Skip to main content
Log in

Changes in metabolic enzymes, cortisol and glucose concentrations of Beluga (Huso huso) exposed to dietary methylmercury

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In this paper, effects of dietary methylmercury (MeHg) on several blood biochemical parameters including GLU (glucose), LDH (lactate dehydrogenase), AST (aspartate aminotransferase), ALT (alanine aminotransferase), ALP (alkaline phosphatase) and cortisol were investigated in the Beluga sturgeon (Huso huso). Beluga juveniles were fed for 32 days on four diets containing MeHg (control: 0.04 mg kg−1; low: 0.76 mg kg−1; medium: 7.88 mg kg−1; and high 16.22 mg kg−1 treatment). Significant increases (P < 0.05) were observed in all biochemical parameters, except ALP levels, which decreased significantly (P < 0.05) compared to the control group with either dose- or time-dependent effects. These results suggest that long-term dietary MeHg exposure may affect metabolic enzyme activity and glucose levels in Belugas. These findings provide useful information for environmental and fishery officials to apply in future decisions for managing fish resources in Caspian Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi M, Sako Y, Ishida Y (1996) Identification of the toxic dinoflagellates Alexandrium catenella and A. tamarense (Dinophyceae) using DNA probes and whole-cell hybridization. J Phycol 32:1049–1052

    Article  Google Scholar 

  • Agency for Toxic Substances, Disease Registry (ATSDR) (1999) Toxicological profile for mercury. Centers for Disease Control, Atlanta, Georgia

    Google Scholar 

  • Agusa T, Kunita T, Tanabe S et al (2004) Concentration of trace elements in muscle of sturgeons in the Caspian Sea. Mar Pollut Bul 49:789–800

    Article  CAS  Google Scholar 

  • Al-Majed NB, Preston MR (2000) Factors influencing the total mercury and methylmercury in the hair of the fishermen of Kuwait. Environ Pollut 109:239–250

    Article  PubMed  CAS  Google Scholar 

  • Aluru N, Vijayan MM (2009) Stress transcriptomics in fish: a role for genomic Cortisol signaling. Gene Comp Endocrin 164:142–150

    Article  CAS  Google Scholar 

  • Asadi F, Masoudifard M, Vajhi A et al (2006) Serum biochemical parameters of Huso huso. Comp Clin Path 15:245–248

    Article  CAS  Google Scholar 

  • Bahmani M, Tavakoli M (2005) Study on stock operation and renew trend of sturgeon’s fish in Iran. Paper presented at 6th Marine science conference 2005. Army Geographical Organization, Tehran, Iran

  • Boudou A, Delnomdedieu M, Georgescauld D et al (1991) Fundamental roles of biological barriers in mercury accumulation and transfer in freshwater ecosystems. Water Air Soil Pollut 56:807–821

    Article  CAS  Google Scholar 

  • Castoldi AF, Coccini T, Ceccatelli S et al (2001) Neurotoxicity and molecular effects of methylmercury. Brain Res Bullet 55:197–203

    Article  CAS  Google Scholar 

  • Chen YW, Huang CF, Tsai KS et al (2006) The role of phosphoinositide 3-kinase/Akt signaling in low-dose mercury–induced mouse pancreatic-cell dysfunction in vitro and in vivo. Diabetes 55:1614–1624

    Article  PubMed  CAS  Google Scholar 

  • De Mora S, Sheikholeslami MR (2002) SSTP: contaminant screening programme, final report: interpretation of Caspian Sea sediment data. IAEA-marine environment laboratory, Monaco, ERACL-effective regional assessment of contaminant levels. Department of environment (DOE), Tehran, Iran

  • Devlin EW (2006) Acute toxicity, uptake and histopathology of aqueous methyl mercury to fathead minnow embryos. Ecotoxicol 15:97–110

    Article  CAS  Google Scholar 

  • Eisler R (2004) Mercury hazards from gold mining to humans, plants, and animals. Rev Environ Contam Toxicol 181:139–198

    Article  PubMed  CAS  Google Scholar 

  • El-Demerdash FM, Elagamy EI et al (1999) Biological effects in Tilapia nilotica fish as indicators of pollution by cadmium and mercury. Int J Environ Health Res 9:143–156

    Article  Google Scholar 

  • Evans GO (1996) Animal clinical chemistry, prime toxicologist. Taylor and Francis, Bristol, PA

    Google Scholar 

  • Gharaei A, Esmaili-Sari A, Jafari-shamoshaki J et al (2008) Beluga (Huso huso, Brandet 1869) bioenergetics under dietary methylmercury. Fish Physiol Biochem 34:473–482

    Article  PubMed  CAS  Google Scholar 

  • Gharaei A, Mahboudi F, Esmaili-Sari A et al. (2009) Molecular cloning of cDNA of mammalian and chicken II gonadotropin-releasing hormones (mGnRHs and cGnRH-II) in the beluga (Huso huso) and the disruptive effect of methylmercury on gene expression. Fish Physiol Biochem. doi:10.1007/s10695-009-9356-0

  • Gill ST, Tewari H, Pande J (1990) Use of the fish enzyme system in monitoring water quality: effects of mercury on tissue enzymes. Com Biochem Physiol 97:287–292

    Article  CAS  Google Scholar 

  • Giri SN, Hollinger MA (1995) Effect of cadmium on lung lysosomal enzymes in vitro. Arch Toxicol 69:5341–5345

    Article  Google Scholar 

  • Gochfeld M (2003) Cases of mercury exposure, bioavailability, and absorption. Ecotoxic Environ Safe 56:174–179

    Article  CAS  Google Scholar 

  • Gotelli CA, Astolfi E, Cox C et al (1985) Early biochemical effects of an organo-mercury fungicide on infants: “dose makes the poison”. Science 227:638–640

    Article  PubMed  CAS  Google Scholar 

  • Hoffman DJ, Heinz G (1998) Effects of mercury and selenium on glutathione metabolism and oxidative stress in mallard ducks. Environ Toxicol Chem 17:161–166

    Article  CAS  Google Scholar 

  • Hoffman DJ, Spalding M, Frederick P (2005) Subchronic effects of methylmercury on plasma and organ biochemistries in great egret nestlings. Environ Toxicol Chem 4(12):3078–3084

    Article  Google Scholar 

  • Keyvanshokooh S, Vaziri B, Gharaei A et al (2009) Proteome modifications of juvenile beluga (Huso huso) brain as an effect of dietary methylmercury. Comp Biochem Physiol Part D: Genom Proteom 4:243–248

    Google Scholar 

  • Kubïlay A, Uluköy G (2002) The effects of acute stress on rainbow trout (Oncorhynchus mykiss). Turk J Zool 26:249–254

    Google Scholar 

  • Lakishma R, Kundu R, Thomas E et al (1991) Mercuric chloride induced inhibition of acid and alkaline phosphatase activity in the kidney of mudskipper; Boleophthalmus dentatus. Acta Hydrochim Hydrobiol 3:341–344

    Article  Google Scholar 

  • Lawrence AJ, Hemingway KL (2003) Effects of pollution on fish: molecular effects and population responses. Blackwell Science Ltd., Oxford, pp 141–151

    Google Scholar 

  • Limke TL, Heidemann SR, Atchison WD (2004) Disruption of intraneuronal divalent cation regulation by methylmercury: are specific targets involved in altered neuronal development and cytotoxicity in methylmercury poisoning? Neurotoxicol 25:741–760

    Article  CAS  Google Scholar 

  • Martinez-Porchas M, Martinez-Cordova LR, Ramos-Enriquez R (2009) Cortisol and glucose: reliable indicators of stress? Pan Am J Aquat Sci 4:158–178

    Google Scholar 

  • Masola B, Chibi M, Kandare E, Naik YS, Zaranyika MF (2008) Potential marker enzymes and metal–metal interactions in Helisoma duryi and Lymnaean atalensis exposed to cadmium. Ecotoxicol Environ Saf 70:79–87

    Article  PubMed  CAS  Google Scholar 

  • Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9:211–268

    Article  Google Scholar 

  • Mosconi G, Cardinaletti G, Carotti M et al (2005) Neuroendocrine mechanisms regulating stress response in cultured teleost species. In: Reinecke M, Zaccone G, Kapoor BG (eds) Fish Endocrinology, vol 2. Science Publisher, Enfield, NH, USA, pp 693–720

    Google Scholar 

  • National Research Council (NRC) (2000) Toxicological effects of methylmercury board on environmental studies and toxicology. Commission on life sciences, national research council. National Academy Press, Washington, DC

    Google Scholar 

  • Oliviera Robeiro CA, Belger L, Pelletier É et al (2002) Histopathological evidence of inorganic mercury and methylmercury toxicity in the artic charr (Salvelinus alpinus). Environ Res 90:217–225

    Article  Google Scholar 

  • Pourali HR, Mohseni M, Alizadeh M (2006) Comparison of beluga (Huso huso) growth rate in brackish and fresh-water. Iranian Scient Fish J 15:43–50 [In farsi]

    Google Scholar 

  • Shahsavani D, Mohri M, Gholipour Kanani H (2010) Determination of normal values of some blood serum enzymes in Acipenser stellatus Pallas. Fish Physiol Biochem 36:39–43

    Article  PubMed  CAS  Google Scholar 

  • Shakoori AR, Aslam M, Sabir M et al (1992) Effect of prolonged administration of insecticide (cyhalothrin/karate) on the blood and liver of rabbits. Folia Biol Krakw 40:91–99

    CAS  Google Scholar 

  • Shakoori AR, Iqbal MJ, Mughal AL (1996) Effects of sublethal doses of fenvalerate (a synthetic pyrethroid) administered continuously for four weeks on the blood, liver and muscles of a freshwater fish, Ctenopharyngodon idella. Bull Environ Contam Toxicol 57:487–494

    Article  PubMed  CAS  Google Scholar 

  • Shanker G, Mutkus LA, Walker SJ et al (2002) Methylmercury enhances arachidonic acid release and cytosolic phospholipase A2 expression in primary cultures of neonatal astrocytes. Brain Res Mol 106:1–11

    Article  CAS  Google Scholar 

  • Thrall MA, Baker DC, Campbell TW et al (2004) Veterinary hematology and clinical chemistry. Williams and Wilkins, Philadelphia, pp 486–490

    Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    PubMed  CAS  Google Scholar 

  • Wood CM, Hogstrand C, Galvez F et al (1996) The physiology of water borne silver toxicity in freshwater (Oncorhynchus mykiss), I. the effects of ionic Ag+. Aquat Toxicol 35:93–109

    Article  CAS  Google Scholar 

  • Yasutake A, Nakano A, Miyamoto K et al (1997) Chronic effects of methylmercury in rats. I. Biochemical aspects. Tohoku J Exp Med 182:185–196

    Article  PubMed  CAS  Google Scholar 

  • Zalups RK (2000) Molecular interactions with mercury in the kidney. Pharmacol Rev 52:113–143

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Gharaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gharaei, A., Ghaffari, M., Keyvanshokooh, S. et al. Changes in metabolic enzymes, cortisol and glucose concentrations of Beluga (Huso huso) exposed to dietary methylmercury. Fish Physiol Biochem 37, 485–493 (2011). https://doi.org/10.1007/s10695-010-9450-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-010-9450-3

Keywords

Navigation