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MINKOWSKI CONTENT AND LOCAL MINKOWSKI CONTENT

FOR A CLASS OF SELF-CONFORMAL SETS

UTA FREIBERG AND SABRINA KOMBRINK

Abstract. We investigate (local) Minkowski measurability of C1+α images of
self-similar sets. We show that (local) Minkowski measurability of a self-similar
set K implies (local) Minkowski measurability of its image F and provide
an explicit formula for the (local) Minkowski content of F in this case. A
counterexample is presented which shows that the converse is not necessarily
true. That is, F can be Minkowski measurable although K is not. However,
we obtain that an average version of the (local) Minkowski content of both
K and F always exists and also provide an explicit formula for the relation
between the (local) average Minkowski contents of K and F .

1. Introduction and statement of results

The Minkowski content is a useful tool for describing the geometric structure of a
fractal object. It can be viewed as a beneficial complement to the notion of dimen-
sion for the following reason. It is well known that fractal sets of the same “fractal”
dimension (such as Minkowski or Hausdorff dimension) can differ significantly in
their structure. For example, consider the following two Cantor sets: Subdivide the
unit interval [0, 1] into seven intervals of same lengths. For the first Cantor set C1

keep the first, third, fifth and seventh interval from the left and repeat the same
procedure with the remaining intervals. For the second Cantor set C2 keep at each
step the two leftmost and the two rightmost intervals. Then the Minkowski as well
as the Hausdorff dimension of C1 and C2 are equal, although the two sets differ
significantly in their gap structure. The Minkowski content is capable of detecting
this structural difference, as is discussed in [16, 17], and was proposed therein as a
measure of lacunarity for fractal sets. The word lacunarity originates from lacuna

which is Latin for gap. According to [16] “a fractal is to be called lacunar if its
gaps tend to be large, in the sense that they include large intervals (discs, or balls).”
Thus, C2 is more lacunar than C1. This is also reflected by the fact that the average
Minkowski content of C1 is greater than that of C2 (see Example 1.13).

Besides the geometric interpretation, results on the existence of the Minkowski con-
tent play an important role with respect to the Weyl-Berry conjecture concerning
the asymptotic distribution of the eigenvalues of the Laplacian on domains with
fractal boundaries. More precisely, the second term asymptotic is expressed in
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terms of the Minkowski dimension and the Minkowski content of the boundary of
the domain (see Section 4 in [5],[11, 15] and references given there).

Another motivation for studying the Minkowski content of fractal sets arises from
noncommutative geometry. In Connes’ seminal book [3] the notion of a noncommu-
tative fractal geometry is developed. There, it is shown that the natural analogue
of the volume of a compact smooth Riemannian spin manifold for a fractal set in
R is that of the Minkowski content. This idea is also reflected in the works [7, 9, 19].

There are various works available concerning the existence of the Minkowski content.
A complete characterisation of Minkowski measurability of fractal strings has been
obtained in [12, 14]. These works, as well as [5], lead to explicit formulae for
the Minkowski content of self-similar subsets of R satisfying the open set condition
(OSC). Moreover, it is shown that a self-similar subset of R which is of zero Lebesgue
measure is Minkowski measurable if and only if it is nonlattice in the sense of
Definition 1.9 (see [12] and references within). In higher dimensions, Gatzouras
[8] obtains Minkowski measurability of nonlattice self-similar sets satisfying the
OSC and gains explicit formulae for their Minkowski content. Assuming certain
conditions on the geometric structure of the underlying set, alternative formulae
are obtained in [4, 13] for the nonlattice case. Furthermore, there it is shown that
the Minkowski content does not exist in the lattice situation. For non-Minkowski
measurable sets it is worthwhile considering the average Minkowski content, which
is defined to be the logarithmic Cesàro average (see Definition 1.4) and has been
proven to exist for any self-similar set satisfying the OSC in [8].

In [21], the results of [8] are generalised in that a localised version of the (average)
Minkowski content is examined. This localised version of the (average) Minkowski
content, which we call the local (average) Minkowski content (see Definition 1.5),
is one of the (average) fractal curvature measures which are introduced in [21] and
studied for (random) self-similar sets in [21, 22, 23]. The intention hehind introduc-
ing fractal curvature measures was to develop an alternative notion of curvature,
since the classical notions do not seem to be appropriate for fractal sets. Moreover,
the introduction of fractal curvature measures was motivated by finding geometric
characteristics for fractal sets that supplement the notions of dimension.

In this paper we are interested in statements on the existence of the (average)
Minkowski content –and its local version– of sets which are more general than
self-similar sets, namely self-conformal sets. Self-conformal sets arise as invariant
sets of iterated function systems consisting of contracting conformal maps (see for
example [18]). Some results have already been obtained for these kind of sets. In
[10] it is shown that the (local) averageMinkowski content of a self-conformal subset
of R which satisfies the OSC exists and can be calculated explicitly. Moreover, in
the nonlattice case, existence and an explicit formula for the (local) Minkowski
content have been obtained (we refer to [10] for the explanation what it means for
a self-conformal set to be nonlattice and for the explicit formula for the (average)
Minkowski content –and its local version). In this present paper, we extend these
examinations to higher dimensions by considering self-conformal sets which arise
as images under C1+α-diffeomorphisms of self-similar sets. To be more precise, we
consider the following setting.
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Setting 1.1. Let (Rd, ρ) denote the d-dimensional Euclidean space and for a com-
pact set ∅ 6= Y ⊂ R

d and ε > 0 define Yε := {x ∈ R
d | ρ(Y, x) ≤ ε} to be the

ε-parallel neighbourhood of Y . Let Φ := {φ1, . . . , φN} denote an iterated function
system (IFS) consisting of contracting similarities φi : R

d → R
d, i ∈ {1, . . . , N},

where N ≥ 2. We require the contraction ratios r1, . . . , rN of φ1, . . . , φN to lie in
(0, 1) and denote by K the unique nonempty compact invariant set of Φ. We assume
that Φ satisfies the strong separation condition (SSC), that is, φiK ∩ φjK = ∅ for
each i 6= j ∈ {1, . . . , N}. Note that the SSC implies the OSC, that is, there exists a
bounded open nonempty set O ⊂ R

d such that φiO ⊆ O for all i ∈ {1, . . . , N} and
φiO ∩ φjO = ∅ for i 6= j ∈ {1, . . . , N}. Associated with such an IFS is the code
space Σ := AN, where A := {1, . . . , N} denotes the alphabet consisting of N sym-
bols. The code space gives a natural encoding of the invariant set K via the code
map π : Σ → K, which maps ω1ω2 · · · ∈ Σ to the unique point in the intersection⋂

n∈N
φω1···ωnK, where φω1···ωn

:= φω1 ◦ · · · ◦ φωn . We also require a conformal dif-

feomorphism g : U → R
d defined on an open domain U containing the 1/2-parallel

neighbourhood K1/2 of K, where conformal means angle preserving. Recall that the
Jacobian Dg of a conformal map g at a point x ∈ U can be decomposed into an
orthogonal matrix O(x) and a scalar f(x), namely

Dg(x) = f(x) ·O(x)

(see for example Chapter A.3 in [1]). The length scaling ratio of g at a point x will
be denoted by |g′(x)| := |f(x)|. We assume that |g′| is α-Hölder continuous with
α > 0 and set F := g(K). Then F satisfies

F =
N⋃

i=1

gφig
−1(F ).

The maps ψi := gφig
−1 for i ∈ A are not necessarily contractions. However, the α-

Hölder continuity of |g′| implies that an iterate Ψ̃ of the system Ψ := {ψ1, . . . , ψN}

consists solely of contractions. Indeed, Ψ̃ is an IFS and F is its unique nonempty

compact invariant set. Note that the IFS Ψ̃ also satisfies the SSC, since g is a
diffeomorphism.

Crucial for the definition of the (average) Minkowski content –and its local version–
is the notion of the Minkowski dimension.

Definition 1.2 (Minkowski dimension). For a nonempty compact set Y ⊂ R
d the

upper and lower Minkowski dimensions are respectively defined to be

dimM (Y ) := d− lim inf
εց0

lnλd(Yε)

ln ε
and dimM (Y ) := d− lim sup

εց0

lnλd(Yε)

ln ε
.

Here, λd denotes the d-dimensional Lebesgue measure. In case the upper and lower
Minkowski dimensions coincide, we call the common value theMinkowski dimension
of Y and denote it by dimM (Y ) =: δ.

Remark 1.3. The (upper and lower) Minkowski dimension coincides with the (upper
and lower) box counting dimension (see Proposition 3.2 in [6]).

Definition 1.4 ((Average) Minkowski content, Minkowski measurability). Let Y ⊂
R

d denote a nonempty compact set whose Minkowski dimension δ exists.
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(i) The average Minkowski content of Y is defined by

M̃(Y ) := lim
T→0

|ln T |−1

∫ 1

T

εδ−dλd(Yε)
dε

ε
,

provided the limit exists.
(ii) The upper and lower Minkowski contents of Y are respectively defined to

be

M(Y ) := lim sup
εց0

εδ−dλd(Yε) and M(Y ) := lim inf
εց0

εδ−dλd(Yε).

If M(Y ) = M(Y ), then we call the common value the Minkowski con-
tent of Y and denote it by M(Y ). If M(Y ) exists, then Y is said to be
Minkowski measurable.

Often, not only the global structure of a set is of interest but its local structure
is too, since it contains more information on the ‘texture’ of the set itself. This
information is reflected by the local (average) Minkowski content, which gives a
refinement of the (average) Minkowski content.

Definition 1.5 (Local (average)Minkowski content). Let Y ⊂ R
d denote a nonempty

compact set whose Minkowski dimension δ exists.

(i) Provided the weak limit of finite Borel measures exists, we define

M̃(Y, ·) := w-lim
T→0

|lnT |−1

∫ 1

T

εδ−d−1λd(Yε ∩ ·)dε

to be the local average Minkowski content of Y .
(ii) The local Minkowski content M(Y, ·) is defined, whenever this weak limit

exists, to be the weak limit of finite Borel measures

M(Y, ·) := w-lim
ε→0

εδ−dλd(Yε ∩ ·).

It is well-known that the Minkowski dimension of self-similar sets satisfying the SSC
exists, that it is equal to the Hausdorff dimension and that it is given by the unique

solution s of the equation
∑N

i=1 r
s
i = 1 (see Theorem 9.3 in [6]). Moreover, F has

the same Minkowski dimension as K, since g is a bi-Lipschitz map (see Corollary
2.4 together with Theorem 9.3 in [6]). Thus, the terms from Definitions 1.4 and 1.5
are defined for such sets. This allows us to formulate our results.

Theorem 1.6 ((Average) Minkowski content). With the notation of Setting 1.1,
let δ denote the Minkowski dimension of K (and hence F ). Let µδ denote the
normalised δ-dimensional Hausdorff measure on K, that is, µδ = Hδ|K/Hδ(K),
where Hδ denotes the δ-dimensional Hausdorff measure. Then the following hold.

(i) The average Minkowski contents of K and F always exist and are positive
and finite. Moreover, they satisfy the relation

M̃(F ) = M̃(K) ·

∫

K

|g′|δdµδ.

(ii) F is Minkowski measurable if K is Minkowski measurable. In this case we

have M(K) = M̃(K) and M(F ) = M̃(F ).
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Theorem 1.7 (Local (average) Minkowski content). With the notation of Setting
1.1, let δ denote the Minkowski dimension of K (and hence F ) and define µδ as in
Theorem 1.6. Then the following hold.

(i) The local average Minkowski contents of K and F always exist. Moreover,

M̃(F, ·) is absolutely continuous with respect to the push forward measure

g⋆M̃(K, ·) and their Radon-Nikodym derivative is

dM̃(F, ·)

d
(
g⋆M̃(K, ·)

) = |g′ ◦ g−1|δ.

(ii) If the local Minkowski content of K exists, then the local Minkowski content

of F exists. Moreover, M(K, ·) = M̃(K, ·) and M(F, ·) = M̃(F, ·).

For subsets of R it was shown in [10] that the converse of Theorem 1.7(ii) also holds.
Hence the local Minkowski content of F exists if and only if the local Minkowski
content of K exists. However, it is important to remark that the converse of
Theorem 1.6(ii) is not true in general. To illustrate this, we present the following
example, which is originally given as Example 2.15(iii) in [10].

Example 1.8 (Kesseböhmer/Kombrink). LetK ⊂ R denote the middle third Cantor
set and let µ denote the normalised (ln 2/ ln 3)-dimensional Hausdorff measure on
K. Let f : R → R denote the Devil’s staircase function given by f(r) := µ((−∞, r]),
define the function g : R → R by g(x) :=

∫ x

−∞(f(y) + 1)− ln 3/ ln 2dy and set F :=

g(K). Then F is Minkowski measurable although K is not.

Next, we present some results from [8, 21], which in tandem with Theorems 1.6
and 1.7 allow us to deduce explicit formulae for the (average) Minkowski content
–and its local version– for C1+α-diffeomorphic images of self-similar sets. For the
statement of these theorems, we require the following definition.

Definition 1.9 ((Non)lattice, scaling function). Fix the notation of Setting 1.1.
The iterated function system Φ is said to be lattice if there exists an a > 0 such
that ln ri ∈ aZ for all i ∈ A. If a > 0 is maximal with this property, then Φ
is called a-lattice. If, on the other hand, no such a > 0 exists, then Φ is called
nonlattice. We use the terms lattice and nonlattice also for the invariant set K, if
the associated IFS Φ is lattice or nonlattice respectively. Furthermore, the scaling
function Rd(K, ·) : (0,∞) → R of K is defined by setting

Rd(K, ε) := λd(Kε)−
N∑

i=1

1(0,ri](ε)λ
d((φiK)ε).

We remark that for ε > 0 small enough, Rd(K, ε) is equal to −λd(
⋃

i6=j∈A(φiK)ε ∩

(φjK)ε) and thus describes the volume of the overlap of sets of the form (φiK)ε for
i ∈ A. (This follows from an inclusion-exclusion argument.)

Theorem 1.10 (Gatzouras). Assume that the conditions of Setting 1.1 are satisfied.
Let δ denote the Minkowski dimension of the self-similar set K. Then the following
hold.



6 UTA FREIBERG AND SABRINA KOMBRINK

(i) The average Minkowski content M̃(K) of K exists, is positive and given
by

M̃(K) = −

(
N∑

i=1

rδi ln ri

)−1 ∫ 1

0

εδ−d−1Rd(K, ε)dε.

(ii) If Φ is nonlattice, then the Minkowski content of K exists and coincides

with the average Minkowski content, that is M(K) = M̃(K).

The above theorem was originally given in Theorem 2.3 in [8] but is presented in
the form of Theorem 2.3.10 of [21].

Remark 1.11. The factor −
∑N

i=1 r
δ
i ln ri multiplied with δ coincides with the mea-

sure theoretical entropy of the shift-map with respect to the unique shift-invariant
Gibbs measure µ−δξ for the potential function −δξ. Here the geometric potential
function ξ : Σ → R is defined by ξ(ω) := − ln rω1 for ω = ω1ω2 · · · ∈ Σ. The quan-

tity −δ
∑N

i=1 r
δ
i ln ri is also known as the entropy of the probability distribution

(rδ1, . . . , r
δ
N ). For further explanation of these terms see [2].

Theorem 1.12 (Winter). Assume that the conditions of Setting 1.1 hold. De-
note by δ the Minkowski dimension of the self-similar set K and let µδ denote the
normalised δ-dimensional Hausdorff measure on K. Then the following hold.

(i) The local average Minkowski content of K exists and is given by

M̃(K, ·) = M̃(K)µδ(·).

(ii) If Φ is nonlattice, then the local Minkowski content exists, and we have

M(K, ·) = M̃(K, ·).

Theorem 1.12 corresponds to Theorem 2.5.1 in [21].

Note that all the results from Theorems 1.10 and 1.12 actually hold under the
weaker OSC. Moreover, under certain additional assumptions an alternative for-
mula for the (average) Minkowski content of K can be found in [4, 13].

Let us return to the two Cantor sets C1 and C2 which were described at the be-
ginning of the introduction. An application of the theorem of Gatzouras (Theorem
1.10) yields explicit values for their average Minkowski contents in the following
way.

Example 1.13. Recall the construction of the two Cantor sets C1 and C2 from the
beginning of the introduction. C1 is the invariant set of the iterated function system
Φ := {φ1, . . . , φ4}, where φi(x) = x/7 + 2(i − 1)/7 for i ∈ {1, . . . , 4}. It can be
easily verified that the IFS Φ satisfies the conditions of Setting 1.1 and that the
Minkowski dimension of C1 is equal to δ = ln 4/ ln 7. An application of Theorem
1.10 now yields that

M̃(C1) =
3

2
·

2−δ

(1− δ)δ ln 7
.

Using the fact that Theorem 1.10 also holds under the weaker OSC, we likewise
obtain that

M̃(C2) =
3δ

2
·

2−δ

(1− δ)δ ln 7
,
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where δ = ln 4/ ln 7 is the Minkowski dimension of C2. Thus, M̃(C1) > M̃(C2).

Combining our Theorem 1.6 with the results from Theorem 1.10 we immediately
obtain the following explicit formulae for the (average) Minkowski content of the
C1+α image F .

Corollary 1.14. With the notation of Setting 1.1, let δ denote the Minkowski
dimension of K (and hence F ). Further, denote the scaling function of K by
Rd(K, ·) and let µδ denote the δ-dimensional normalised Hausdorff measure on K.
Then the following hold.

(i) The average Minkowski content M̃(F ) of F exists, is positive and is given
by

M̃(F ) = −

(
N∑

i=1

rδi ln ri

)−1 ∫ 1

0

εδ−d−1Rd(K, ε)dε ·

∫

K

|g′|δdµδ. (1.1)

(ii) If Φ is nonlattice, then the Minkowski content of F exists and coincides

with the average Minkowski content, that is M(F ) = M̃(F ).

Combining Theorem 1.7 with Theorem 1.12 we obtain the following corollary for
the local (average) Minkowski content.

Corollary 1.15. With the notation of Setting 1.1, denote by δ the Minkowski
dimension of K (and hence F ) and let µδ denote the δ-dimensional normalised
Hausdorff measure on K. Then the following hold.

(i) The local average Minkowski content M̃(F, ·) of F exists and satisfies

dM̃(F, ·)

d (g⋆µδ) (·)
=

|g′ ◦ g−1|δ∫
K
|g′|δdµδ

· M̃(F ).

(ii) If Φ is nonlattice, then the local Minkowski content M(F, ·) of F exists

and is equal to M̃(F, ·).

Observe that the measure µ given by dµ
d(g⋆µδ)

= |g′◦g−1|δ∫
K
|g′|δdµδ

coincides with the δ-

conformal measure of the IFS Ψ̃ =: {ψ̃1, . . . , ψ̃M}, where Ψ̃ is defined as in Setting

1.1 and M ∈ N. Here the δ-conformal measure of Ψ̃ is the unique probability
measure µ supported on F , which satisfies

µ(ψ̃iB) =

∫

B

|ψ̃′
i|
δdµ

for all i ∈ {1, . . . ,M} and all Borel sets B ⊂ R
d. For more details about this

measure, see, for example [18].

Remark 1.16. The results of this paper are concerned with self-conformal sets which
arise as C1+α-images of self-similar sets. For general self-conformal sets in R

d, which
cannot necessarily be obtained in this way, our results and the ones presented
in [10] for subsets of R suggest that the (average) local Minkowski content is a
constant multiple of the δ-conformal measure, whenever it exists. This has recently
been obtained under certain geometric assumptions and will be presented in a
forthcoming paper by the second author, where the dichotomy of lattice versus
nonlattice will also be discussed.
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2. Proofs

Observe that Theorem 1.6 follows immediately from Theorem 1.7. Thus, in this
section we exclusively deal with the proof of Theorem 1.7. The proofs of the first
and second part of Theorem 1.7 differ quite significantly. However, certain tools
are used in both proofs and these tools are presented in Lemmas 2.1 to 2.3. Before
turning to them, let us fix some notation.

As described in Setting 1.1, let K denote the self-similar set which is generated by
the iterated function system Φ := {φ1, . . . , φN} consisting of contracting similari-
ties with contraction ratios r1, . . . , rN . We assume without loss of generality that
diam(K) = 1.

The Code Space Σ. Recall that we refer to the set A := {1, . . . , N} as the alphabet
and let An denote the space of words of length n ∈ N over A. Furthermore, let
A∗ :=

⋃
n∈N∪{0} A

n denote the space of all finite words over A including the empty

word ∅ and recall that Σ := AN denotes the code space which represents the set
of infinite words over A. For a finite word ω ∈ A∗ its length is denoted by n(ω).
For ω := ω1 · · ·ωn ∈ A∗ we set φω := φω1 ◦ · · · ◦ φωn , rω := rω1 · · · rωn and define
[ω] := {ω ∈ Σ | ωi = ωi for all i ∈ {1, . . . , n(ω)}} to be the ω-cylinder set. Moreover
for ω := ω1ω2 · · · ∈ Σ and n ∈ N we denote the initial word of length n of ω by
ω|n := ω1ω2 · · ·ωn. Finally, we set rmin := min{r1, . . . , rN}.

The Word Space Σ(ε, θ). We denote the minimal length scaling ratio of g on the
(1/2)-parallel neighbourhood K1/2 of K by

γ
l
:= min

x∈K1/2

|g′(x)|.

Since g is a diffeomorphism with domain U ⊃ K1/2, we have that γ
l
> 0. Recall

that g ∈ C1+α(U) and denote by c the Hölder constant of |g′|. For θ > 0 and ε ≥ 0
set

bε,θ :=

(
θγ

l

c

)1/α

− 2
ε

γ
l

and

Σ(ε, θ) :=
{
ω ∈ A∗ | rω ≤ bε,θ and rω|n(ω)−1

> bε,θ

}
.

The family Σ(ε, θ) (and in particular bε,θ) is constructed in such a way that

(i) a powerful bounded distortion lemma holds for |g′| on (ε/γ
l
)-neighbourhoods

of φωK for ω ∈ Σ(ε, θ) and sufficiently small ε ≥ 0 (see Lemma 2.1) and
(ii) Kε/γ

l
can be written as a disjoint union of the sets (φωK)ε/γ

l
, where the

union ranges over ω ∈ Σ(ε, θ) (see Lemmas 2.2 and 2.3).

Lemma 2.1 (Bounded Distortion Lemma). For θ > 0, 0 ≤ ε ≤
γ
l

2 and an arbitrary
ω ∈ Σ(ε, θ) we have that

(1 + θ)−1 ≤
|g′(x)|

|g′(y)|
≤ 1 + θ for all x, y ∈ (φωK)ε/γ

l
.
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Proof. Since ω lies in Σ(ε, θ), the diameter of the set (φωK)ε/γ
l
satisfies

diam(φωK)ε/γ
l
= rω diam(K)︸ ︷︷ ︸

=1

+2
ε

γ
l

≤ bε,θ + 2
ε

γ
l

=

(
θγ

l

c

)1/α

.

Recalling that |g′| is α-Hölder continuous with Hölder constant c, we hence have
∣∣|g′(x)| − |g′(y)|

∣∣ ≤ c|x− y|α ≤ θγ
l

for all x, y ∈ (φωK)ε/γ
l
.

Thus,

|g′(x)|

|g′(y)|
≤

∣∣|g′(x)| − |g′(y)|
∣∣

|g′(y)|
+ 1 ≤ θ + 1

for all x, y ∈ (φωK)ε/γ
l
. The second inequality follows on interchanging the roles

of x and y. �

Lemma 2.2. For θ > 0 and 0 ≤ ε <
γ
l

2

(
θγ

l

c

)1/α
we have that

K =
⋃

ω∈Σ(ε,θ)

φωK.

Proof. The condition 0 ≤ ε <
γ
l

2

(
θγ

l

c

)1/α
implies that bε,θ =

(
θγ

l

c

)1/α
− 2 ε

γ
l
> 0.

Therefore for every ω ∈ Σ there exists an n ∈ N such that rω|n ≤ bε,θ. �

For the following lemma, we define

ρ(Y, Z) := min
y∈Y

ρ(y, Z) := min
y∈Y

min
z∈Z

ρ(y, z)

for compact sets Y, Z ⊂ R
d. Moreover, we set

β := min
i6=j∈A

ρ(φiK,φjK)/2

and remark that β is positive because Φ satisfies the SSC.

Lemma 2.3. For θ > 0 and 0 ≤ ε < ε0(θ) := γ
l
· rmin ·

(
θγ

l

c

)1/α
· β
1+2βrmin

the

elements of {(φωK)ε/γ
l
| ω ∈ Σ(ε, θ)} are pairwise disjoint for distinct ω ∈ Σ(ε, θ),

that is

(φωK)ε/γ
l
∩ (φυK)ε/γ

l
= ∅ for all ω 6= υ ∈ Σ(ε, θ).

Proof. Note that the cardinality of Σ(ε, θ) is finite. Therefore, there exists ω′ ∈
Σ(ε, θ) satisfying rω′ ≤ rω for all ω ∈ Σ(ε, θ). Hence, for ω 6= υ ∈ Σ(ε, θ) we have
that

ρ(φωK,φυK) ≥ rω′ · 2β ≥ rminbε,θ · 2β = rmin

((
θγ

l

c

)1/α

− 2
ε

γ
l

)
· 2β

> rmin

(
(1 + 2βrmin)

γ
l
rminβ

ε− 2
ε

γ
l

)
· 2β = 2

ε

γ
l

,

which implies the assertion. �
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Proof of Theorem 1.7(ii). That the existence of M(K, ·) (resp. M(F, ·)) implies

the existence of M̃(K, ·) (resp. M̃(F, ·)) can be easily seen, since M̃(K, ·) (resp.

M̃(F, ·)) is the Cesàro-average of M(K, ·) (resp. M(F, ·)). Thus, it only remains
to show that

w-lim
ε→0

εδ−dλd(Fε ∩ ·) = µ(·), (2.1)

where µ denotes the measure given by

dµ

d (g⋆M(K, ·))
= |g′ ◦ g−1|δ.

By the Portmanteau Theorem, this is equivalent to the following. For every se-
quence (εn)n∈N of positive real numbers converging to 0 we have that

(a) lim
n→∞

εδ−d
n λd(Fεn ∩R

d) = µ(Rd) and

(b) for every closed set A ⊆ R
d,

lim sup
n→∞

εδ−d
n λd(Fεn ∩ A) ≤ µ(A).

We start by showing Condition (b). Let (εn)n∈N be an arbitrary sequence of positive
real numbers converging to 0 and fix a closed set A ⊆ R

d. Fix θ > 0 and set

ε̃ := min

{
ε0(θ),

γ
l

2

(
θγ

l

c

)1/α
}
, (2.2)

where ε0(θ) is defined as in Lemma 2.3. Choose n0(θ) ∈ N sufficiently large that for
all n ≥ n0(θ) we have εn < ε̃. From here on, assume that n ≥ n0(θ). For ω ∈ A∗

and ε ≥ 0 define

Gω(ε) := min
{
|g′(x)| | x ∈ (φωK)ε/γ

l

}
.

Applying Lemmas 2.1 and 2.2 yields the following.

λd(Fεn ∩ A) ≤
∑

ω∈Σ(εn,θ)

λd ((gφωK)εn ∩ A)

≤
∑

ω∈Σ(εn,θ)

λd
(
g((φωK)εn/Gω(εn) ∩ g

−1A)
)

≤
∑

ω∈Σ(εn,θ)

λd
(
(φωK)εn/Gω(εn) ∩ g

−1A
)
·Gω(εn)

d(1 + θ)d. (2.3)

To bound this latter quantity, let us focus on the term λd((φωK)εn/Gω(εn) ∩ g
−1A)

for ω ∈ Σ(εn, θ). Set

D := γ
l
·min{ρ(φωK,φυK)/2 | ω 6= υ ∈ Σ(ε̃, θ)}

and observe that Lemma 2.3 implies that εn/Gω(εn) < D/γ
l
. Thus, for all ω ∈

Σ(εn, θ), we have that

(φωK)εn/Gω(εn) = Kεn/Gω(εn) ∩ (φωK)D/γ
l
. (2.4)

Moreover, B := g−1A ∩ (φωK)D/γ
l
is closed since g is a diffeomorphism. By the

hypotheses, M(K, ·) := w-limn→∞ εδ−d
n λd(Kεn ∩ ·) exists, and so the Portmanteau
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Theorem and Equation (2.4) imply that

lim sup
n→∞

(
εn

Gω(εn)

)δ−d

λd((φωK)εn/Gω(εn) ∩ g
−1A)

= lim sup
n→∞

(
εn

Gω(εn)

)δ−d

λd(Kεn/Gω(εn) ∩B)

≤ M(K,B).

Hence, for all κ > 0 there exists an n ∈ N such that for all n ≥ n we have that

sup
k≥n

(
εk

Gω(εk)

)δ−d

λd((φωK)εk/Gω(εk) ∩ g
−1A) ≤ M(K,B) + κ. (2.5)

From Equations (2.3) and (2.5) we now obtain that

εδ−d
n λd(Fεn ∩ A)

≤
∑

ω∈Σ(εn,θ)

(
εn

Gω(εn)

)δ−d

λd((φωK)εn/Gω(εn) ∩ g
−1A) ·Gω(εn)

δ(1 + θ)d

≤
∑

ω∈Σ(εn,θ)

(
M(K, g−1A ∩ (φωK)D/γ

l
) + κ

)
·Gω(εn)

δ(1 + θ)d.

By Theorems 1.10 and 1.12 we know thatM(K, ·) = M(K)µδ(·). Thus, the support
of M(K, ·) is K and the definition of D implies that M(K, g−1A ∩ (φωK)D/γ

l
) =

M(K, g−1A ∩ φωK). Therefore, using the bounded distortion lemma (Lemma 2.1)
we conclude the following.

εδ−d
n λd(Fεn ∩A)

≤

∫

g−1A

|g′|δdM(K, ·)(1 + θ)d +
∑

ω∈Σ(εn,θ)

Gω(εn)
δκ(1 + θ)d

≤

∫

A

|g′ ◦ g−1|δd (g⋆M(K, ·)) (1 + θ)d +
∑

ω∈Σ(0,θ)

Gω(0)
δκ(1 + θ)d+δ.

Finally, since the expression in the last line does not depend on n, we can take the
limits as κ→ 0 and θ → 0 to obtain

lim sup
n→∞

εδ−d
n λd(Fεn ∩ A) ≤

∫

A

|g′ ◦ g−1|δd (g⋆M(K, ·)) = µ(A).

This shows that Condition (b) is satisfied.

Now that Condition (b) is verified, to obtain Condition (a) it suffices to show
that for every sequence (εn)n∈N of positive real numbers converging to 0 we have
lim infn→∞ εδ−d

n λd(Fεn) ≥ µ(Rd). To that end, fix such a sequence (εn)n∈N and an
arbitrary θ > 0. By our hypotheses, limε→0 ε

δ−dλd(Kε) = M(K) and so for all
κ > 0 there exists an n ∈ N such that for all n ≥ n and all ω ∈ Σ(εn, θ) we have
that

∣∣∣∣∣

(
εn

rωGω(εn)(1 + θ)

)δ−d

λd(Kεn/(rωGω(εn)(1+θ)))−M(K)

∣∣∣∣∣ < κ. (2.6)
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Recall the definition of ε̃ from Equation (2.2) and choose n0(θ) ≥ n sufficiently
large that εn < ε̃ for all n ≥ n0(θ). Assume that n ≥ n0(θ) from here on. Lemmas
2.2 and 2.3 together with the inequality given in Equation (2.6) imply that

εδ−d
n λd(Fεn) = εδ−d

n

∑

ω∈Σ(εn,θ)

λd((gφωK)εn)

≥ εδ−d
n

∑

ω∈Σ(εn,θ)

Gω(εn)
drdωλ

d(Kεn/(rωGω(εn)(1+θ)))

≥
∑

ω∈Σ(εn,θ)

Gω(εn)
δrδω(1 + θ)δ−d (M(K)− κ)

≥
∑

ω∈Σ(0,θ)

Gω(0)
δrδω(1 + θ)−d (M(K)− κ) ,

where the last inequality is a consequence of Lemma 2.1. Since θ was arbitrarily cho-
sen, the above inequality holds for all θ > 0. Having limθ→0

∑
ω∈Σ(0,θ)Gω(0)

δrδω =∫
K |g′|δ dµδ, we conclude by taking the limit as θ tends to 0 that

lim inf
n→∞

εδ−d
n λd(Fεn) ≥

∫

K

|g′|δ dµδ · (M(K)− κ) for all κ > 0.

Hence,

lim inf
n→∞

εδ−d
n λd(Fεn) ≥

∫

K

|g′|δ dµδ · M(K).

�

Our next aim is to prove Theorem 1.7(i). The first step in this direction is the
following definition. An intersection stable generator of B(Rd) is defined to be a
collection of sets E ⊂ B(Rd) such that the smallest σ-algebra containing E coincides
with B(Rd) and such that the intersection of any two elements of E again is an
element of E . In the proof of Theorem 1.7(i) we are going to use the fact that
two Borel measures which coincide on an intersection stable generator of the Borel
σ-algebra B(Rd) coincide on B(Rd). The intersection stable generator we use is
constructed as follows. First, recall that the SSC implies the OSC and that the
OSC was proven to be equivalent to the strong open set condition (SOSC) for self-
similar subsets of Rd in [20]. An iterated function system Φ := {φ1, . . . , φN} with
invariant set K satisfies the SOSC if there exists a nonempty bounded open set

O ⊆ R
d such that Φ(O) :=

⋃N
i=1 φiO ⊆ O, φiO ∩ φjO = ∅ for i 6= j ∈ {1, . . . , N}

and O ∩ K 6= ∅. Such a set O satisfies K ⊆ O and shall be fixed from now on.
Motivated by Section 6.1 in [21] we define

EF := {gφωO | ω ∈ A∗} ∪ KF , where

KF := {C ∈ B(Rd) | ∃n ∈ N : C ⊆ R
d \

⋃

ω∈An

gφωO}.

Lemma 2.4. EF is an intersection stable generator for the Borel σ-algebra B(Rd).

Proof. It can easily be seen that EF is intersection stable and that EF ⊆ B(Rd).
Thus, what remains to show is that B(Rd) ⊆ σ(EF ), where σ(EF ) denotes the σ-
algebra generated by EF . For this inclusion we are going to prove that every open
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set U ⊆ R
d is contained in the σ-algebra σ(EF ). In the proof of Lemma 6.1.1 in

[21] it is shown that every open set in R
d is a countable union of sets in

EK := {φωO | ω ∈ A∗} ∪ KK , where

KK := {C ∈ B(Rd) | ∃n ∈ N : C ⊆ R
d \

⋃

ω∈An

φωO}.

Thus, there exist sets Ai ∈ EK , i ∈ N, such that g−1U =
⋃∞

i=1Ai. If Ai ∈ KK ,
then there exists an n ∈ N such that Ai ∩

⋃
ω∈An φωO = ∅. This implies that

gAi ∩
⋃

ω∈An gφωO = ∅ and hence we have that gAi ∈ KF . If, on the other hand,
Ai ∈ {φωO | ω ∈ A∗}, then gAi ∈ {gφωO | ω ∈ A∗}. Therefore, gAi ∈ EF for all
i ∈ N and U =

⋃∞
i=1 gAi. �

For the proof of Theorem 1.7(i) we also require the following lemma, which is a
weaker version of Lemma 5.2.1 in [21].

Lemma 2.5 (Winter). There exist constants η1, η2, κ > 0 such that for all ε, s
satisfying 0 < ε ≤ s ≤ κ we have

λd(Kε ∩ (Oc)s) ≤ η1ε
d−δsη2 .

Proof of Theorem 1.7(i). By Theorem 1.12 we know that if Φ is nonlattice, then
M(K, ·) exists. Thus by Theorem 1.7(ii) also M(F, ·) exists and dM(F, ·) = |g′ ◦
g−1|δd (g⋆M(K, ·)). Hence, the assertion follows in the nonlattice case, since the
existence of the local Minkowski content clearly implies the existence of the local

average Minkowski content, M̃(K, ·) = M(K, ·) and M̃(F, ·) = M(F, ·). This
leaves the case that Φ is a-lattice for some a > 0, which we now prove.

Under the assumption that the average Minkowski content of F exists (which we
show later), the family of finite Borel measures

P :=

{
µT (·) := |lnT |−1

∫ 1

T

εδ−dλd(Fε, ·)
dε

ε
| T ∈ (0, 1)

}

is tight and bounded. Let (Tn)n∈N denote a sequence in (0, 1) converging to 0.
Then by Prohorov’s Theorem, there exists a subsequence (Tnk

)k∈N and a finite
Borel measure µ depending on the sequence (nk)k∈N such that (µTnk

)k∈N converges

weakly to µ. We will show that µ coincides for every such sequence (nk)k∈N with
the measure µ which is given by

dµ

d
(
g⋆M̃(K, ·)

) = |g′ ◦ g−1|δ. (2.7)

For this we use the fact that two measures which coincide on an intersection stable
generator of B(Rd) coincide on the whole σ-algebra B(Rd). Thus, by Lemma 2.4
it remains to show that limk→∞ µTnk

(A) = µ(A) for every A ∈ EF and arbitrary

(nk)k∈N. (This also implies that the average Minkowski content of F exists and
thus that P is tight and bounded.) However, this follows from the statement that

X(A) = X(A) = µ(A) (2.8)
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for all A ∈ EF , where

X(A) := lim sup
T→0

|lnT |−1

∫ 1

T

εδ−dλd(Fε ∩ A)
dε

ε
and

X(A) := lim inf
T→0

|lnT |−1

∫ 1

T

εδ−dλd(Fε ∩ A)
dε

ε
.

In order to demonstrate the equality in Equation (2.8), let us start with the following
observations. If Φ is a-lattice, then the function t 7→ (e−t)δ−dλd(Ke−t) converges
along sequences of the form (an+x)n∈N, where x ∈ [0, a). This has been obtained in
Equation (2.9) of [8] and results from renewal theory. Thus there exists a periodic
function f : R+ → R

+ with period a such that for all x ∈ [0, a)

lim
m→∞

(e−(x+ma))δ−dλd(Ke−(x+ma)) = f(x).

Moreover, Equation (2.10) in [8], which follows from Lebesgue’s Dominated Con-
vergence Theorem, states that

lim
m→∞

∫

[0,a)

(e−(x+ma))δ−dλd(Ke−(x+ma))dx =

∫

[0,a)

f(x)dx.

Thus, for an arbitrary θ > 0 there exists an M ∈ N such that for all m ≥ M we
have ∣∣∣∣∣

∫

[0,a)

(e−(x+ma))δ−dλd(Ke−(x+ma))dx−

∫

[0,a)

f(x)dx

∣∣∣∣∣ < θ. (2.9)

For this θ > 0 fix M as above, take ε0(θ) as in Lemma 2.3 and set

r := min{rω | ω ∈ Σ(ε0(θ), θ)} and

L := max{M − ln(γ
l
r),− ln ε0(θ),− ln κγ

l
r},

where κ is the constant from Lemma 2.5. Denote by ⌊x⌋ the integer part of x ∈ R,
that is, the largest integer which is less than or equal to x. Then we can reformulate
the expressions X(A) and X(A) for A ∈ EF as follows.

X(A) = lim sup
T→∞

T−1

∫ T

0

(e−t)δ−dλd(Fe−t ∩ A)dt

= lim sup
T→∞

T−1

⌊a−1(T−L)−1⌋∑

k=0

∫ T−ka

T−(k+1)a

(e−t)δ−dλd(Fe−t ∩ A)dt

︸ ︷︷ ︸
=:U(T,A)

, (2.10)

where the last equality follows from the fact that t 7→ (e−t)δ−dλd(Fe−t ∩ A) is
continuous and thus locally integrable. Analogously, one obtains that

X(A) = lim inf
T→∞

T−1U(T,A). (2.11)

In order to show that X(A) = X(A) for all A ∈ EF , we distinguish between the
cases A ∈ EF \ KF and A ∈ KF .

Case 1: A ∈ EF \ KF .
In this case there exists ν ∈ A∗ such that A = gφνO. Assume that θ is sufficiently
small that n(ω) ≥ n(ν) for all ω ∈ Σ(ε0(θ), θ) and define the set of words

Σν(ε, θ) := {ω ∈ Σ(ε, θ) | [ω] ⊆ [ν]}
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for ε ∈ [0, ε0(θ)], where [ω] denotes the ω-cylinder set.

In the following suppose that T > L. As e−T+(k+1)a ≤ e−L ≤ ε0(θ) holds for every
k ∈ {0, . . . , ⌊a−1(T−L)−1⌋}, Lemma 2.3 implies that

⋃
ω∈Σ(e−T+(k+1)a,θ)(gφωK)e−t

is a disjoint union for every k ∈ {0, . . . , ⌊a−1(T−L)−1⌋} and t ∈ (T−(k+1)a, T−ka].
Therefore, for sufficiently large T we obtain that

U(T, gφνO)

=

⌊a−1(T−L)−1⌋∑

k=0

∫ T−ka

T−(k+1)a

(e−t)δ−d
∑

ω∈Σ(e−T+(k+1)a,θ)

λd((gφωK)e−t ∩ gφνO)dt

≤

⌊a−1(T−L)−1⌋∑

k=0

∑

ω∈Σν(e−T+(k+1)a,θ)

Gω(e
−T+(k+1)a)d(1 + θ)drdω

·

∫ T−ka

T−(k+1)a

(e−t)δ−dλd(Ke−t/(Gω(e−T+(k+1)a)rω))dt

=

⌊a−1(T−L)−1⌋∑

k=0

∑

ω∈Σν(e−T+(k+1)a,θ)

Gω(e
−T+(k+1)a)δ(1 + θ)drδω

·

∫ T−ka+ln(Gω(e−T+(k+1)a)rω)

T−(k+1)a+ln(Gω(e−T+(k+1)a)rω)

(e−t)δ−dλd(Ke−t)dt. (2.12)

Now observe that T − ⌊a−1(T − L)⌋a+ ln(Gω(e
−T+(k+1)a)rω) ≥ L+ ln(γ

l
r) ≥ M .

Thus, we can apply Equation (2.9) to obtain

U(T, gφνO)

≤

⌊a−1(T−L)−1⌋∑

k=0

∑

ω∈Σν(e−T+(k+1)a,θ)

Gω(e
−T+(k+1)a)δ(1 + θ)drδω

(∫ T−ka

T−(k+1)a

f(y)dy + θ

)

≤

⌊a−1(T−L)−1⌋∑

k=0

∑

ω∈Σν(0,θ)

Gω(0)
δ(1 + θ)d+δrδω

(∫ T−ka

T−(k+1)a

f(y)dy + θ

)

=
∑

ω∈Σν(0,θ)

Gω(0)
δ(1 + θ)d+δrδω

(∫ T

T−⌊a−1(T−L)⌋a

f(y)dy + θ

)
.

We know, in light of Theorem 1.10, that the average Minkowski content of the self-
similar set K exists. In view of Equation (2.10), the upper estimate for U(T, gφνO)
implies that

X(gφνO) ≤ (M̃(K) + 2θ)
∑

ω∈Σν(0,θ)

Gω(0)
δ(1 + θ)d+δrδω. (2.13)
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Now, we focus on finding a lower bound. In analogy to Equation (2.12) we have

U(T, gφνO) ≥

⌊a−1(T−L)−1⌋∑

k=0

∑

ω∈Σν(e−T+(k+1)a,θ)

Gω(e
−T+(k+1)a)d (2.14)

·

∫ T−ka

T−(k+1)a

(e−t)δ−dλd((φωK)e−t/(Gω(e−T+(k+1)a)(1+θ)) ∩ φνO)dt.

For r > 0 we denote the inner r-parallel neighbourhood of a set A ⊆ R
d by

A−r := {x ∈ A | ρ(x, ∂A) > r}

and observe that λd(Y ∩U) ≥ λd(Y ∩U−r) ≥ λd(Y )−λd(Y ∩ (U c)r) for Y, U ⊆ R
d,

U open and r > 0. Using Lemma 2.5 with the constants η1, η2, κ fixed therein and
that T−(k+1)a ≥ L ≥ − lnκγ

l
r for all k ∈ {0, . . . , ⌊a−1(T −L)−1⌋} we obtain the

following for all ω ∈ Σν(e
−T+(k+1)a, θ) and t ∈ (T − (k + 1)a, T − ka]. To shorten

the notation, we write G := Gω(e
−T+(k+1)a)(1 + θ).

λd((φωK)e−t/(Gω(e−T+(k+1)a)(1+θ)) ∩ φνO)

≥ λd((φωK)e−t/(Gω(e−T+(k+1)a)(1+θ)))︸ ︷︷ ︸
=:A1(t,ω,k)=:A1

−λd((φωK)e−t/G ∩ (φνO
c)e−T+(k+1)a/G)

≥ A1 − λd((φωK)e−t/G ∩ (φωO
c)e−T+(k+1)a/G)

≥ A1 − rdωλ
d(Ke−t/(Grω) ∩O

c
e−T+(k+1)a/(Grω))

≥ A1 − rdωη1

(
e−t

Gω(e−T+(k+1)a)(1 + θ)rω

)d−δ (
e−T+(k+1)a

Gω(e−T+(k+1)a)(1 + θ)rω

)η2

︸ ︷︷ ︸
=:A2(t,ω,k)

.

For i ∈ {1, 2} define

Bi :=

⌊a−1(T−L)−1⌋∑

k=0

∑

ω∈Σν(e−T+(k+1)a,θ)

Gω(e
−T+(k+1)a)d

∫ T−ka

T−(k+1)a

(e−t)δ−dAi(t, ω, k)dt
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and note that U(T, gφνO) ≥ B1−B2 holds by Equation (2.14). Further, recall that
T − ⌊a−1(T − L)⌋a+ ln(Gω(e

−T+(k+1)a)rω) ≥M . Thus, for i = 1 we have

B1 =

⌊a−1(T−L)−1⌋∑

k=0

∑

ω∈Σν(e−T+(k+1)a,θ)

Gω(e
−T+(k+1)a)drdω

·

∫ T−ka

T−(k+1)a

(e−t)δ−dλd(Ke−t/(Gω(e−T+(k+1)a)rω(1+θ)))dt

=

⌊a−1(T−L)−1⌋∑

k=0

∑

ω∈Σν(e−T+(k+1)a,θ)

Gω(e
−T+(k+1)a)δ(1 + θ)δ−drδω

·

∫ T−ka+ln(Gω(e−T+(k+1)a)rω(1+θ))

T−(k+1)a+ln(Gω(e−T+(k+1)a)rω(1+θ))

(e−t)δ−dλd(Ke−t)dt

(2.9)
≥

⌊a−1(T−L)−1⌋∑

k=0

∑

ω∈Σν(e−T+(k+1)a,θ)

Gω(e
−T+(k+1)a)δ(1 + θ)δ−drδω

·

(∫ T−ka

T−(k+1)a

f(y)dy − θ

)

≥

⌊a−1(T−L)−1⌋∑

k=0

∑

ω∈Σν(0,θ)

Gω(0)
δ(1 + θ)−drδω

(∫ T−ka

T−(k+1)a

f(y)dy − θ

)

=
∑

ω∈Σν(0,θ)

Gω(0)
δ(1 + θ)−drδω

(∫ T

T−⌊a−1(T−L)⌋a

f(y)dy − θ

)
.

Setting γ
u
:= maxx∈K1/2

|g′(x)|, for i = 2 we obtain that

B2 =

⌊a−1(T−L)−1⌋∑

k=0

∑

ω∈Σν(e−T+(k+1)a,θ)

Gω(e
−T+(k+1)a)δ−η2rδ−η2

ω e(−T+(k+1)a)η2

· η1(1 + θ)δ−d−η2a︸ ︷︷ ︸
=:̃c̃

≤ ˜̃c · γδ
u
γ−η2

l︸ ︷︷ ︸
=:c̃

⌊a−1(T−L)−1⌋∑

k=0

∑

ω∈Σν(e−T+(k+1)a,θ)

rδω · (rminbe−T+(k+1)a,θ)
−η2 · e(−T+(k+1)a)η2

≤ c̃r−η2

min

⌊a−1(T−L)−1⌋∑

k=0

b−η2

e−L,θ
· e(−T+(k+1)a)η2

≤ c̃r−η2

min · b−η2

e−L,θ ·
eη2(T−L) − 1

1− e−aη2
· e−Tη2 .
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Since by Equation (2.14) we have that U(T, gφνO) ≥ B1 −B2, it follows that

U(T, gφνO) ≥
∑

ω∈Σν(0,θ)

Gω(0)
δ(1 + θ)−drδω

(∫ T

T−⌊a−1(T−L)⌋a

f(y)dy − θ

)

− c̃r−η2

min · b−η2

e−L,θ
·
eη2(T−L) − 1

1− e−aη2
· e−Tη2 .

By Theorem 1.10 the average Minkowski content of the self-similar set K exists
and in view of Equation (2.11), the lower estimate for U(T, gφνO) implies that

X(gφνO) ≥ (M̃(K)− 2θ)
∑

ω∈Σν(0,θ)

Gω(0)
δ(1 + θ)−drδω . (2.15)

Since Equations (2.13) and (2.15) hold for all θ > 0, taking the limit as θ tends to
0 implies

X(gφνO) ≤ M̃(K)

∫

φνK

|g′|δdµδ ≤ X(gφνO).

Hence, by Theorem 1.12 we have

X(gφνO) = X(gφνO) =

∫

gφνK

|g′ ◦ g−1|δd
(
g⋆M̃(K, ·)

)
= µ(gφνO),

where the last equality holds since the normalised δ-dimensional Hausdorff measure
HK on K satisfies HK(φνO) = HK(φνK) for all ν ∈ A∗.

Case 2: A ∈ KF .
In this case there exists an n ∈ N such that A ⊆ R

d \
⋃

ω∈An gφωO and A ∈ B(Rd).
Setting γ

u
:= supx∈K1/2

|g′(x)| as before, we have for such a set A that

U(T,A) =

⌊a−1(T−L)−1⌋∑

k=0

∫ T−ka

T−(k+1)a

(e−t)δ−dλd((gK)e−t ∩ A)dt

≤

⌊a−1(T−L)−1⌋∑

k=0

∫ T−ka

T−(k+1)a

(e−t)δ−dγd
u
λd(Ke−t/γ

l
∩ g−1A)dt

≤ γd
u

∫ T

0

(e−t)δ−dλd(Ke−t/γ
l
∩ g−1A)dt.

Note that Equation (6.2.15) of [21] states that

lim
T→∞

T−1

∫ T

0

(e−t)δ−dλd(Ke−t ∩C)dt = 0

for every C ∈ KK . Hence, since g−1A ∈ KK , we obtain via Equations (2.10)
and (2.11) that

X(A) = X(A) = 0 = µ(A).

�
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