equations of motion have been written in terms of the gauge invariant combinations for convenience.
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which impose K = 0 and Ji = 0 and similarly for their complex conjugates. From the equation for K = 0,
one can derive

K = 2∂0φ̃+
1

2
∇2B̄ = 6∂0Ψ−M = 0 ⇒ 6∂0Ψ =M,

while from the equation for J̄ī = 0 the following can be gleaned

∂iJ̄ī = ∂0̄∂īB + 2∂īψ̃ − ∂ī∇2E = ∇2 (Φ− 2Ψ) + ∂0̄M = 0 ⇒ ∇2 (Φ− 2Ψ) = −∂0̄M.

Combining the two equations and using �Ψ = κρ
3 , it follows that

∇2 (Φ + Ψ) = κρ.

The above equation is in fact completely compatible with the result found in the unconstrained theory

� (Φ + Ψ) = κρ,

and represents a simplification of it. By constraining Gµν to be zero, the time dependence of the sum of the
fields in the equation for the source drops out. This means this particular combination of fields has become
static. In other words, if the two gauge invariant potentials are redefined in terms of the sum and difference
of the two fields, which are clearly also gauge invariant, then one of the fields becomes static. Hence, under
this contraint, the theory is reduced from two dynamical degrees of freedom to just one. Notice, for our
consideration of a static, pointlike mass source it does not matter which choice we make!
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