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Abstract

This study was aimed to characterize the distribution of colorectal cancer risk using family history 

of cancers by data mining. Family histories for 10,066 colorectal cancer cases recruited to 

population cancer registries of the Colon Cancer Family Registry were analyzed using a data 

mining framework. A novel index was developed to quantify familial cancer aggregation. 

Artificial neural network was used to identify distinct categories of familial risk. Standardized 

incidence ratios (SIRs) and corresponding 95% confidence intervals (CIs) of colorectal cancer 
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were calculated for each category. We identified five major, and sixty-six minor categories of 

familial risk for developing colorectal cancer. The distribution the major risk categories were: (i) 

7% of families (SIR=7.11; 95%CI=6.65–7.59) had a strong family history of colorectal cancer; (ii) 

13% of families (SIR=2.94; 95%CI=2.78–3.10) had a moderate family history of colorectal 

cancer; (iii) 11% of families (SIR=1.23; 95%CI=1.12–1.36) had a strong family history of breast 

cancer and weak family history of colorectal cancer; (iv) 9% of families (SIR=1.06; 95% 

CI=0.96–1.18) had a strong family history of prostate cancer and a weak family history of 

colorectal cancer; and (v) 60% of families (SIR=0.61; 95%CI=0.57–0.65) had weak family history 

of all cancers. There is a wide variation of colorectal cancer risk that can be categorized by family 

history of cancer, with a strong gradient of colorectal cancer risk between the highest and lowest 

risk categories. The risk of colorectal cancer for people with the highest risk category of family 

history (7% of the population) was 12-times that for people in the lowest risk category (60%) of 

the population. Data mining was proven an effective approach for gaining insight into the 

underlying cancer aggregation patterns and for categorizing familial risk of colorectal cancer.
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INTRODUCTION

The risk of colorectal cancer is strongly associated with family history of colorectal cancer. 

First-degree relatives of colorectal cancer cases have, on average, an approximate two-fold 

risk of the disease compared with those without a family history [1, 2]. Knowledge of this 

risk factor, has led to the development of guidelines for colorectal cancer screening based on 

family history and research to identify the genetic factors that contribute to this familial risk. 

Hereditary cancer syndromes, such as Lynch syndrome and familial adenomatous polyposis, 

for which underlying genetic mutations have been identified, are major achievements, yet 

account for the minority of this familial aggregation [3]. A more comprehensive assessment 

of how familial aggregation of cancer affects colorectal cancer risk, and the distribution of 

this risk, would provide the basis for formulating new genetic and genomic research, and 

development of improved clinical management of colorectal cancer families, including 

refining targeted genetic and cancer screening recommendations. The distribution of familial 

risk was first analyzed by Fain and Goldgar using a non-parametric test applying to breast 

cancer family history data [4].

Most studies investigating associations between family history and risk of colorectal cancer 

have limited their analysis of family history to first-degree relatives only [5–10] with only a 

few that included up to third-degree relatives [1, 11]. Most have not considered family 

history of cancers other than colorectal and have used simple counts of cancers without 

considering the size of the family or degree of relationship. A limitation of this approach is 

that the underlying association between the constellation of affected relatives and the 

patterns of aggregation of cancer in relatives is not taken into account. A more 

comprehensive approach is to address the question:
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“What is a person’s risk of colorectal cancer if l of this person’s x first-degree 

relatives had cancer a, b, c …, and m of this person’s y second-degree relatives had 

cancer a, b, c, …, and n of this persons’s z third-degree relatives had cancer a, b, c, 

…?”

To the best of our knowledge, no study has reported the distribution of risk of colorectal 

cancer, taking into consideration both the underlying association between the patterns of 

affected relatives (constellations) and the spectrum of co-aggregating cancers 

(aggregations). We have attempted to fill this gap by conducting a novel data mining 

approach to identify categories of familial risk by clustering constellations and aggregations 

simultaneously.

MATERIALS AND METHODS

Study Sample

We studied population-based colorectal cancer families recruited to the Colon Cancer 

Family Registry [12]. Detail description of recruitment can be found at http://coloncfr.org/. 

For this analysis, we studied the families that were recruited through recently diagnosed 

invasive colorectal cancer cases (population-based probands) from state or regional 

population cancer registries in the USA (Washington, California, Arizona, Minnesota, 

Colorado, New Hampshire, North Carolina, and Hawaii), Australia (Victoria) and Canada 

(Ontario) between 1997 and 2007. Population-based probands were recruited regardless of 

having a family history of cancer. Written informed consent was obtained from all study 

participants, and the study protocol was approved by the institutional research ethics review 

board at each study center.

Data Collection

Information on demographics, personal characteristics, personal and family history of 

cancer, cancer-screening history, and history of polyps, polypectomy, and other surgeries 

was obtained by questionnaires from all probands and participating relatives. Cancer 

histories were also cross checked across multiple relatives from within the same family, not 

just the probands. Participants were followed up approximately every five years after 

baseline to update this information. The present study was based on all available baseline 

and follow-up data. Reported cancer diagnoses and age at diagnosis were confirmed, where 

possible, using pathology reports, medical records, cancer registry reports, and death 

certificates. Blood samples and permission to access tumor tissue were requested from all 

participants.

Mismatch repair (MMR) gene mutation testing

Testing for germline mutations in MLH1, MSH2, MSH6 and PMS2 was performed for all 

population-based probands who had a colorectal cancer displaying MMR deficiency as 

evidenced by either tumor microsatellite instability and/or lack of MMR protein expression 

by immunohistochemistry. Details of germline testing methods have been described 

elsewhere [13]. A pathogenic mutation was defined as a variant that was predicted to result 

in a stop codon, a frameshift mutation, a large duplication or deletion, or a missense 
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mutation in the coding region or splice site previously reported within the scientific 

literature and databases to be pathogenic (InSiGHT database; http://insight-group.org/

variants/classifications/). The relatives of probands with a pathogenic MMR germline 

mutation, who provided a blood sample, underwent testing for the specific mutation 

identified in the proband.

Definitions

Self-organizing map [14] is a method for projecting high-dimensional data onto low-

dimensional output display. A node corresponds to a group of families with similar familial 

aggregation vectors and is determined using a self-organizing map. K-means [15] is a 

technique for partitioning data into optimal groups. A cluster is a grouping of nodes on the 

self-organizing map detected by k-means. A codebook vector refers to the weight vector of 

each node for the self-organizing map. A prototype vector is used to describe the mean 

weight vector for a cluster computed by k-means.

Statistical Analysis

Data mining framework—To analyze family history, we used data mining [16] to reveal 

patterns of familial aggregation that can be used to estimate the colorectal cancer risk of an 

individual based on their family history of cancers. Every family was represented by a 

vector modeling family history of cancer. These vectors became the inputs to the clustering 

algorithms, including the self-organizing map [14] and k-means [15], to identify nodes and 

clusters. Finally, the risk of colorectal cancer was estimated for each detected nodes and 

cluster (see Supplementary Figure 1).

(1) Familial aggregation: Family history of each cancer type was transformed into a 

familial aggregation index that encapsulated the aggregation in each family with the key 

property that family history of cancer for a person is stronger the larger numbers of relatives 

with cancer and the closer the genetic relationship they have to these affected relatives. To 

this end, the vector of familial aggregation of all cancers for each family based on the 

familial relationship to the proband, was calculated as follows:

where F_Aggci is a familial aggregation index defined as:

with

#FDR, #SDR, #TDR as the numbers of first-, second- and third-degree relatives the 

proband has, and

#FDRci, #SDRci, #TDRci as the numbers of first-, second- and third-degree relatives of 

the proband being affected by cancer ci.
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(2) Cluster detection: First, the self-organizing map [14] (a non-parametric clustering 

algorithm from the artificial neural network [17] discipline) was applied to group families 

with similar family history as defined by their familial aggregation index into nodes so that 

neighboring nodes are more similar than distant ones. Second, k-means [15] was used to 

identify global characteristics of familial aggregation by partitioning the nodes into larger 

clusters so that similarity within cluster and difference between clusters were maximized.

A 6×12 (72 nodes) self-organizing map was used. The number of nodes was initially set to 

, where n was the number of families, and the vertical and horizontal dimension was 

defined by the ratio of the two largest eigenvalues of the dataset. The final map size used 

was chosen by scaling up or down the reference map to achieve maximum map resolution 

within computational constraints [18].

To find a global perspective for the familial aggregation, families grouped by nodes on the 

self-organizing map were further clustered using k-means, where k is the number of clusters 

to be found. K-means is a partitioning clustering algorithm useful for providing groupings 

with explicit cluster boundaries [15]. All cluster detection tasks were done using the 

scientific programming package Matlab R2012a [19]. Technical details of the cluster 

detection step, including (1) clustering families using the self-organizing map, (2) 

partitioning self-organizing map using k-means, and (3) distance measure for measuring 

similarity of familial aggregation, are described in the Appendix A, B and C, respectively.

(3) Epidemiologic analysis: To determine the degree of colorectal cancer risk for family 

members of each node and cluster compared with the general population, we estimated the 

standardized incidence ratio (SIR) by dividing the numbers of colorectal cancers observed in 

all family members (excluding the proband) of each node and cluster by the expected 

numbers [20]. The expected numbers of colorectal cancers for each node and cluster were 

calculated by multiplying the age-, sex-, and country-specific incidence for the general 

population by the corresponding observation time (i.e. age) of the family members. Age- 

and sex-specific cancer incidences for each country in 1988–1992 were obtained from the 

Cancer Incidence in Five Continents [21]. The corresponding 95% confidence intervals 

(CIs) were calculated by taking into account familial correlation of cancer risk between 

relatives using the Jackknife method [22].

To deal with missing age(s) at diagnosis of cancer for affected relatives, we assumed the 

median age at diagnosis for each cancer in the general population obtained from 

Surveillance, Epidemiology and End Results Cancer Statistics Review [23]. Unaffected 

relatives for whom no information on age was available were censored at birth and therefore 

did not contribute to the analysis. All epidemiologic analysis was done using Stata 11.0 [24].

We conducted a sensitivity analysis to assess the role of an inherited cancer risk syndrome 

on familial clustering and SIR estimation by excluding the 201 families known to be 

carrying a DNA mismatch repair gene mutation (Lynch syndrome families). We conducted a 

sensitivity analysis to assess the role of family history of third-degree relatives by restricting 

analysis to only first- and second-degree relatives.
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RESULTS

Of the 10,407 families identified from population-based resources of the Colon Cancer 

Family Registry, 341 families (3%) were excluded because of having less than four family 

members. The remaining 10,066 families that contained 181,555 individuals (90,188 

women) were included. On average, each family had 7 first-degree relatives, 9 second-

degree relatives and 5 third-degree relatives (Table 1). We identified sixty-six minor clusters 

of familial risk for developing colorectal cancer (Figure 1). There were 5 major clusters 

corresponding to an optimal partition capturing the most representative family history 

patterns associated with various degrees of risk for developing colorectal cancer 

(Supplementary Figure 2). Demographic characteristics of each cluster are summarized in 

Table 2.

Identification of the familial risk

There was a moderate variation in colorectal cancer risk across nodes within each cluster 

(Figure 1) and a wide variation in colorectal cancer risk across clusters in terms of both the 

type and strength of aggregation of extracolonic cancers and the strength of aggregation of 

colorectal cancer (Figure 2).

Familial risk for each cluster

Members of families with the strongest aggregation of colorectal cancer had the highest risk 

of the disease (Cluster 5 in Figure 2), with an average seven-fold increased risk of colorectal 

cancer compared with the general population (SIR = 7.11; 95% CI = 6.65 to 7.59). Within 

this cluster, the increased risk of colorectal cancer ranged from 1.64 to 4.22 (between the 13 

nodes). This cluster comprised 1,353 families, which was 13% of all families, and the 

median age of disease onset was 69 (inter-quartile range 52–72) years. Members of families 

with the second highest aggregation of colorectal cancer (Cluster 4 in Figure 2), had an 

average three-fold increased risk of colorectal cancer (SIR = 2.94; 95% CI = 2.78 to 3.10). 

Within this cluster, the increased risk of colorectal cancer ranged from 1.64 to 4.22 (between 

the 13 nodes). This cluster comprised 1,353 families, which was 13% of all families, and the 

median age of disease onset is 69 (inter-quartile range 52–72) years. In contrast, colorectal 

cancer risk was the lowest for members of families with weak aggregation of colorectal 

cancer (Cluster 1 in Figure 2). They had an average risk of colorectal cancer 40% lower than 

the general population (SIR = 0.61; 95% CI = 0.57 to 0.65). Within this cluster, the 

increased risk of colorectal cancer ranged from 0.1 to 2.34 (between the 24 nodes). This 

cluster comprised 5,969 families, which was 60% of all families, and the median age of 

disease onset was 70 (inter-quartile range 56–72) years.

Members of families with a strong aggregation of breast cancer and weak aggregation of 

colorectal cancer (Cluster 3 in Figure 2) had a modest increased risk of colorectal cancer 

(SIR = 1.23; 95% CI = 1.12 to 1.36) i.e., familial aggregation of breast cancer was a risk 

factor for colorectal cancer. Within this cluster, the increased risk of colorectal cancer 

ranged from 0.24 to 3.89 (between the 10 nodes). This cluster comprised 1,087 families, 

which was 11% of all families, and the median age of disease onset was 71 (inter-quartile 

range 61–72) years. Members of families with a strong aggregation of prostate cancer and 
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weak aggregation of colorectal cancer (Cluster 2 in Figure 2) had no increased risk of 

colorectal cancer (SIR = 1.06; 95% CI = 0.96 to 1.18) i.e., familial aggregation of prostate 

cancer was not a risk factor for colorectal cancer. Within this cluster, the increased risk of 

colorectal cancer ranged from 0.27 to 2.93 (between the 11 nodes). This cluster comprised 

915 families, which was 9% of all families, and the median age of disease onset was 71 

(inter-quartile range 43–74) years.

Extracolonic cancers co-aggregated with colorectal cancer in all five clusters but the 

aggregations were all weak and no particular cancer appeared to be a risk factor for 

colorectal cancer except in Cluster 3. Averaged across all nodes in all clusters weighted by 

the number of families in each node, the SIR was 1.59 (95% CI = 1.54 to 1.65).

Distribution of familial risks by clusters

Figure 3A shows the distribution of SIRs of colorectal cancer for all family members within 

each node for each of the five clusters. Familial risk distributions were similarly right 

skewed for Clusters 1, 2 and 3): about 90% of families in Cluster 1 had a lower risk of 

colorectal cancer than the general population; about 80% in Cluster 2; and about 60% in 

Cluster 3. When we compared the familial risks (expressed as SIRs) between different 

clusters, there was a strong gradient between them (Figure 3B). The ratio of the SIRs 

between the highest risk category of family history (Cluster 5) and the lowest risk category 

(Cluster 1), was 11.67. When combined across all nodes in all clusters, i.e. all families, the 

overall distribution of familial risks in the whole study sample was right skewed with a long 

tail (Figure 4).

Sensitivity analyses

There were 201 (2%) families in which at least one family member was identified as having 

a MMR gene mutation (Lynch syndrome). Excluding the Lynch syndrome families made no 

substantial difference to the findings in terms of self-organizing map patterns, distributions 

of aggregating cancers in families, age at diagnosis, or SIR of colorectal cancer in any 

cluster (Supplementary Figure 3). The distribution of familial clusters for Lynch syndrome 

families, median age at diagnosis and SIR of colorectal cancer for each cluster are shown in 

Supplementary Table 1. Similarly, excluding all third-degree relatives made no substantial 

difference (detail data not shown).

DISCUSSION

In this study, we identified patterns of familial aggregation and simultaneously assessed risk 

of colorectal cancer for these familial aggregation patterns, instead of estimating risk only 

based on numbers of affected relatives and degree of relatedness as in previous studies [25–

28]. We used a novel data mining approach, which facilitated the clustering of both 

constellation patterns and familial cancer aggregation. The multivariable nature of this 

approach is particularly relevant for examining risk where cancers at multiple organ sites 

can co-aggregate within the family.

We found that the overall distribution of the familial risks of colorectal cancer across the 

whole study sample (all of whom had at least one relative with colorectal cancer, i.e. the 
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proband) to be right skewed (Figure 4). This is consistent with the description of familial 

risks of people in the general population by Hopper [29] (see Figure 2 in [29]): under the 

assumption of a multiplicative polygenic risk model, the distribution of familial risks for 

colorectal cancer for the general population (and in our case, families with at least one 

colorectal cancer) is skewed with a long tail, and the mode of the familial risk is 

substantially below the population average of 5% risk. Moreover, a trend parallel to 

Hopper’s description was clearly observed in our cluster familial risk distributions. The 

average familial risk distributions spread further to the right as more close relatives are 

affected [29, 30]. Starting from the lowest risk category (Cluster 1), as the average familial 

risk increases (Cluster 2 and 3), the distribution of the familial risks moves to the right 

(Cluster 4 and 5). We, therefore, provide empirical evidence for the existence of a wide 

variation of familial risks (even within a set of families ascertained because of a colorectal 

cancer case), and a strong gradient of colorectal cancer risk between the highest and lowest 

risk groups for colorectal cancer. We also found that the types and aggregation of 

extracolonic cancers and strength of the aggregation of colorectal cancer in a family might 

explain this wide variation of familial risks of colorectal cancer.

This study has some limitations. The clustering results of the self-organizing map might not 

be identical every time it is run though they were very similar consistently. This is a 

common issue for neural network models and optimization problems in general. However, it 

is not a major concern here because the focus is in identifying a small finite set of 

representative prototypes (i.e. the familial risk categories) by minimizing the quantization 

error of the neural network model. These prototypes are formed as averages of the data 

within a cluster. Variations of these averages are insignificant when the number of training 

data is sufficiently large, as in our case.

The contribution this study could make to the field is two-fold. First, the findings about the 

familial risk distribution will serve as empirical evidence supporting existing familial risk 

models confirming that, for colorectal cancer, there exist a wide variation of familial risks, 

and a very strong risk gradient between the highest and lowest risk groups [29, 31]. Second, 

the data mining approach will advance current familial studies which are limited to 

univariable analysis to addressing the multivariable question, relevant to the studies of other 

familial cancer syndromes.

In conclusion, our data mining approach showed a wide variation of familial colorectal 

cancer risk and a strong risk gradient between the highest risk and lowest risk families. The 

types and aggregation of extracolonic cancers and strength of the aggregation of colorectal 

cancer in a family might explain this wide variation of familial risks. A family history of 

colorectal cancer with a broad spectrum of co-aggregating cancers could substantially 

elevate the risk of colorectal cancer; but co-aggregating extracolonic cancers may not 

influence the risk of colorectal cancer when the familial aggregation of colorectal cancer is 

not strong. Data mining was proven an effective approach for gaining insight to the 

underlying cancer aggregation patterns and for categorizing familial risk of colorectal 

cancer.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Familial risks for population-based colorectal cancer families from the Colon Cancer Family 

Registry. The number in the right top corner represents the standardized incidence ratio of 

colorectal cancer. Node without a bar chart in the diagram is an empty node with no families 

mapped to it. crc = colorectal cancer, ec = endometrial cancer, stom = stomach cancer, smlb 

= small bowel cancer, hb = hepatobiliary cancer, pan = pancreatic cancer, ren = renal cancer, 

uret = ureteric cancer, blad = urinary bladder cancer, brain = brain cancer, cerv = cervical 

cancer, ovar = ovarian cancer, brst = breast cancer, prost = prostate cancer
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Figure 2. 
Familial risk of colorectal cancer by each cluster. SIR = standardized incidence ratio of 

colorectal cancer (corresponding 95% confidence interval), ageDX = age at diagnosis of 

colorectal cancer (years), crc = colorectal cancer, ec = endometrial cancer, stom = stomach 

cancer, smlb = small bowel cancer, hb = hepatobiliary cancer, pan = pancreatic cancer, ren = 

renal cancer, uret = ureteric cancer, blad = urinary bladder cancer, brain = brain cancer, cerv 

= cervical cancer, ovar = ovarian cancer, brst = breast cancer, prost = prostate cancer
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Figure 3. 
(A) Distribution of familial risk of colorectal cancer by family clusters (expressed as the 

standardized incidence ratios (SIRs)). The normalized frequency, corresponding to the 

height of each bar, indicates the percentage of families with the same colorectal cancer risk. 

(B) SIRs and their 95% confidence intervals (CIs) for each family cluster. The dot points 

represent the estimates of SIR and the vertical lines represent 95% CIs.
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Figure 4. 
Mapping between familial risk distribution and cancer aggregation patterns. SIR = 

standardized incidence ratio of colorectal cancer, ageDX = age at diagnosis of colorectal 

cancer (years), crc = colorectal cancer, ec = endometrial cancer, stom = stomach cancer, 

smlb = small bowel cancer, hb = hepatobiliary cancer, pan = pancreatic cancer, ren = renal 

cancer, uret = ureteric cancer, blad = urinary bladder cancer, brain = brain cancer, cerv = 

cervical cancer, ovar = ovarian cancer, brst = breast cancer, prost = prostate cancer
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Table 1

Baseline characteristics of population-based families from the Colon Cancer Family Registry

Characteristics Number

No. of families 10,066

No. of persons 181,555

  Canada 60,875 (34%)

  Australia 34,669 (19%)

  USA 86,011 (47%)

Male : Female 1 : 1.01

Age (median) 57

Cancers

  Colorectal cancer 6,808

  Endometrial cancer 858

  Stomach cancer 1,526

  Small bowel cancer 46

  Hepatobiliary tract cancer 754

  Pancreatic cancer 680

  Renal cancer 478

  Ureter cancer 32

  Bladder cancer 504

  Brain cancer 806

  Cervical cancer 586

  Ovarian cancer 610

  Breast cancer 3,841

  Prostate cancer 2,470
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Table 2

Demographic characteristics of the five clusters

Cluster No of families No of persons Male : Female Age (years)
median (inter-quartile range)

1 5,969 (59%) 96,326 1 : 1.02 56 (40–72)

2 915 (9%) 19,544 1 : 1.02 59 (43–74)

3 1,087 (11%) 19,916 1 : 0.95 59 (43–73)

4 1,353 (13%) 33,938 1 : 1.01 57 (40–73)

5 742 (7%) 11,831 1 : 0.99 58 (42–72)
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