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Abstract

In this paper, we study the effects of Generalized Uncertainty Principle(GUP)

and Modified Dispersion Relations(MDRs) on the thermodynamics of ultra-relativistic

particles in early universe. We show that limitations imposed by GUP and particle

horizon on the measurement processes, lead to certain modifications of early uni-

verse thermodynamics.
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1 Introduction

Generalized Uncertainty Principle is a common feature of all promising candidates of

quantum gravity. String theory, loop quantum gravity and noncommutative geome-

try(with deeper insight to the nature of spacetime at Planck scale), all indicate the modifi-

cation of standard Heisenberg principle [1-10]. Recently it has been indicated that within

quantum gravity scenarios, a modification of dispersion relation(relation between energy

and momentum of a given particle) is unavoidable[11-13]. There are some conceptual rela-

tions between GUP and MDRs. These possible relations have been studied recently[14,15].
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These quantum gravity effects, in spite of being small, are important since they can modify

experimental results. There are several efforts to provide experimental evidence of these

small effects. For example, Amelino-Camelia et al, by investigation of potential sensitivity

of Gamma-Ray Burster observations to wave dispersion in vacuo, have outlined aspects

of an observational programme that could address possible detection of these quantum

gravity effects[16]. Amelino-Camelia and Piran have argued that Planck-scale deformation

of Lorentz symmetry can be a solution to the Ultra High Energy Cosmic Rays(UHECR)

with energies above the GZK threshold and the TeV-γ paradoxes[17]. Gambini and Pullin

have studied light propagation in the picture of semi-classical spacetime that emerges in

canonical quantum gravity in the loop representation[18]. They have argued that in such

a picture, where space-time exhibits a polymer-like structure at microscales, it is natural

to expect departures from the perfect non-dispersiveness of ordinary vacuum. They have

evaluated these departures by computing the modifications to Maxwell’s equations due

to quantum gravity, and showing that under certain circumstances, non-vanishing correc-

tions appear that depend on the helicity of propagating waves. These effects could lead to

observable cosmological predictions of the discrete nature of quantum spacetime. Then,

they have addressed to observations of non-dispersiveness in the spectra of gamma-ray

bursts at various energies to constrain the type of semi-classical state that describes the

universe. Jacobson et al have shown that threshold effects and Planck scale Lorentz viola-

tion are combined constraints from high energy astrophysics[19]. These literatures provide

possible experimental schemes for detection of small quantum gravity effects. However,

there are two extreme domains: black hole structure and early stages of the universe

evolution where these quantum gravity effects are dominant. Corrections to black hole

thermodynamics due to quantum gravitational effects of minimal length and GUP have

been studied extensively(see [20] and references therein). On the other hand, part of the

thermodynamical implications of GUP and MDR have been studied by Amelino-Camelia

et al[21] and Nozari et al[22]. Thermodynamics of early universe within standard Heisen-

berg principle has been studied by Rahvar et al[23]. Since quantum gravitational effects

are very important in early stages of the universe evolution, it is natural to investigate

early universe thermodynamics within GUP and MDRs frameworks. Here we are going

to formulate thermodynamics of ultra-relativistic particles in early universe within GUP

and MDRs frameworks. In the first step, using GUP as our primary input, we calculate

thermodynamical properties of ultra-relativistic particles in early universe. In formula-

tion of the early universe thermodynamics within GUP framework, due to limitations
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imposed on the measurement processes, two main points should be considered: first due

to casual structure of spacetime, maximum distance for causal relation is particle horizon

radius and secondly, there is a minimum momentum imposed by GUP which restricts

the minimum value of energy. In the next step, for a general gaseous system composed

of ultra-relativistic particles, we find density of states using MDRs with Bose-Einstein or

Fermi-Dirac statistics and then thermodynamics of the system will be followed. In each

step we discuss ordinary limits of our equations and we compare consequences of two

approaches.

2 Preliminaries

Emergence of the generalized uncertainty principle can be motivated and finds support

in the direct analysis of any quantum gravity scenario. This means that GUP itself is a

model independent concept. Generally, GUP can be written as[24]

δxδp ≥ h̄

2

(

1 + κ(δx)2 + η(δp)2 + γ
)

, (1)

where κ, η and γ are positive and independent of δx and δp (but may in general depend

on the expectation values of x and p). This GUP leads to a nonzero minimal uncertainty

in both position and momentum for positive κ and η[24]. If we set κ = 0 we find

δxδp ≥ h̄

2

(

1 + η(δp)2 + γ
)

. (2)

Since we are going to deal with absolutely smallest uncertainties, we set γ = 0 from now

on. So we find

δxδp ≥ h̄

2
(1 + η(δp)2). (3)

This relation leads to a nonzero minimal observable length of the order of Planck length,

(δx)min = h̄
√
η. Any position measurement in quantum gravity has at least (δx)min as

its lower limit of position uncertainty. This relation has an immediate consequence for

the rest of statistical mechanics: it modifies the fundamental volume ω0 of accessible

phase space for representative points. In ordinary statistical mechanics, it is impossible

to define the position of a representative point in the phase space of the given system

more accurately than the situation which is given by (δq δp)min ≥ h̄. In another words,

around any point (q, p) of the (two dimensional) phase space, there exists an area of the

3



order h̄ which the position of the representative point cannot be pin-pointed. In ordinary

statistical mechanics we have the following definition of fundamental volume

ω0 = (δq δp)3N . (4)

Since in quantum gravity era δp ∼ p, we can interpret equation (3) as a generalization of

h̄,

h̄eff = h̄
(

1 + ηp2).

Therefore, we find the following generalization of the fundamental volume

(ω0)eff = [h̄(1 + ηp2)]3N ≡ (h̄eff)
3N . (5)

Since the total number of microstates is given by Ω = ω
(ω0)eff

(here ω is the volume of the

accessible phase space), we see that GUP leads to a reduction of accessible microstates

and therefore a reduction of entropy. In other words, when we approaches Planck scale

regime with high energy and momentum particles, the volume of the fundamental cell

increases in such away that eventually the number of microstates tends to unity and

therefore entropy vanishes. This is a novel prediction of quantum gravity. Recently we

have calculated microcanonical entropy of an ideal gaseous system and we have observed

an unusual thermodynamics of systems in very short distances or equivalently very high

energy regime[22].

Another consequence of GUP in the form of relation (3), has been formulated by Kempf

et al[24]. They have shown that within the momentum representation, the generalization

of the scalar products reads

〈ψ|φ〉 =
∫ dp

1 + ηp2
ψ∗(p)φ(p), (6)

where φ and ψ are momentum space state functions. For ultra-relativistic particles with

E = pc, we should consider the following generalization

dE −→ dE

1 + ηE2
, (7)

where we have set c = 1.

On the other hand, if we set η = 0 in (1), we find

δxδp ≥ h̄

2

(

1 + κ(δx)2 + γ
)

, (8)
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where for positive κ leads to nonzero minimal uncertainty in momentum. This statement

leads to a space-dependent generalization of h̄. This type of generalization has nothing to

do with dynamics and there is no explicit physical interpretation of it at least up to now.

From another perspective, in scenarios which consider spacetime foam intuition in the

study of quantum gravity phenomena, emergence of modified dispersion relations takes

place naturally[25]. As a consequence, wave dispersion in the spacetime foam might

resemble wave dispersion in other media. Since Planck length fundamentally set the

minimum allowed value for wavelengths, a modified dispersion relation can also be fa-

vored. Recently it has been shown that a modified energy-momentum dispersion relation

can also be introduced as an observer-independent law[26]. In this case, the Planckian

minimum-wavelength hypothesis can be introduced as a physical law valid in every frame.

Therefore, the analysis of some quantum-gravity scenarios has shown some explicit mech-

anisms for the emergence of modified dispersion relations. For example, in the framework

of noncommutative geometry and loop quantum gravity approaches this modified disper-

sion relations have been motivated(see for example[21] and references therein). In most

cases one is led to consider a dispersion relation of the type(note that from now on we set

c = h̄ = kB = 1)

(~p)2 = f(E,m; lp) ≃ E2 − µ2 + α1lpE
3 + α2l

2
pE

4 +O
(

l3pE
5
)

(9)

where f is the function that gives the exact dispersion relation, and on the right-hand

side we have assumed the applicability of a Taylor-series expansion for E ≪ 1/lp. The

coefficients αi can take different values in different quantum-gravity proposals. Note that

m is the rest energy of the particle and the mass parameter µ on the right-hand side is

directly related to the rest energy, but µ 6= m if the αi do not all vanish. Since we are

working in Planck regime where the rest mass is much smaller than the particle kinetic

energy, there is no risk of confusing between m and µ. While in the parametrization of (3)

we have included a possible correction term suppressed only by one power of the Planck

length, in GUP such a linear-in-lp term is assumed not to be present. For the MDR a large

number of alternative formulations, including some with the linear-in-lp term, are being

considered, as they find support in different approaches to the quantum-gravity problem,

whereas all the discussions of a GUP assume that the leading-order correction should

be proportional to the square of lp (as has been indicated by Amelino-Camelia et al[21],

linear-in-lp term in MDR has no support in string theory analysis of black holes entropy-

area relation and therefore it seems that this term should not be present in MDR. Recently
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we have shown that coefficients of all odd power of E in MDR should be zero[15]).

Within quantum field theory, the relation between particle localization and its energy

is given by E ≥ 1
δx
, where δx is particle position uncertainty. It is obvious that due

to both GUP and MDR this relation should be modified. In a simple analysis based

on the familiar derivation of the relation E ≥ 1
δx
[27], one can obtain the corresponding

generalized relation. Since we need this generalization in forthcoming arguments, we give

a brief outline of its derivation here. We focus on the case of a particle of mass M at

rest, whose position is being measured by a procedure involving a collision with a photon

of energy Eγ and momentum pγ. According to Heisenberg’s uncertainty principle, in

order to measure the particle position with precision δx, one should use a photon with

momentum uncertainty δpγ ≥ 1
δx
. Following the standard argument[28], one takes this

δpγ ≥ 1
δx

relation and converts it into the relation δEγ ≥ 1
δx

using the special relativistic

dispersion relation. Finally δEγ ≥ 1
δx

is converted into the relation M ≥ 1
δx

because the

measurement procedure requires δE ≤ M , in order to ensure that the relevant energy

uncertainties are not large enough to allow the production of additional copies of the

particle whose position is being measured. If indeed our quantum-gravity scenario hosts

a Planck-scale modification of the dispersion relation of the form (9) then clearly the

relation between δpγ and δEγ should be re-written as follows

δpγ ≃
[

1 + α1lpE + 3(
α2

2
− α2

1

8
)l2pE

2
]

δEγ. (10)

This relation will modify density of states for statistical systems. Note that one can use

GUP to find such relation between δpγ and δEγ[15].

3 GUP and Early Universe Thermodynamics

Now we are going to calculate thermodynamical properties of ultra-relativistic particles

in early universe, using the generalized uncertainty principle. We consider the following

GUP as our primary input,

δxδp ≥ π

(

1 + ξ2
(δx)2

l2p

)

, (11)

where ξ is a dimensionless constant. Consider the early stages of the universe evolution.

Analogue to a particle inside a box, in the case of the early universe one can consider a

causal box (i.e. particle horizon) which any observer in the universe has to do measure-

ments within this scale[29]. In the language of wave mechanics, if Ψ denotes the wave
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function of a given particle, the probability of finding this particle by an observer outside

its horizon is zero, i. e. |Ψ(x > horizon)|2 = 0. From the theory of relativity, measure-

ment of a stick length can be done by sending simultaneous signals to the observer from

the two endpoints, where for the scales larger than the causal size, those signals need more

than the age of the universe to be received. Looking back to the history of the universe,

the particle horizon after the Planck era grows as H−1, but inflates to a huge size by the

beginning of inflationary epoch. Here H is Hubble parameter. In the pre-inflationary

epoch, the maximum uncertainty in the location of a particle, δx = H−1 results in an

uncertainty in the momentum of the particle which is given by

δp ≥ πξ2

l2pH
+ πH. (12)

This leads to a minimum uncertainty in momentum as

(δp)min =
πξ2

l2pH
+ πH. (13)

Therefore, we can conclude that(assuming that p ∼ δp)

pmin =
πξ2

l2pH
+ πH, (14)

which leads to

Emin =
√
3
(πξ2

l2pH
+ πH

)

, (15)

for ultra-relativistic particles in three space dimensions. Now, suppose that

En = nϑ, (16)

where ϑ is given by

ϑ =
πξ2

l2pH
+ πH. (17)

To obtain complete thermodynamics of the system, we calculate partition function of

the system and then we use standard thermodynamical relations. In classical statistical

mechanics, partition function for a system composed of ultra-relativistic noninteracting

monatomic particles (Fermions or Bosons) is given by

lnZ = ±g
∫

∞

0

4πn2

8
ln(1± e−βEn)dn. (18)
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In our case, due to limitation imposed by GUP and particle horizon, we should consider

the following generalization

lnZ = ± gπ

2ϑ3

∫

∞

Emin

E2

1 + ηE2
ln(1± e−βE)dE, (19)

where we have used relations (7), (15) and (16) respectively. By definition, the entropy

of the system is given by

S = − 1

V

∂F

∂T
, (20)

where F is the free energy of the system defined as

F = − 1

β
lnZ. (21)

So the entropy of the system can be written as

S =
1

V

[

± gπ

2ϑ3

∫

∞

Emin

E2

1 + ηE2
ln(1± e−βE)dE +

gπβ

2ϑ3

∫

∞

Emin

E3

1 + ηE2

dE

eβE ± 1

]

. (22)

For ultra-relativistic fermions this relation leads to the following expression

Sf =
g

2π2(1 +D)

[

7

90

π4

β3
− 31

210

ηπ6

β5
+
1016

1680

η2π8

β7
−E3

min

(

1

3
−ηE

2
min

5
+
η2E4

min

7

)

ln(1+e−βEmin)

−4

3
βI3 +

6

5
ηβI5 −

8

7
η2βI7 + ...

]

, (23)

where for simplicity we have defined

Ij =
∫ Emin

0

EjdE

eβE + 1
.

While for bosons we find

Sb =
g

2π2(1 +D)

[

4

45

π4

β3
− 48

315

ηπ6

β5
+

64

105

η2π8

β7
+E3

min

(

1

3
− ηE2

min

5
+
η2E4

min

7

)

ln(1−e−βEmin)

−4

3
βJ3 +

6

5
ηβJ5 −

8

7
η2βJ7 + ...

]

, (24)

where

Jj =
∫ Emin

0

EjdE

eβE − 1
.
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In these equations D is defined as

D = (
A3

B3
+ 3

A2

B2
+ 3

A

B
) and ϑ = A+B

with A = πξ2

l2pH
and B = πH . Note that both of the equations (23) and (24) are well

behavior in high and low temperature limits. In the standard situation, we have ξ = 0,

η = 0 and Emin = 0. So we find the well-known and standard results for entropy of

the corresponding ultra-relativistic fermionic or bosonic systems. From (22) we find the

following expression for standard entropy

S =
4

3

βg

2π2

∫

∞

0

E3dE

eβE ± 1
, (25)

which leads to

Sf =
g

2π2

7

90

π4

β3
, (26)

and

Sb =
g

2π2

4

45

π4

β3
, (27)

for fermions and bosons respectively.

Now the pressure of the ultra-relativistic gas is given by P = 1
βV

lnZ. For fermions and

bosons we find respectively

Pf =
g

2π2(1 +D)β

[

7

360

π4

β3
− 31

1260

ηπ6

β5
+

127

1680

η2π8

β7
−E3

min

(

1

3
−ηE

2
min

5
+η2

E4
min

7

)

ln(1+e−βEmin)

−β
3
I3 +

β

5
ηI5 −

β

7
η2I7 + ...

]

, (28)

and

Pb =
g

2π2(1 +D)β

[

1

45

π4

β3
− 8

315

ηπ6

β5
+

8

105

η2π8

β7
+E3

min

(

1

3
−ηE

2
min

5
+η2

E4
min

7

)

ln(1−e−βEmin)

−β
3
J3 +

β

5
ηJ5 −

β

7
η2J7 + ...

]

. (29)

In the standard situation, we find the following well-known result

P =
g

6π2

∫

∞

0

E3dE

eβE ± 1
, (30)
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which leads to

Pf =
g

2π2

7

360

π4

β4
, (31)

and

Pb =
g

2π2

1

45

π4

β4
, (32)

for fermions and bosons respectively.

The specific heat of the system which is defined as

CV = T

(

∂S

∂T

)

V

, (33)

can be written in the following closed form

CV =
gβ2

2π2(1 +D)

∫

∞

Emin

E4

1 + ηE2

dE

e−βE(eβE ± 1)2
. (34)

One can obtain explicit form of CV for fermions and bosons using relation (33), (23) and

(24). A simple calculation gives

CV f =
g

2π2(1 +D)

[

21

90

π4

β3
− 155

210

ηπ6

β5
+

7112

1680

η2π8

β7
− βE4

min

eβEmin + 1

(

1

3
− ηE2

min

5
+
η2E4

min

7

)

+
4

3
βI3 −

6

5
ηβI5 +

8

7
η2βI7 −

4

3

dI3
dT

+
6

5
η
dI5
dT

− 8

7
η2
dI7
dT

+ ...

]

, (35)

and

CV b =
g

2π2(1 +D)

[

12

45

π4

β3
− 240

315

ηπ6

β5
+

448

105

η2π8

β7
+

βE4
min

eβEmin − 1

(

1

3
− ηE2

min

5
+
η2E4

min

7

)

+
4

3
βJ3 −

6

5
ηβJ5 +

8

7
η2βJ7 −

4

3

dJ3
dT

+
6

5
η
dJ5
dT

− 8

7
η2
dJ7
dT

+ ...

]

, (36)

for specific heat of fermions and bosons respectively. In the standard case we find

CV f = 3× g

2π2

7

90

π4

β3
= 3Sf , (37)

and

CV b = 3× g

2π2

4

45

π4

β3
= 3Sb. (38)

Figure 1 shows the values of entropy in different situations. In standard thermodynamics

of ultra-relativistic fermionic or bosonic gas, the entropy of the system tends to zero in
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T0 = 0. This situation is shown in Figure 1, (a) and (b). Within GUP framework, entropy

tends to zero in a nonzero temperature, that is, for T > T0. This is a result of quantum

fluctuation of spacetime itself. Figure 2 shows the corresponding behavior of pressure as

a function of temperature. Note that these figures are plotted in arbitrary units and they

show only general behaviors of the functions. Figure 3 shows the behavior of specific heat

of the system in various conditions. In GUP framework, the general behavior of CV has

considerable departure from its standard counterpart in high temperature regime.

4 MDR and Early Universe Thermodynamics

Now we are going to formulate early universe thermodynamics within MDR framework.

We consider a gaseous system composed of ultra-relativistic monatomic, non-interacting

particles. First we derive the density of states. Consider a cubical box with edges of length

L (and volume V = L3) consisting black body radiation(photons). The wavelengths of

the photons are subject to the boundary condition 1
λ
= n

2L
, where n is a positive integer.

This condition implies, assuming that the de Broglie relation is left unchanged, that the

photons have (space-)momenta that take values p = n
2L
. Thus momentum space is divided

into cells of volume Vp =
(

1
2L

)3
= 1

8V
. From this point, it follows that the number of modes

with momentum in the interval [p, p+ dp] is given by

g(p)dp = 8πV p2dp (39)

Assuming a MDR of the type parameterized in (9) one then finds that (m = 0 for photons)

p ≃ E
[

1 +
α1

2
lpE + (

α2

2
− α2

1

8
)l2pE

2
]

(40)

and

dp ≃
[

1 + α1lpE + (
3

2
α2 −

3

8
α2
1)l

2
pE

2
]

dE (41)

Using this relation in (39), one obtains

g(E)dE = 8πV
[

1 + 2α1lpE + 5
(1

2
α2 +

1

8
α2
1

)

l2pE
2
]

E2dE. (42)

This is density of states which we use in our calculations. Note that we have not set

α1 = 0 to ensure generality of our discussions, but we will discuss corresponding situation

at the end of our calculations.
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To obtain thermodynamics of the system under consideration, we start with the partition

function of fermions and bosons,

lnZ = ±
∫

∞

Emin

g(E) ln(1± e−βE)dE, (43)

where + and − stand for fermions and bosons respectively and β = 1/T since kB = 1.

Using equation(42) in the following form

g(E)dE = 8πV (1 + aE + bE2)E2dE, (44)

where for simplicity we have defined a = 2α1lp and b = 5
(

1
2
α2+

1
8
α2
1

)

l2p, one can compute

the integral of equation(43) to find the following expression for entropy of fermions and

bosons

S = ± 1

V

∫

∞

Emin

g(E) ln(1± e−βE)dE +
β

V

∫

∞

Emin

g(E)EdE

eβE ± 1
. (45)

This relation can be written as follows

S = ± 1

V

∫

∞

0
g(E) ln(1± e−βE)dE +

β

V

∫

∞

0

g(E)EdE

eβE ± 1

∓ 1

V

∫ Emin

0
g(E) ln(1± e−βE)dE − β

V

∫ Emin

0

g(E)EdE

eβE ± 1
. (46)

By calculating this integral, we find for fermions and bosons respectively

Sf = 8π

[

7

90

π4

β3
+

225

8

aζ(5)

β4
+

31

210

bπ6

β5
− E3

min

(

1

3
+
aEmin

4
+
bE2

min

5

)

ln(1 + e−βEmin)

−4

3
βI3 −

5

4
βaI4 −

6

5
βbI5 + ...

]

(47)

and

Sb = 8π

[

4

45

π4

β3
+

30aζ(5)

β4
+

48

315

bπ6

β5
+ E3

min

(

1

3
+
aEmin

4
+
bE2

min

5

)

ln(1− e−βEmin)

−4

3
βJ3 −

5

4
βaJ4 −

6

5
βbJ5 + ...

]

. (48)

One may ask about the relation between these two results and corresponding results of

GUP, that is, relations (23) and (24). Although these results seem to be different in

their β dependence, but note that if we set α1 = 0(which is reasonable regarding the

argument presented in page 5), we find a = 0 and then β dependence of our findings will

12



coincide with each other. The only difference which remains is the differences between

numerical factors. This argument shows that essentially the results of GUP and MDRs for

thermodynamics of the early universe do not differ with each other in their temperature

dependence and overall behaviors.

In the standard situation, we have a = b = 0 and Emin = 0, so we find

S =
4

3
(8πβ)

∫

∞

0

E3dE

eβE ± 1
. (49)

For entropy of fermions and bosons we find respectively

Sf = 8π
7

90

π4

β3
, (50)

and

Sb = 8π
4

45

π4

β3
. (51)

In the presence of MDR, the pressure of corresponding systems are

Pf =
8π

β

[

7

360

π4

β3
+

45

8

aζ(5)

β4
+

31

1260

bπ6

β5
−E3

min

(

1

3
+ a

Emin

4
+ b

E5
min

5

)

ln(1 + e−βEmin)

−β
3
I3 −

β

4
aI4 −

β

5
bI5 + ...

]

, (52)

Pb =
8π

β

[

1

45

π4

β3
+ 6

aζ(5)

β4
+

8

315

bπ6

β5
+ E3

min

(

1

3
+ a

Emin

4
+ b

E5
min

5

)

ln(1 − e−βEmin)

−β
3
J3 −

β

4
aJ4 −

β

5
bJ5 + ...

]

, (53)

for fermions and bosons respectively. In the standard situation we find the following

well-known relation

P =
8π

3

∫

∞

0

E3dE

eβE ± 1
, (54)

which for fermions and bosons leads to

Pf = 8π
7

360

π4

β4
, (55)

and

Pb = 8π
1

45

π4

β4
(56)
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respectively.

The specific heat of the system can be written in the following closed form

CV =
β2

V

∫

∞

Emin

g(E)E2dE

e−βE(eβE ± 1)2
. (57)

One can use relations (33), (47) and (48) to find the following explicit results for fermions

and bosons respectively

CV f = 8π

[

21

90

π4

β3
+

900

8

aζ(5)

β4
+

155

210

bπ6

β5
− βE4

min

eβEmin + 1

(

1

3
+
aEmin

4
+
bE2

min

5

)

+
4

3
βI3 +

5

4
βaI4 +

6

5
βbI5 −

4

3

dI3
dT

− 5

4
a
dI4
dT

− 6

5
b
dI5
dT

+ ...

]

, (58)

and

CV b = 8π

[

12

45

π4

β3
+

120aζ(5)

β4
+

240

315

bπ6

β5
+

βE4
min

eβEmin − 1

(

1

3
+
aEmin

4
+
bE2

min

5

)

+
4

3
βJ3 +

5

4
βaJ4 +

6

5
βbJ5 −

4

3

dJ3
dT

− 5

4
a
dJ4
dT

− 6

5
b
dJ5
dT

+ ...

]

. (59)

In the standard case we find

CV f = 3× 8π
7

90

π4

β3
= 3Sf , (60)

and

CV b = 3× 8π
4

45

π4

β3
= 3Sb (61)

respectively.

As has been indicated, there are severe constraints on the functional form of MDR which

these constraint are motivated when one compares black hole entropy-area relation in

different points of view[15,21]. In this case we should set α1 = 0 which leads to a = 0.

We find from (47) and (48) the following expressions for entropy of fermions and bosons

respectively

Sf = 8π

[

7

90

π4

β3
+

31

210

b′π6

β5
− E3

min

(

1

3
+ +

b′E2
min

5

)

ln(1 + e−βEmin)

−4

3
βI3 −

6

5
βb′I5 + ...

]

, (62)
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and

Sb = 8π

[

4

45

π4

β3
+

48

315

b′π6

β5
+ E3

min

(

1

3
+
b′E2

min

5

)

ln(1− e−βEmin)

−4

3
βJ3 −

6

5
βb′J5 + ...

]

, (63)

where b′ = 5
2
α2l

2
p. These statements for partition function are more realistic since black

hole thermodynamics within MDRs when is compared with exact solution of string the-

ory, suggest the vanishing of α1.

It is important to note that the formalism presented in this section is not restricted to

early universe. Actually, it can be applied to any statistical system composed of ultra-

relativistic monatomic noninteracting particles which has a minimum accessible energy .

The Possible relation between GUP and MDRs itself is under investigation[14,15]. Gener-

ally these two features of quantum gravity scenarios are not equivalent, but as Hossenfelder

has shown, they can be related to each other[14](see also [15]). As a result, it is natural to

expect that under special circumstances, our results for early universe thermodynamics

within GUP and MDRs should transform to each other. This is a transformation be-

tween coefficients of our equations and overall behaviors of thermodynamical quantities,

specially their temperature dependence are similar.

5 Summary

GUP and MDRs have found strong supports from string theory, noncommutative geom-

etry and loop quantum gravity. There are many implications, originated from GUP and

MDRs, for the rest of the physics. From a statistical mechanics point of view, GUP

changes the volume of the fundamental cell of the phase space in a momentum dependent

manner. On the other hand, MDR leads to a modification of density of states. These

quantum gravity features have novel implications for statistical properties of thermody-

namical systems. Here we have studied thermodynamics of early universe within both

GUP and MDRs. We have considered early universe as a statistical system composed of

ultra-relativistic particles. Since both particle horizon distance and GUP impose severe

constraint on measurement processes, the statistical mechanics of the system should be

modified to contain these constraint. Since GUP and MDRs are quantum gravitation

effects, the modified thermodynamics within GUP and MDRs tends to standard ther-

modynamics in classical limits. There are severe constraints on the functional form of

15



MDRs from string theory considerations. When we consider these constraints, the results

of MDRs and GUP for thermodynamics of early universe tends to each other in their

general temperature dependence and they differs only in their numerical factors. This

fact may be interpreted so that GUP and MDRs essentially are not different concepts of

quantum gravity proposal. Although the exact relation between GUP and MDRs is not

known yet, our formalism of early universe shows the very close relation between these

two aspects of quantum gravity.

In standard statistical mechanics of bosonic and fermionic gases, the entropy of the sys-

tem tends to zero in T0 = 0. As our equations and corresponding numerical result show,

within GUP framework entropy of the system tends to zero in a temperature larger than

zero( T > T0). This is a consequence of the relation (5). The volume of the fundamen-

tal cell of phase space increases due to GUP. Note that MDRs give entropy-temperature

relation which has no difference with GUP result in its general behavior. Figure 2 shows

the pressure of the system versus temperature. Pressure tends to zero in a tempera-

ture larger than T0 = 0. The same behavior is repeated by specific heat of the system.

So, our analysis shows an unusual thermodynamics for statistical systems in quantum

gravity eras. This unusual behaviors have been seen in other context such as black hole

thermodynamics[30,31].
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Figure 1: Entropy of ultra-relativistic monoatomic gaseous system for (a)standard bosonic gas

(b) standard fermionic gas (c) bosonic gas within GUP and (d) fermionic gas within GUP.
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Figure 2: Pressure of ultra-relativistic monoatomic gaseous system for (a)standard bosonic gas

(b) standard fermionic gas (c) bosonic and fermionic gas within GUP. The difference between

bosonic and fermionic gasses in this case is not considerable.
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Figure 3: Heat Capacity of ultra-relativistic monoatomic gaseous system for (a)standard bosonic

gas (b) standard fermionic gas (c) bosonic gas within GUP and (d) fermionic gas within GUP.
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