Skip to main content
Log in

Effect of dietary chromium picolinate on growth performance and blood parameters in grass carp fingerling, Ctenopharyngodon idellus

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

An experiment was conducted to investigate the effect of dietary chromium picolinate supplement on growth and haematology parameters of grass carp, Ctenopharyngodon idellus. Six diets with increasing dietary chromium picolinate levels 0, 0.2, 0.4, 0.8, 1.6 and 3.2 mg kg−1 were fed to triplicate groups of 20 fish (initial weight of 12.78 ± 1.16 g, mean ± SD) in a flow water system for 10 weeks. Fish fed the diet supplemented with 0.8 mg Cr kg−1 had significantly improved weight gain (WG), feed efficiency ratio (FER), protein efficiency ratio (PER) and protein retention (PR). Fish fed high-chromium diets exhibited lower whole-body crude lipid contents than fish fed low-chromium diets. Liver glycogen concentrations for fish fed the diet with 0.2 mg Cr kg−1 was the highest (77.67 mg g−1). Fish fed the diet supplemented with 1.6 and 3.2 mg Cr kg−1 had significantly lower liver glycogen concentrations than other groups (P < 0.05). The highest serum insulin concentrations were observed in fish fed the diet supplemented with 0.8 mg Cr kg−1, but serum insulin concentrations decreased (P < 0.05) when dietary supplementation of chromium was higher than 0.8 mg Cr kg−1. Cholesterol concentrations decreased in direct proportion to dietary chromium level and achieved the lowest level when the fish were fed the 0.8 mg Cr kg−1 diet, but increased when the fish were fed the diet with more than 0.8 mg Cr kg−1 (P < 0.05). Fish fed the diet supplemented with 0.8 mg Cr kg−1 had higher triglyceride and high-density lipoprotein cholesterol (HDL-C) concentrations compared to other treatments. The results of the present study suggested that chromium picolinate could modify serum carbohydrate and lipid metabolism profile, and that the optimal dietary chromium level was 0.8 mg kg−1 for grass carp according to growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson R, Mertz AW (1997) Glucose tolerance factor: an essential dietary agent. Trends Biochem Sci 2:277–284. doi:10.1016/0968-0004(77)90280-8

    Article  Google Scholar 

  • Anderson RA, Polansky MM, Bryden NA, Canary JJ (1991) Supplemental-chromium effects on glucose, insulin, glucagon and uninary chromium losses in subjects consuming controlled low-chromium diets. Am J Clin Nutr 54:909–916

    Article  CAS  Google Scholar 

  • AOAC (Association of Official Analytical Chemists) (1984) In: Horwitz W (ed) Official methods of analysis, 14th edn. AOC, Washington, DC, pp 152–160

  • Doisy RJ, Streeten DHP, Frieberg JM, Schneider AJ (1976) Chromium metabolism in man and biochemical effects. In: Prasad AS (ed) Trace elements in human health and disease, vol 2. Academic, New York, pp 97–104

    Google Scholar 

  • Duguay SJ, Mommsen TP (1994) Fish physiology, Vol. XIII. Molecular endocrinology of fish. In: Sherwood NM, Hew CL (eds) Molecular aspects of pancreatic peptides. Academic, San Diego, CA, pp 225–271

    Google Scholar 

  • Gang X, Zirong X, Si HW (2001) Effects of chromium picolinate on growth performance, carcass charcteristies, serum metabolites and metabolism of lipid in pigs. Asian Aust J Anim 14:258 (Abstract)

    Article  Google Scholar 

  • Gatta PP, Piva A, Paolini M, Testi S, Bonaldo A, Antelli A, Mordenti A (2001) Effects of dietary organic chromium on gilthead seabream (Sparus aurata L.) performances and liver microsomal metabolism. Aquacult Res 32:60–69. doi:10.1046/j.1355-557x.2001.00005.x

    Article  CAS  Google Scholar 

  • Gray WE, Bowman TD (1992) Chromium picolinate increase membrane fluidity and rate of insulin internalization. J Inorg Biochem 46:243–250. doi:10.1016/0162-0134(92)80034-S

    Article  Google Scholar 

  • Hertz Y, Mader Z, Hepher B, Gertler A (1989) Glucose metabolism in the common carp (Cyprinus carpio L.): the effects of cobalt and chromium. Aquaculture 76:255–267. doi:10.1016/0044-8486(89)90079-3

    Article  CAS  Google Scholar 

  • Jain KK, Sinha A, Srivastava PP, Berendra DK (1994) Chromium: an efficient growth enhancer in Indian major carp, Labeo rohita. J Aquac Trop 9:49–54

    Google Scholar 

  • Jain SK, Rains JL, Croad JL (2007) Effect of chromium niacinate and chromium picolinate supplementation on lipid peroxidation, TNF-α, IL-6, CRP, glycated hemoglobin, triglycerides, and cholesterol levels in blood of streptozotocin-treated diabetic rats. Free Radic Biol Med 43:1121–1123. doi:10.1016/j.freeradbiomed.2007.05.019

    Article  Google Scholar 

  • Jobling M (1994) Biotic factors and growth performance. In: Jobling M (ed) Fish bioenergetics. Chapman Hall, London, pp 169–206

    Google Scholar 

  • Kegley EB, Spears JW (1995) Immune response, glucose metabolism, and performance of stressed feeder calves fed inorganic or organic chromium. J Anim Sci 73:2721–2726

    Article  CAS  Google Scholar 

  • Kim YH, Han IK, Choi YJ, Shin IS, Chae BJ, Kang TH (1996) Effects of dietary levels of chromium picolinate on growth performance, carcass quality and serum traits in broiler chicks. Asian Aust J Anim 9:341–347

    Article  CAS  Google Scholar 

  • Kornegay ET (1996) Organic vs inorganic trace minerals for swine: copper, zinc, and chromium. Proceedings of the Canadian feed industry association eastern nutrition conference. Halifax, Nova Scotia, Canada, pp 65–83

  • Kucukbay FZ, Yazlak H, Sahin N, Cakmak MN (2006) Effects of dietary chromium picolinate supplementation on serum glucose, cholesterol and minerals of rainbow trout (Oncorhynchus mykiss). Aquacult Int 14:259–266. doi:10.1007/s10499-005-9030-1

    Article  Google Scholar 

  • Levine RA, Streeten DH, Doisy RJ (1968) Effects of oral chromium supplementation on the glucose tolerance of elderly human subjects. Metabolism 17:114–125. doi:10.1016/0026-0495(68)90137-6

    Article  CAS  Google Scholar 

  • Lien TF, Horng YM, Yang KH (1999) Performance, serum characteristics, carcase traits and lipid metabolism of broilers as affected by supplement of chromium picolinate. Br Poult Sci 40:357–363. doi:10.1080/00071669987458

    Article  CAS  Google Scholar 

  • Lin YH, Liu JM, Fu HG, Liang ZL, Zhao SM, Ma JJ (2003) Effect of chromium on growth and plasma biochemical indexes of Cyprinus carpio juveniles. J Dalian Fish Univ 18:48–51 (Abstract)

    CAS  Google Scholar 

  • Linder MC (1991) Nutrition and metabolism of the trace elements. In: Linder MC (ed) Nutritional biochemistry and metabolism with clinical applications. Elsevier, New York, pp 215–276

    Google Scholar 

  • Mertz W (1969) Chromium occurrence and function in biological systems. Physiol Rev 49:163–239

    Article  CAS  Google Scholar 

  • Mertz W (1993) Chromium in human nutrition: a review. J Nutr 123:626–633

    Article  CAS  Google Scholar 

  • Morris B, Gray T, MacNeil S (1995) Evidence for chromium acting as an essential trace element in insulindependent glucose uptake in cultured mouse myotubes. J Endocrinol 144:135–141. doi:10.1677/joe.0.1440135

    Article  CAS  Google Scholar 

  • Mossop RT (1983) Effects of chromium I11 on fasting blood glucose, cholesterol and cholesterol HDL in diabetics. Cent Afr J Med 29:80

    CAS  PubMed  Google Scholar 

  • Mowat DN (1994) Organic chromium, a new supplemental nutrient for stressed animals. In: Lyons TP, Jacques KA (eds) Biotechnology in the feed industry. Nottingham University Press, Nottingham, UK, pp 275–282

    Google Scholar 

  • Murat JC, Serfaty A (1974) Simple determination of polysaccharide (glycogen) content of animal tissues. Clin Chem 20:1576–1577

    CAS  PubMed  Google Scholar 

  • NRC (1989) Recommended dietary allowances. National Academy Press, Washington, DC

    Google Scholar 

  • NRC (1997) The role of chromium in animal nutrition. National Academy Press, Washington, DC

    Google Scholar 

  • Olin KL, Starnes DM, Amstrong WH, Kearn CL (1994) Comparative retention/absorption of 51Cr from 51Cr chloride, 51Cr nicotinate, and 51Cr picolinate in a rat model. Trace Elem Electrol 11:182

    CAS  Google Scholar 

  • Page TG, Southern LL, Ward TL, Thompson DL Jr (1993) Effect of chromium picolinate on growth and serum and carcass traits of growing-finishing pigs. J Anim Sci 71:656–662

    Article  CAS  Google Scholar 

  • Pan Q, Bi YZ, Yan XL, Pu YY, Zheng C (2002) Effect of organic chromium on carbohydrate utilization in hybrid tilapia (Oreochromis niloticus × O. aureus). Acta Hydrobiol Sin 26(4):393–399 (Abstract)

    CAS  Google Scholar 

  • Pan Q, Liu S, Tan YG, Bi YZ (2003) The effect of chromium picolinate on growth and carbohydrate utilization in tilapia, Oreochromis niloticus × Oreochromis aureus. Aquaculture 225:421–429. doi:10.1016/S0044-8486(03)00306-5

    Article  CAS  Google Scholar 

  • Riales R, Albrink MJ (1981) Effect of chromium chloride supplementation on glucose tolerance and serum lipids including high-density lipoprotein of adult men. Am J Clin Nutr 34:2670

    Article  CAS  Google Scholar 

  • Rosebrough W, Steele NC (1981) Effect of supplemental dietary chromium or nicotic acid on carbonhydrate metabolism during basal, starvation and refeeding periods in poults. Poult Sci 60:407–411

    Article  CAS  Google Scholar 

  • Sahin K, Cerci IH, Guler T, Sahin N, Erkal N (1997) Effect of chromium added basal diet on serum glucose, insulin, cortisol, alkaline phosphatase and feedlot performance in rabbits. Turk J Vet Anim Sci 21:147–152

    Google Scholar 

  • Sahin K, Kucuk O, Sahin N (2001a) Effects of dietary chromium picolinate supplementation on performance and plasma concentrations of insulin and corticosterone in laying hens under low ambient temperature. J Anim Physiol Anim Nutr (Berl) 85:142–147. doi:10.1046/j.1439-0396.2001.00314.x

    Article  CAS  Google Scholar 

  • Sahin K, Kucuk O, Sahin N, Ozbey O (2001b) Effects of dietary chromium picolinate supplementation on egg production, egg quality and serum concentrations of insulin, corticosterone, and some metabolites of Japanese quails. Nutr Res 21:1315–1321. doi:10.1016/S0271-5317(01)00330-X

    Article  CAS  Google Scholar 

  • Saiady MY, Shaikh MA, Mufarrej SI, Showeimi TA, Mogawer HH, Dirrar A (2004) Effect of chelated chromium supplementation on lactation performance and blood parameters of Holstein cows under heat stress. Anim Feed Sci Technol 117:223–233. doi:10.1016/j.anifeedsci.2004.07.008

    Article  Google Scholar 

  • Shiau SY, Chen MJ (1993) Carbohydrate utilization by tilapia (Oreochromis niloticus × O. aureus) was influenced by different chromium sources. J Nutr 123:1747–1753

    Article  CAS  Google Scholar 

  • Shiau SY, Liang HS (1995) Carbohydrate utilization and digestibility by tilapia, Oreochromis niloticus × O. aureus, are affected by chromic oxide inclusion in the diet. J Nutr 125:976–982

    CAS  PubMed  Google Scholar 

  • Shiau SY, Lin SF (1993) Effect of supplemental dietary chromium and vanadium on the utilization of different carbohydrates in tilapia, Oreochromis niloticus × O. aureus. Aquaculture 110:321–330. doi:10.1016/0044-8486(93)90379-D

    Article  CAS  Google Scholar 

  • Shiau SY, Shy SM (1998) Dietary chromic oxide inclusion level required to maximize glucose utilization in hybrid tilapia, Oreochromis niloticus × O. aureus. Aquaculture 161:357–364. doi:10.1016/S0044-8486(97)00283-4

    Article  CAS  Google Scholar 

  • Steele NC, Rosebrough RW (1979) Trivalent chromium and nicotinic acid supplementation for the turkey poult. Poult Sci 58:983

    Article  CAS  Google Scholar 

  • Steele NC, Rosebrough RW (1981) Effect of trivalent chromium on hepatic lipogenesis by the turkey poult. Poult Sci 60:617–622

    Article  CAS  Google Scholar 

  • Tacon AGJ, Beveridge MM (1982) Effects of dietary trivalent chromium on rainbow trout. Nutr Rep Int 25:49–56

    CAS  Google Scholar 

  • Underwood EJ (1977) Chromium. In: Underwood EJ (ed) Trace elements in human and animal nutrition, 4th edn. Academic, New York, pp 258–270

    Chapter  Google Scholar 

  • Urbanczyk J, Hanczakowska E, Swiatkiewicz M (1999) Betaine and organic chromium as the feed additives in pig nutrition. Anim Sci 38:593–598

    Google Scholar 

  • Wang MQ, Xu ZR, Zha LY, Lindemann MD (2007) Effects of chromium nanocomposite supplementation on blood metabolites, endocrine parameters and immune traits in finishing pigs. Anim Feed Sci Technol 139:69–80. doi:10.1016/j.anifeedsci.2006.12.004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by Key Projects in the National Science & Technology Pillar Program in the 11th 5-year Plan Period, China (grant no. 2006BAD03B03). The authors are grateful to Professor Z.L. Wang for her kind comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Wen, H., Jiang, M. et al. Effect of dietary chromium picolinate on growth performance and blood parameters in grass carp fingerling, Ctenopharyngodon idellus . Fish Physiol Biochem 36, 565–572 (2010). https://doi.org/10.1007/s10695-009-9327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-009-9327-5

Keywords

Navigation