Skip to main content

Advertisement

Log in

Nitrogen dynamics following slurry injection in maize: crop development

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Using pig slurry as starter fertilizer for maize (Zea mays L.), injected below the row prior to planting is a reasonable way to omit application of additional mineral fertilizer in areas with intensive animal farming. However, delayed early growth and a lack of knowledge on nutrient availability limit the interest of farmers. To extenuate farmers concerns a field trial was conducted in 2014 and 2015 to get detailed information on nitrogen (N) uptake, the subsequent influences on crop growth at different vegetative growth stages and final yield of silage maize. Besides an unfertilized control, two liquid manure injection treatments (without and with nitrification inhibitor [NI]) were compared to slurry broadcast application + mineral N and phosphorus (P) starter fertilizer at planting (MSF). In 2014, NI treatment yields increased (+16.5%) and N uptake increased (+9.6%) compared to broadcast treatment. In 2015, cold and dry conditions during early growth limited P plant availability and reduced crop growth in treatments without MSF. However, when a NI was added to the slurry prior to application, plants showed less P deficiency symptoms and better growth. At harvest no differences between the fertilized treatments were observed. In both years apparent N recovery was increased when manure was injected (48% without, and 56% with NI, respectively) compared to broadcast application of manure (43%) indicating that N losses were lower. However, further knowledge on soil N transformation and N loss pathways in systems with slurry injection is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barneze AS, Minet EP, Cerri CC, Misselbrook T (2015) The effect of nitrification inhibitors on nitrous oxide emissions from cattle urine depositions to grassland under summer conditions in the UK. Chemosphere 119:122–129. doi:10.1016/j.chemosphere.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  • Baumgärtel G, Benke M, Eiler T (2010) Düngeempfehlungen Stickstoff: Getreide, Raps, Hackfrüchte, Mais. Landwirtschaftskammer Niedersachsen, Hannover

    Google Scholar 

  • Bhadoria PBS, Kaselowsky J, Claassen N, Jungk A (1991) Phosphate diffusion coefficients in soil as affected by bulk density and water content. Z Pflanzenernaehr Bodenkd 154:53–57. doi:10.1002/jpln.19911540111

    Article  CAS  Google Scholar 

  • Birch CJ, Vos J, van der Putten PE (2003) Plant development and leaf area production in contrasting cultivars of maize grown in a cool temperate environment in the field. Eur J Agron 19:173–188. doi:10.1016/S1161-0301(02)00034-5

    Article  Google Scholar 

  • Bittman S, Liu A, Hunt DE, Forge TA, Kowalenko CG, Chantigny MH, Buckley K (2012) Precision placement of separated dairy sludge improves early phosphorus nutrition and growth in corn (L.). J Environ Qual 41:582–591. doi:10.2134/jeq2011.0284

    Article  CAS  PubMed  Google Scholar 

  • Cameron KC, Di HJ, Moir JL (2013) Nitrogen losses from the soil/plant system: a review. Ann Appl Biol 162:145–173. doi:10.1111/aab.12014

    Article  CAS  Google Scholar 

  • Ciampitti IA, Vyn TJ (2011) A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crops Res 121:2–18. doi:10.1016/j.fcr.2010.10.009

    Article  Google Scholar 

  • DIN (2005) Futtermittel—Bestimmung des Stickstoffgehaltes und Berechnung des Rohproteingehaltes—Teil 1: Kjeldahl-Verfahren. DIN EN ISO 5983-1:2005, Beuth Verlag GmbH, Berlin

  • DIN (2012) Futtermittel—Bestimmung von Calcium, Natrium, Phosphor, Magnesium, Kalium, Schwefel, Eisen, Zink, Kupfer, Mangan und Kobalt nach Druckaufschluss mittels ICP-AES. DIN EN 15621:2012-04, Beuth Verlag GmbH, Berlin

  • Dosch P, Gutser R (1996) Reducing N losses (NH3, N2O, N2) and immobilization from slurry through optimized application techniques. Fertil Res 43:165–171. doi:10.1007/BF00747697

    Article  Google Scholar 

  • European Parliament (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy: Directive 2000/60/EC

  • Federolf C-P, Westerschulte M, Olfs H-W, Broll G, Trautz D (2016) Enhanced nutrient use efficiencies from liquid manure by positioned injection in maize cropping in northwest Germany. Eur J Agron 75:130–138. doi:10.1016/j.eja.2016.01.016

    Article  Google Scholar 

  • Imran M, Mahmood A, Römheld V, Neumann G (2013) Nutrient seed priming improves seedling development of maize exposed to low root zone temperatures during early growth. Eur J Agron 49:141–148. doi:10.1016/j.eja.2013.04.001

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB (2014) World reference base for soil resources 2014: international soil classification system for naming soils and creating legends for soil maps. FAO, Rome, p 203

    Google Scholar 

  • Jones CA (1983) A survey of the variability in tissue nitrogen and phosphorus concentrations in maize and grain sorghum. Field Crops Res 6:133–147. doi:10.1016/0378-4290(83)90053-9

    Article  CAS  Google Scholar 

  • Keckl G (2015) Bodennutzung und Ernte 2014. Landesamt für Statistik, Hannover

    Google Scholar 

  • Kirchmann H, Lundvall A (1993) Relationship between N immobilization and volatile fatty acids in soil after application of pig and cattle slurry. Biol Fertil Soils 15:161–164. doi:10.1007/BF00361605

    Article  CAS  Google Scholar 

  • Leinweber P, Geyer-Wedell K, Jordan E (1994) Phosphorgehalte von Böden in einem Landkreis mit hoher Konzentration des Viehbestandes. Z Pflanzenernaehr Bodenkd 157:383–385. doi:10.1002/jpln.19941570510

    Article  CAS  Google Scholar 

  • Ma Q, Zhang F, Rengel Z, Shen J (2013) Localized application of NH4 +–N plus P at the seedling and later growth stages enhances nutrient uptake and maize yield by inducing lateral root proliferation. Plant Soil 372:65–80. doi:10.1007/s11104-013-1735-8

    Article  CAS  Google Scholar 

  • Macduff JH, Jackson SB (1991) Growth and preferences for ammonium or nitrate uptake by barley in relation to root temperature. J Exp Bot 42:521–530. doi:10.1093/jxb/42.4.521

    Article  CAS  Google Scholar 

  • McMaster GS, Wilhelm WW (1997) Growing degree-days: one equation, two interpretations. Agric For Meteorol 87:291–300. doi:10.1016/S0168-1923(97)00027-0

    Article  Google Scholar 

  • Mollier A, Pellerin S (1999) Maize root system growth and development as influenced by phosphorus deficiency. J Exp Bot 50(333):487–497. doi:10.1093/jxb/50.333.487

    Article  CAS  Google Scholar 

  • Muchow RC (1988) Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment I. Leaf growth and leaf nitrogen. Field Crops Res 18:1–16

    Article  Google Scholar 

  • Neumann G, Römheld V (2012) Rhizosphere chemistry in relation to plant nutrition. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants 2012. Academic Press, San Diego, pp 347–368

    Chapter  Google Scholar 

  • Ohlrogge AJ (1962) Some soil-root-plant relationships. Soil Sci 93:30–38

    Article  Google Scholar 

  • Petersen J, Jensen HH, Rubæk GH (2010) Phosphorus fertilization of maize seedlings by side-band injection of animal slurry. In: Proceedings 15th RAMIRAN conference, Lisboa, Portugal, 12 Sept 2010

  • Plénet D, Lemaire G (1999) Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant Soil 216:65–82. doi:10.1023/A:1004783431055

    Article  Google Scholar 

  • Plénet D, Etchebest S, Mollier A, Pellerin S (2000a) Growth analysis of maize field crops under phosphorus deficiency. I. Leaf growth. Plant Soil 223:119–132. doi:10.1023/A:1004877111238

    Article  Google Scholar 

  • Plénet D, Mollier A, Pellerin S (2000b) Growth analysis of maize field crops under phosphorus deficiency. II. Radiation-use efficiency, biomass accumulation and yield components. Plant Soil 224:259–272. doi:10.1023/A:1004835621371

    Article  Google Scholar 

  • Ruser R, Schulz R (2015) The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—a review. J Plant Nutr Soil Sci 178:171–188. doi:10.1002/jpln.201400251

    Article  CAS  Google Scholar 

  • SAS Institute Inc (2011) SAS/STAT® 9.3 user’s guide. SAS Institute Inc., Cary

    Google Scholar 

  • Sawyer JE, Schmitt MA, Hoeft RG, Siemens JC, Vanderholm DH (1991) Corn production associated with liquid beef manure application methods. J Prod Agric 4:335–344

    Article  Google Scholar 

  • Scheurer M, Brauch HJ, Schmidt CK, Sacher F (2016) Occurrence and fate of nitrification and urease inhibitors in the aquatic environment. Environ Sci Process Impacts 18:999–1010. doi:10.1039/c6em00014b

    Article  CAS  PubMed  Google Scholar 

  • Schmitt MA, Evans SD, Randall GW (1995) Effect of liquid manure application methods on soil nitrogen and corn grain yields. J Prod Agric 8:186–189. doi:10.2134/jpa1995.0186

    Article  Google Scholar 

  • Schröder JJ, Ten Holte L, Brouwer G (1997) Response of silage maize to placement of cattle slurry. Neth J Agric Sci 45:249–261

    Google Scholar 

  • Schröder JJ, Vermeulen GD, van der Schoot JR, van Dijk W, Huijsmans J, Meuffels G, van der Schans DA (2015) Maize yields benefit from injected manure positioned in bands. Eur J Agron 64:29–36. doi:10.1016/j.eja.2014.12.011

    Article  Google Scholar 

  • Sommer SG, Hutchings NJ (2001) Ammonia emission from field applied manure and its reduction—invited paper. Eur J Agron 15:1–15. doi:10.1016/S1161-0301(01)00112-5

    Article  CAS  Google Scholar 

  • Sørensen P, Amato M (2002) Remineralisation and residual effects of N after application of pig slurry to soil. Eur J Agron 16:81–95. doi:10.1016/S1161-0301(01)00119-8

    Article  Google Scholar 

  • Subbarao GV, Ito O, Sahrawat KL, Berry WL, Nakahara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Rao IM (2006) Scope and strategies for regulation of nitrification in agricultural systems—challenges and opportunities. Crit Rev Plant Sci 25:303–335

    Article  CAS  Google Scholar 

  • Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 472:159–161. doi:10.1038/472159a

    Article  CAS  PubMed  Google Scholar 

  • Thomson CJ, Marschner H, Römheld V (1993) Effect of nitrogen fertilizer form on pH of the bulk soil and rhizosphere, and on the growth, phosphorus, and micronutrient uptake of bean. J Plant Nutr 16:493–506. doi:10.1080/01904169309364548

    Article  CAS  Google Scholar 

  • Touchton JT (1988) Starter fertilizer combinations for corn grown on soils high in residual P. J Fertil Issues 5:126–130

    Google Scholar 

  • Vos J, van der Putten P, Birch CJ (2005) Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.). Field Crops Res 93:64–73. doi:10.1016/j.fcr.2004.09.013

    Article  Google Scholar 

  • Warnecke S, Biberacher M, Brauckmann HJ, Broll G (2011) Nachhaltige Verwertung von Nebenprodukten aus der Erzeugung tierischer Nahrungsmittel durch Initiierung eines regionalen Stoffstrommanagements. In: Windhorst H-W, Veauthier A (eds) Nachhaltige Tierproduktion in agrarischen Intensivgebieten Niedersachsens. Weiße Reihe 35. Vechtaer Druckerei und Verlag, Vechta, pp 107–126

    Google Scholar 

  • Westerschulte M, Federolf C-P, Pralle H, Trautz D, Broll G, Olfs H-W (2015) Soil nitrogen dynamics after slurry injection in field trials: evaluation of a soil sampling strategy. J Plant Nutr Soil Sci 178:923–934. doi:10.1002/jpln.201500249

    Article  CAS  Google Scholar 

  • Westerschulte M, Federolf C-P, Broll G, Trautz D, Olfs H-W (2016) Nitrogen dynamics following slurry injection in maize: soil mineral nitrogen. Nutr Cycl Agroecosyst. doi:10.1007/s10705-016-9799-5

    Google Scholar 

  • Wiesler F, Horst WJ (1993) Differences among maize cultivars in the utilization of soil nitrate and the related losses of nitrate through leaching. Plant Soil 151:193–203. doi:10.1007/BF00016284

    Article  CAS  Google Scholar 

  • Withers PJ, Peel S, Chalmers AG, Lane SJ, Kane R (2000) The response of manured forage maize to starter phosphorus fertilizer on chalkland soils in southern England. Grass Forage Sci 55:105–113. doi:10.1046/j.1365-2494.2000.00204.x

    Article  Google Scholar 

Download references

Acknowledgements

We thank the German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt DBU) for financing this research within the project “Optimizing nitrogen and phosphorus use efficiencies from liquid manure by injection to reduce environmental pollution” (Grant 30364/01). EuroChem Agro GmbH, Mannheim, thankfully granted additional support. We are grateful to the field technicians and students who did magnificent work, Elke Nagel, Maren Johannes and Yvonne Garlich in the laboratory, as well as Hans-Georg Schön and Herbert Pralle for their assistance with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Philipp Federolf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Federolf, CP., Westerschulte, M., Olfs, HW. et al. Nitrogen dynamics following slurry injection in maize: crop development. Nutr Cycl Agroecosyst 107, 19–31 (2017). https://doi.org/10.1007/s10705-016-9813-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-016-9813-y

Keywords

Navigation