Skip to main content
Log in

20 Hz X-ray tomography during an in situ tensile test

  • IUTAM Paris 2015
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper describes an in-situ tensile test in synchrotron tomography achieved for the first time with a frequency of 20 tomograms per second (20 Hz acquisition frequency). This allows us to capture rapid material fracture processes, such as that of a metal matrix composite composed of 45 % of alumina particles embedded into 55 % of pure aluminium, which fractures by the sudden coalescence of internal damage. Qualitatively, the images show the nucleation and propagation of a crack during 9 s leading to total fracture of the sample. The images are then post-processed quantitatively to analyze the evolving shape of the crack and to derive the instantaneous speed of its tip. It is shown that the crack clearly propagates from one particle to the next, pausing briefly before propagating to the next particle, lending experimental support to a local load sharing analysis of the fracture of this class of composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with imageJ. J Biophoton Int 11(7):36–42

    Google Scholar 

  • Berezovski A, Maugin GA (2007) On the propagation velocity of a straight brittle crack. Int J Fract 143(2):135–142

    Article  Google Scholar 

  • Besson J, Moinereau D, Steglich D (2006) Local approach to fracture. Presses des MINES

  • Buffiere JY, Ferrie E, Proudhon H, Ludwig W (2006) Three-dimensional visualisation of fatigue cracks in metals using high resolution synchrotron X-ray micro-tomography. Mater Sci Technol 22(9):1019–1024

    Article  Google Scholar 

  • Buffiere JY, Maire E, Adrien J, Masse JP, Boller E (2010) In situ experiments with X-ray tomography: an attractive tool for experimental mechanics. Exp Mech 50(3):289–305

    Article  Google Scholar 

  • Dulaney EN, Brace W (1960) Velocity behavior of a growing crack. J Appl Phys 31(12):2233–2236

    Article  Google Scholar 

  • Freund LB (1998) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Goods S, Brown L (1979) Overview no. 1: the nucleation of cavities by plastic deformation. Acta Metall 27(1):1–15

    Article  Google Scholar 

  • Hauert A, Rossoll A, Mortensen A (2009a) Ductile-to-brittle transition in tensile failure of particle-reinforced metals. J Mech Phys Solids 57(3):473–499

    Article  Google Scholar 

  • Hauert A, Rossoll A, Mortensen A (2009b) Particle fracture in high-volume-fraction ceramic-reinforced metals: governing parameters and implications for composite failure. J Mech Phys Solids 57(11):1781–1800

    Article  Google Scholar 

  • Herbig M, King A, Reischig P, Proudhon H, Lauridsen EM, Marrow J, Buffière JY, Ludwig W (2011) 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography. Acta Mater 59(2):590–601

    Article  Google Scholar 

  • Hertzberg RW (1989) Deformation and fracture mechanics of engineering materials. Wiley, New York, p 680

  • Kalthoff J, Beinert J, Winkler S (1977) Measurements of dynamic stress intensity factors for fast running and arresting cracks in double-cantilever-beam specimens. Fast fracture and crack arrest, ASTM STP 627:161–176

    Article  Google Scholar 

  • Kouzeli M, Weber L, San Marchi C, Mortensen A (2001a) Influence of damage on the tensile behaviour of pure aluminium reinforced with 40 vol. pct alumina particles. Acta Mater 49(18):3699–3709

    Article  Google Scholar 

  • Kouzeli M, Weber L, San Marchi C, Mortensen A (2001b) Quantification of microdamage phenomena during tensile straining of high volume fraction particle reinforced aluminium. Acta Mater 49(3):497–505

    Article  Google Scholar 

  • Landron C, Bouaziz O, Maire E, Adrien J (2010) Characterization and modeling of void nucleation by interface decohesion in dual phase steels. Scr Mater 63(10):973–976

    Article  Google Scholar 

  • Landron C, Bouaziz O, Maire E, Adrien J (2013) Experimental investigation of void coalescence in a dual phase steel using X-ray tomography. Acta Mater 61(18):6821–6829

    Article  Google Scholar 

  • Landron C, Maire E, Bouaziz O, Adrien J, Lecarme L, Bareggi A (2011) Validation of void growth models using X-ray microtomography characterization of damage in dual phase steels. Acta Mater 59(20):7564–7573

    Article  Google Scholar 

  • Maire E, Carmona V, Courbon J, Ludwig W (2007) Fast X-ray tomography and acoustic emission study of damage in metals during continuous tensile tests. Acta Mater 55(20):6806–6815

    Article  Google Scholar 

  • Meglis I, Chow T, Martin C, Young R (2005) Assessing in situ microcrack damage using ultrasonic velocity tomography. Int J Rock Mech Min Sci 42(1):25–34

    Article  Google Scholar 

  • Miserez A, Müller R, Rossoll A, Weber L, Mortensen A (2004a) Particle reinforced metals of high ceramic content. Mater Sci Eng A 387:822–831

    Article  Google Scholar 

  • Miserez A, Rossoll A, Mortensen A (2004b) Fracture of aluminium reinforced with densely packed ceramic particles: link between the local and the total work of fracture. Acta Mater 52(5):1337–1351

    Article  Google Scholar 

  • Mokso R, Marone F, Stampanoni M (2010) Real time tomography at the swiss light source. In: SRI 2009, 10th international conference on radiation instrumentation, vol 1234. AIP Publishing, pp 87–90

  • Mokso R, Marone F, Haberthür D, Schittny J, Mikuljan G, Isenegger A, Stampanoni M (2011) Following dynamic processes by X-ray tomographic microscopy with sub-second temporal resolution. In: The 10th international conference on X-ray microscopy, vol 1365. AIP Publishing, pp 38–41

  • Pineau A, Pardoen T (2007) Failure mechanisms of metals. In: Milne I, Ritchie R, Karihaloo B (eds) Comprehensive structural integrity encyclopedia, vol 2, chapter 6. Elsevier, pp 687–783

  • Plumbridge W (1972) Review: fatigue-crack propagation in metallic and polymeric materials. J Mater Sci 7(8):939–962

    Article  Google Scholar 

  • Salvo L, Di Michiel M, Scheel M, Lhuissier P, Mireux B, Suéry M (2012) Ultra fast in situ X-ray micro-tomography: application to solidification of aluminium alloys. In: Materials science forum, vol 706. Trans Tech Publ, pp 1713–1718

  • San Marchi C, Cao F, Kouzeli M, Mortensen A (2002) Quasistatic and dynamic compression of aluminum-oxide particle reinforced pure aluminum. Mater Sci Eng A 337(1):202–211

    Article  Google Scholar 

  • Seo DC, Lee JJ (1999) Damage detection of CFRP laminates using electrical resistance measurement and neural network. Compos Struct 47(1):525–530

    Article  Google Scholar 

  • Stampanoni M, Groso A, Isenegger A, Mikuljan G, Chen Q, Bertrand A, Henein S, Betemps R, Frommherz U, Böhler P et al (2006) Trends in synchrotron-based tomographic imaging: the sls experience. In: SPIE Optics+ Photonics. International Society for Optics and Photonics, p 63,180M

  • Suéry M, Adrien J, Landron C, Terzi S, Maire E, Salvo L, Blandin JJ (2010) Fast in-situ X-ray micro tomography characterisation of microstructural evolution and strain-induced damage in alloys at various temperatures: dedicated to professor Dr. H.-P. Degischer on the occasion of his 65th birthday. Int J Mater Res 101(9):1080–1088

    Article  Google Scholar 

  • Takano H, Morikawa M, Konishi S, Azuma H, Shimomura S, Tsusaka Y, Nakano S, Kosaka N, Yamamoto K, Kagoshima Y (2013) Development of real-time X-ray microtomography system. In: Journal of Physics: conference series, vol 463. IOP Publishing, p 012025

Download references

Acknowledgments

We thank Dr. Aude Hauert (now Dr. Aude Despois) who produced and kindly provided the sample that was tested in this work at the time she was a doctoral student at EPFL. The EPFL part of this work was sponsored by the Swiss National Science Foundation, Project No. 200020-107556. José Ferreira, Christophe Goudin et Nicolas Filaire have designed the rig for fast acquisition. Merci les gars pour la tomo GVR. We acknowledge the Paul Scherrer Institut, Villigen, Switzerland for provision of synchrotron radiation beamtime at beamline TOMCAT of the SLS and would like to thank Marco Stampanoni for trust and support in difficult moments. He will probably understand what we mean.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Maire.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 19099 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maire, E., Le Bourlot, C., Adrien, J. et al. 20 Hz X-ray tomography during an in situ tensile test. Int J Fract 200, 3–12 (2016). https://doi.org/10.1007/s10704-016-0077-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0077-y

Keywords

Navigation