Skip to main content

Advertisement

Log in

Salinity tolerance explains the contrasting phylogeographic patterns of two swimming crabs species along the tropical western Atlantic

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Patterns and processes of species diversification in the oceans are still not fully understood. Traditionally, studies have been using the pelagic larval duration (PLD) to explain the genetic structure and phylogeographic history of marine taxa. However, this trait has given inconsistent results, especially when there is a physiological barrier. Phylogeographic studies comparing species that have similar PLD but differ in other important traits can indicate which ones drive intraspecific evolution. To test our hypothesis, we selected two species with similar distribution and PLD and different salinity tolerance to explore the role of Amazon-Orinoco plume (the biggest freshwater discharge into the ocean worldwide) in the diversification of western Atlantic species. We amplified mtDNA markers (COI and 16S rRNA) of Callinectes ornatus (less tolerant to low salinity) and C. danae (tolerant to low salinity) from both sides of the Amazon-Orinoco plume (four biogeographical provinces). Then, we performed genetic structure, historical demography, divergence time, and biogeographic modelling analyses. Our results show contrasting phylogeographic and demographic patterns that can be explained by salinity tolerance. The Amazon-Orinoco plume represents a barrier for C. ornatus, which has two evolutionary units (ESUs). The plume is not a barrier for C. danae, which has no genetic structure. Furthermore, C. ornatus is formed by an ancestral Caribbean group that dispersed to the southwestern Atlantic after the establishment of the Amazon-Orinoco plume. Callinectes danae has undergone demographic changes during the Last Glacial Maximum, probably due to the loss of estuarine habitats due to sea level fall, while C. ornatus was not affected because it is absent in this type of environment. Therefore, we show that ecological traits of marine taxa, like salinity tolerance, are more reliable predictors of genetic variation than the usually used larval dispersal potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrade LS, Bertini G, Fransozo V, Teixeira GM, de Paiva B-A, Fransozo A (2014) Differential occupation of habitat as a reproductive strategy of the blue crab Callinectes ornatus Ordway, 1968 (Crustacea: Decapoda). Mar Biodiver 44(1):27–36

    Google Scholar 

  • Arbogast BS, Kenagy GJ (2001) Comparative phylogeography as an integrative approach to historical biogeography. J Biogeogr 28(7):819–825

    Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18(1):489–522

    Google Scholar 

  • Ayre DJ, Hughes TP, Standish RJ (1997) Genetic differentiation, reproductive mode, and gene flow in the brooding coral Pocillopora damicornis along the Great Barrier Reef, Australia. Mar Ecol Prog Ser 159:175–187

    Google Scholar 

  • Ayre DJ, Minchinton TE, Perrin C (2009) Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier? Mol Ecol 18(9):1887–1903

    CAS  PubMed  Google Scholar 

  • Baus E, Darrock DJ, Bruford MW (2005) Gene-flow patterns in Atlantic and Mediterranean populations of the Lusitanian sea star Asterina gibbosa. Mol Ecol 14(11):3373–3382

    CAS  PubMed  Google Scholar 

  • Beheregaray LB (2008) Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Mol Ecol 17(17):3754–3774

    PubMed  Google Scholar 

  • Bell RC, Parra JL, Badjedjea G, Barej MF, Blackburn DC, Burger M, Channing A, Dehling JM, Greenbaum E, Gvoždík V, Kielgast J, Kusamba C, Lotters S, McLaughlin PJ, Nagy ZT, Rodel MO, Portik DM, Stuart BL, VanDerWal J, Zassi-Boulou AG, Zamudio KR (2017) Idiosyncratic responses to climate‐driven forest fragmentation and marine incursions in reed frogs from Central Africa and the Gulf of Guinea Islands. Mol Ecol 26(19):5223–5244

    PubMed  Google Scholar 

  • Briggs JC, Bowen BW (2013) Marine shelf habitat: biogeography and evolution. J Biogeogr 40(6):1023–1035

    Google Scholar 

  • Boehm JT, Woodall L, Teske PR, Lourie SA, Baldwin C, Waldman J, Hickerson M (2013) Marine dispersal and barriers drive Atlantic seahorse diversification. J Biogeogr 40(10):1839–1849

    Google Scholar 

  • Bookhout CG, Costlow JD Jr (1977) Larval development of Callinectes similis reared in the laboratory. Bull Mar Sci 27(4):704–728

    Google Scholar 

  • Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10(4):e1003537

    PubMed  PubMed Central  Google Scholar 

  • Buckley D (2009) Toward an organismal, integrative, and iterative phylogeography. BioEssays 31(7):784–793

    PubMed  Google Scholar 

  • Buranelli RC, Mantelatto FL (2017) Broad-ranging low genetic diversity among populations of the yellow finger marsh crab Sesarma rectum Randall, 1840 (Sesarmidae) revealed by DNA barcode. Crustaceana 90(7–10):845–864

    Google Scholar 

  • Buranelli RC, Felder DL, Mantelatto FL (2019) Genetic diversity among populations of the Western Atlantic mangrove crab Ucides cordatus (Linnaeus, 1763)(Decapoda: Brachyura: Ocypodidae): evidence for panmixia and useful data for future management and conservation. J Crustacean Biol 39(4):386–395

    Google Scholar 

  • Burton RS (1998) Intraspecific phylogeography across the Point Conception biogeographic boundary. Evolution 52(3):734–745

    PubMed  Google Scholar 

  • Carr MH, Anderson TW, Hixon MA (2002) Biodiversity, population regulation, and the stability of coral-reef fish communities. Proc Natl Acad Sci 99(17):11241–11245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chacur MM, Negreiros-Fransozo ML (2001) Spatial and seasonal distributions of Callinectes danae (Decapoda, Portunidae) in Ubatuba Bay, São Paulo. Brazil J Crustacean Biol 21(2):414–425

    Google Scholar 

  • Clement M, Posada DCKA, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9(10):1657–1659

    CAS  PubMed  Google Scholar 

  • Collin R (2001) The effects of mode of development on phylogeography and population structure of North Atlantic Crepidula (Gastropoda: Calyptraeidae). Mol Ecol 10(9):2249–2262

    CAS  PubMed  Google Scholar 

  • Compton TJ, Leathwick JR, Inglis GJ (2010) Thermogeography predicts the potential global range of the invasive European green crab (Carcinus maenas). Divers Distri 16(2):243–255

    Google Scholar 

  • Corander J, Tang J (2007) Bayesian analysis of population structure based on linked molecular information. Math Biosci 205(1):19–31

    PubMed  Google Scholar 

  • Corander J, Waldmann P, Sillanpää MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163(1):367–374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corander J, Waldmann P, Marttinen P, Sillanpää MJ (2004) BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20(15):2363–2369

    CAS  PubMed  Google Scholar 

  • Cornuet JM, Ravigné V, Estoup A (2010) Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinform 11(1):401

    Google Scholar 

  • Costlow JD Jr, Bookhout CG (1959) The larval development of Callinectes sapidus Rathbun reared in the laboratory. Biol Bull 116(3):373–396

    Google Scholar 

  • Crandall KA, Fitzpatrick JF Jr (1996) Crayfish molecular systematics: using a combination of procedures to estimate phylogeny. Syst Biol 45(1):1–26

    Google Scholar 

  • Crandall KA, Bininda-Emonds OR, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15(7):290–295

    CAS  PubMed  Google Scholar 

  • Crispo E, Chapman LJ (2008) Population genetic structure across dissolved oxygen regimes in an African cichlid fish. Mol Ecol 17(9):2134–2148

    CAS  PubMed  Google Scholar 

  • Curtin TB (1986) Physical observations in the plume region of the Amazon River during peak discharge—II. Water masses. Cont Shelf Res 6(1–2):53–71

    Google Scholar 

  • Dawson MN (2001) Phylogeography in coastal marine animals: a solution from California? J Biogeogr 28(6):723–736

    Google Scholar 

  • Derycke S, Vanaverbeke J, Rigaux A, Backeljau T, Moens T (2010) Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free-living marine nematodes. PLoS ONE 5(10):e13716

    PubMed  PubMed Central  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7(1):214

    PubMed  PubMed Central  Google Scholar 

  • Drummond AJ, Rambaut A, Shapiro BETH, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22(5):1185–1192

    CAS  PubMed  Google Scholar 

  • Edmands S, Potts DC (1997) Population genetic structure in brooding sea anemones (Epiactis spp) with contrasting reproductive modes. Mar Biol 127(3):485–498

    Google Scholar 

  • Floeter SR, Rocha LA, Robertson DR, Joyeux JC, Smith-Vaniz WF, Wirtz P, Edwards AJ, Barreiros JP, Ferreira CEL, Gasparini JL, Brito A, Falcon JM, Bowen BW, Bernardi G (2008) Atlantic reef fish biogeography and evolution. J Biogeogr 35(1):22–47

    Google Scholar 

  • Fraser RH, Currie DJ (1996) The species richness-energy hypothesis in a system where historical factors are thought to prevail: coral reefs. Am Nat 148(1):138–159

    Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10(12):2741–2752

    CAS  PubMed  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2):915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garçon DP, Masui DC, Mantelatto FL, McNamara JC, Furriel RPM, Leone FA (2007) K+ and NH4+ modulate gill (Na+, K+)-ATPase activity in the blue crab, Callinectes ornatus: fine tuning of ammonia excretion. Comp Biochem Physi A 147(1):145–155

    Google Scholar 

  • Giltz SM, Taylor CM (2017) Reduced growth and survival in the larval blue crab Callinectes sapidus under predicted ocean acidification. J Shellfish Res 36(2):481–486

    Google Scholar 

  • Giménez L, Anger K (2003) Larval performance in an estuarine crab, Chasmagnathus granulata, is a consequence of both larval and embryonic experience. Mar Ecol Prog Ser 249:251–264

    Google Scholar 

  • Gouws G, Stewart BA, Daniels SR (2006) Phylogeographic structure of a freshwater crayfish (Decapoda: Parastacidae: Cherax preissii) in south-western Australia. Mar Freshwater Res 57(8):837–848

    CAS  Google Scholar 

  • Hebert PD, Cywinska A, Ball SL, Dewaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270(1512):313–321

    CAS  Google Scholar 

  • Hellberg ME (2009) Gene flow and isolation among populations of marine animals. Annu Rev Ecol Evol Syst 40:291–310

    Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405(6789):907–913

    CAS  PubMed  Google Scholar 

  • Hickerson MJ, Carstens BC, Cavender-Bares J, Crandall KA, Graham CH, Johnson JB, Rissler L, Victoriano PF, Yoder AD (2010) Phylogeography’s past, present, and future: 10 years after. Mol Phylogenet Evol 54(1):291–301

    CAS  PubMed  Google Scholar 

  • Ho SY, Phillips MJ (2009) Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol 58(3):367–380

    PubMed  Google Scholar 

  • Hoareau TB, Boissin E, Paulay G, Bruggemann JH (2013) The Southwestern Indian Ocean as a potential marine evolutionary hotspot: perspectives from comparative phylogeography of reef brittle-stars. J Biogeogr 40(11):2167–2179

    Google Scholar 

  • Hodge JR, Bellwood DR (2016) The geography of speciation in coral reef fishes: the relative importance of biogeographical barriers in separating sister-species. J Biogeogr 43(7):1324–1335

    Google Scholar 

  • Hoorn C, Paxton CG, Crampton WG, Burgess P, Marshall LG, Lundberg JG, Räsänen ME, Linna AM (1996) Miocene deposits in the Amazonian foreland basin. Science 273:122–125

    CAS  Google Scholar 

  • Hoorn C, Wesselingh FP, Ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931

    CAS  PubMed  Google Scholar 

  • IPCC, Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (2019) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems

  • Joyeux JC, Floeter SR, Ferreira CEL, Gasparini JL (2001) Biogeography of tropical reef fishes: the South Atlantic puzzle. J Biogeogr 28(7):831–841

    Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649

    PubMed  PubMed Central  Google Scholar 

  • Kelly RP, Palumbi SR (2010) Genetic structure among 50 species of the northeastern Pacific rocky intertidal community. PLoS ONE 5(1):e8594

    PubMed  PubMed Central  Google Scholar 

  • Kenchington EL, Patwary MU, Zouros E, Bird CJ (2006) Genetic differentiation in relation to marine landscape in a broadcast-spawning bivalve mollusc (Placopecten magellanicus). Mol Ecol 15(7):1781–1796

    CAS  PubMed  Google Scholar 

  • Keunecke KA, D'Incao F, Verani JR, Vianna M (2012) Reproductive strategies of two sympatric swimming crabs Callinectes danae and Callinectes ornatus (Crustacea: Portunidae) in an estuarine system, south-eastern Brazil. J Mar Biol Assoc UK 92:343–347

    Google Scholar 

  • Kieneke A, Martínez Arbizu PM, Fontaneto D (2012) Spatially structured populations with a low level of cryptic diversity in European marine Gastrotricha. Mol Ecol 21(5):1239–1254

    PubMed  Google Scholar 

  • Knowlton N, Weigt LA, Solorzano LA, Mills DK, Bermingham E (1993) Divergence in proteins, mitochondrial DNA, and reproductive compatibility across the Isthmus of Panama. Science 260(5114):1629–1632

    CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laurenzano C, Mantelatto FL, Schubart CD (2013) South American homogeneity versus Caribbean heterogeneity: population genetic structure of the western Atlantic fiddler crab Uca rapax (Brachyura, Ocypodidae). J Exp Mar Biol Ecol 449:22–27

    Google Scholar 

  • Laurenzano C, Costa TM, Schubart CD (2016) Contrasting patterns of clinal genetic diversity and potential colonization pathways in two species of western Atlantic fiddler crabs. PLoS ONE 11(11):e0166518

    PubMed  PubMed Central  Google Scholar 

  • Leigh JW, Bryant D (2015) popart: full-feature software for haplotype network construction. Methods Ecol Evol 6(9):1110–1116

    Google Scholar 

  • Leone FA, Furriel RPM, McNamara JC, Mantelatto FL, Masui DC, Alves LR, Gonçalves RR, Garçon DP (2005) (Na+, K+)-ATPase from crustacean gill microsomes: a molecular marker to evaluate adaptation to biotopes of different salinity. Trends Comp Biochem Physiol 11:1–15

    CAS  Google Scholar 

  • Lefébure T, Douady CJ, Gouy M, Gibert J (2006) Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Mol Phylogenet Evol 40(2):435–447

    PubMed  Google Scholar 

  • Luttikhuizen PC, Drent J, Baker AJ (2003) Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal. Mol Ecol 12(8):2215–2229

    CAS  PubMed  Google Scholar 

  • Luque J, Schweitzer CE, Santana W, Portell RW, Vega FJ, Klompmaker AA (2017) Checklist of fossil decapod crustaceans from tropical America. Part I: Anomura Brachyura. Nauplius 25:e2017025

    Google Scholar 

  • Magalhães T, Robles R, Felder DL, Mantelatto FL (2016) Integrative taxonomic study of the purse crab genus Persephona Leach, 1817 (Brachyura: Leucosiidae): combining morphology and molecular data. PLoS ONE 11(4):e0152627

    PubMed  PubMed Central  Google Scholar 

  • Maggs CA, Castilho R, Foltz D, Henzler C, Jolly MT, Kelly J, Olsen J, Perez KE, Stam W, Väinölä R, Viard F (2008) Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89:S108–S122

    PubMed  Google Scholar 

  • Mandai SS, Buranelli RC, Schubart CD, Mantelatto FL (2018) Phylogenetic and phylogeographic inferences based on two DNA markers reveal geographic structure of the orangeclaw hermit crab Calcinus tibicen (Anomura: Diogenidae) in the western Atlantic. Mar Biol Res 14(6):565–580

    Google Scholar 

  • Mantelatto FL (2000) Allocation of the portunid crab Callinectes ornatus (Decapoda: Brachyura) in the Ubatuba Bay, northern coast of São Paulo State, Brazil. Crustac Issues 12:431–443

    Google Scholar 

  • Mantelatto FL, Fransozo A (2000) Brachyuran community in Ubatuba bay, northern coast of São Paulo state. Brazil J Shellfish Res 19(2):701–710

    Google Scholar 

  • Mantelatto FL, Robles R, Biagi R, Felder DL (2006) Molecular analysis of the taxonomic and distributional status for the hermit crab genera Loxopagurus Forest, 1964 and Isocheles Stimpson, 1858 (Decapoda, Anomura, Diogenidae). Zoosystema 28(2):495–506

    Google Scholar 

  • Mantelatto FL, Reigada AL, Gatti AC, Cuesta JA (2014) Morphology of the first zoeal stages of five species of the portunid genus Callinectes (Decapoda, Brachyura) hatched at the laboratory. An Acad Bras Ciênc 86(2):755–768

    PubMed  Google Scholar 

  • Mantelatto FL, Robles R, Wehrtmann IS, Schubart CD, Felder DL (2018) New insights into the molecular phylogeny of the swimming crabs of the genera Portunus Weber, 1795 and Achelous De Haan, 1833 (Brachyura: Portunidae) of the Americas. J Crustacean Biol 38(2):190–197

    Google Scholar 

  • Marko PB, Hoffman JM, Emme SA, McGovern TM, Keever CC, Nicole Cox L (2010) The ‘Expansion–Contraction’model of Pleistocene biogeography: rocky shores suffer a sea change? Mol Ecol 19(1):146–169

    CAS  PubMed  Google Scholar 

  • Masui DC, Furriel RPM, McNamara JC, Mantelatto FLM, Leone FA (2002) Modulation by ammonium ions of gill microsomal (Na+, K+)-ATPase in the swimming crab Callinectes danae: a possible mechanism for regulation of ammonia excretion. Comp Biochem Physi 132(4):471–482

    CAS  Google Scholar 

  • Miller SA, Dykes DD, Polesky HFRN (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. In: 2010 gateway computing environments workshop (GCE) (pp 1–8).

  • Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP, Hurlbert AH, Knowlton N, Lessios HA, McCain CM (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10(4):315–331

    PubMed  Google Scholar 

  • Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9(10):373–375

    CAS  PubMed  Google Scholar 

  • Moura RL, Amado-Filho GM, Moraes FC, Brasileiro PS, Salomon PS, Mahiques MM, Bastos AC, Almeida MG, Silva JM, Araujo BF, Brito FP (2016) An extensive reef system at the Amazon River mouth. Sci Adv 2(4):e1501252

    PubMed  PubMed Central  Google Scholar 

  • Negreiros-Fransozo ML, Fransozo A (1995) On the distribution of Callinectes ornatus Ordway, 1863 and Callinectes danae Smith, 1869 (Brachyura, Portunidae) in the Fortaleza Bay, Ubatuba, Brazil. Iheringia, Ser Zool 79:13–25

    Google Scholar 

  • Negri M, Lemaitre R, Mantelatto FL (2014) Molecular and Morphological Resurrection of Clibanarius symmetricus a Cryptic Species Hiding Under the Name for the “Thinstripe” Hermit Crab C. vittatus (Decapoda: Anomura: Diogenidae). J Crustacean Biol 34(6):848–861

    Google Scholar 

  • Negri M, Schubart CD, Mantelatto FL (2018) Tracing the introduction history of the invasive swimming crab Charybdis hellerii (A. Milne-Edwards 1867) in the Western Atlantic: evidences of high genetic diversity and multiple introductions. Biol Invasions 20(7):1771–1798

    Google Scholar 

  • Nielsen EE, Kenchington E (2001) A new approach to prioritizing marine fish and shellfish populations for conservation. Fish Fish 2(4):328–343

    Google Scholar 

  • Norse EA (1978) An experimental gradient analysis: hyposalinity as an “upstress” distributional determinant for Caribbean portunid crabs. Biol Bull 155(3):586–598

    Google Scholar 

  • Nunes FL, Van Wormhoudt A, Faroni-Perez L, Fournier J (2017) Phylogeography of the reef-building polychaetes of the genus Phragmatopoma in the western Atlantic Region. J Biogeogr 44(7):1612–1625

    Google Scholar 

  • Oliveira CMCA, Terossi M, Mantelatto FL (2019) Phylogeographic structuring of the amphidromous shrimp Atya scabra (Crustacea, Decapoda, Atyidae) unveiled by range-wide mitochondrial DNA sampling. Mar Freshwater Res 70(8):1078–1093

    CAS  Google Scholar 

  • Pailler K, Bourlès B, Gouriou Y (1999) The barrier layer in the western tropical Atlantic Ocean. Geophy Res Lett 26(14):2069–2072

    Google Scholar 

  • Palero F, Abelló P, Macpherson E, Gristina M, Pascual M (2008) Phylogeography of the European spiny lobster (Palinurus elephas): influence of current oceanographical features and historical processes. Mol Phylogenet Evol 48(2):708–717

    CAS  PubMed  Google Scholar 

  • Palumbi SR (1992) Marine speciation on a small planet. Trends Ecol Evol 7(4):114–118

    CAS  PubMed  Google Scholar 

  • Papadopoulou A, Knowles LL (2015) Species-specific responses to island connectivity cycles: refined models for testing phylogeographic concordance across a Mediterranean Pleistocene Aggregate Island Complex. Mol Ecol 24(16):4252–4268

    PubMed  Google Scholar 

  • Papadopoulou A, Knowles LL (2016) Toward a paradigm shift in comparative phylogeography driven by trait-based hypotheses. Proc Natl Acad Sci 113(29):8018–8024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pârvulescu L, Pérez-Moreno JL, Panaiotu C, Drăguț L, Schrimpf A, Popovici ID, Zaharia C, Weiperth A, Gál B, Schubart CD, Bracken-Grissom H (2019) A journey on plate tectonics sheds light on European crayfish phylogeography. Ecol Evol 9(4):1957–1971

    PubMed  PubMed Central  Google Scholar 

  • Paz A, Ibáñez R, Lips KR, Crawford AJ (2015) Testing the role of ecology and life history in structuring genetic variation across a landscape: a trait-based phylogeographic approach. Mol Ecol 24(14):3723–3737

    PubMed  Google Scholar 

  • Paz A, Spanos Z, Brown JL, Lyra M, Haddad C, Rodrigues M, Carnaval A (2019) Phylogeography of Atlantic Forest glassfrogs (Vitreorana): when geography, climate dynamics and rivers matter. Heredity 122(5):545

    CAS  PubMed  Google Scholar 

  • Peres PA, Lopes M, Negri M, Robles R, Santos CRM, Mantelatto FL (2020) Lack of population genetic structure among Brazilian populations of Callinectes danae (Brachyura: Portunidae): implication for management and conservation. Reg Stud Mar Sci. https://doi.org/10.1016/j.rsma.2020.101336

    Article  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25(7):1253–1256

    CAS  PubMed  Google Scholar 

  • Prates I, Xue AT, Brown JL, Alvarado-Serrano DF, Rodrigues MT, Hickerson MJ, Carnaval AC (2016) Inferring responses to climate dynamics from historical demography in neotropical forest lizards. Proc Natl Acad Sci 113(29):7978–7985

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaglia AC, de Castro LM, Augusto A (2018) Effects of ocean acidification and salinity variations on the physiology of osmoregulating and osmoconforming crustaceans. J Comp Physiol B 188(5):729–738

    CAS  PubMed  Google Scholar 

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19(12):2092–2100

    CAS  PubMed  Google Scholar 

  • Robertson DR, Karg F, de Moura RL, Victor BC, Bernardi G (2006) Mechanisms of speciation and faunal enrichment in Atlantic parrotfishes. Mol Phylogenet Evol 40(3):795–807

    PubMed  Google Scholar 

  • Robles R, Schubart CD, Conde JE, Carmona-Suárez C, Alvarez F, Villalobos JL, Felder DL (2007) Molecular phylogeny of the American Callinectes Stimpson, 1860 (Brachyura: Portunidae), based on two partial mitochondrial genes. Mar Biol 150(6):1265–1274

    CAS  Google Scholar 

  • Rocha LA (2003) Patterns of distribution and processes of speciation in Brazilian reef fishes. J Biogeogr 30(8):1161–1171

    Google Scholar 

  • Rocha LA, Bowen BW (2008) Speciation in coral-reef fishes. J Fish Biol 72(5):1101–1121

    Google Scholar 

  • Rocha LA, Bass AL, Robertson DR, Bowen BW (2002) Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae). Mol Ecol 11(2):243–251

    CAS  PubMed  Google Scholar 

  • Rocha LA, Rocha CR, Robertson DR, Bowen BW (2008) Comparative phylogeography of Atlantic reef fishes indicates both origin and accumulation of diversity in the Caribbean. BMC Evol Biol 8(1):157

    PubMed  PubMed Central  Google Scholar 

  • Rosenberg NA, Nordborg M (2002) Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat Rev Genet 3(5):380

    CAS  PubMed  Google Scholar 

  • Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15(2):174–175

    CAS  PubMed  Google Scholar 

  • Santos CRM (2007) Biogeografia, sistemática e filogenia de Portunidae Rafinesque, 1815 do Oceano Atlântico Ocidental (Crustacea, Decapoda: ênfase em Callinectes Stimpson, 1860 e Portunus Weber, 1795. Dissertation. Fundação Universidade Federal do Rio Grande

  • Schubart CD, Huber MGJ (2006) Genetic comparisons of German populations of the stone crayfish, Austropotamobius torrentium (Crustacea: Astacidae). Bull Fr Pêche Piscic 380–381:1019–1028

    Google Scholar 

  • Schubart CD, Neigel JE, Felder DL (2000) Use of the mitochondrial 16S rRNA gene for phylogenetic and population studies of Crustacea. Crustac Issues 12:817–830

    Google Scholar 

  • Shanks AL (2009) Pelagic larval duration and dispersal distance revisited. Biol Bull 216(3):373–385

    PubMed  Google Scholar 

  • Shumway SE (1983) Oxygen consumption and salinity tolerance in four Brazilian crabs. Crustaceana 44:76–82

    Google Scholar 

  • Silva JM, Creer S, Dos Santos A, Costa AC, Cunha MR, Costa FO, Carvalho GR (2011) Systematic and evolutionary insights derived from mtDNA COI barcode diversity in the Decapoda (Crustacea: Malacostraca). PLoS one 6(5):e19449

    Google Scholar 

  • Silva D, Martins K, Oliveira J, da Silva R, Sampaio I, Schneider H, Gomes G (2018) Genetic differentiation in populations of lane snapper (Lutjanus synagris–Lutjanidae) from Western Atlantic as revealed by multilocus analysis. Fish Res 198:138–149

    Google Scholar 

  • Song H, Buhay JE, Whiting MF, Crandall KA (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc Natl Acad Sci 105(36):13486–13491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sotelo G, Morán P, Posada D (2009) Molecular phylogeny and biogeographic history of the European Maja spider crabs (Decapoda, Majidae). Mol Phylogenet Evol 53(1):314–319

    CAS  PubMed  Google Scholar 

  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson MA, Halpern BS, Jorge MA, Lombana AL, Lourie SA, Martin KD (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57(7):573–583

    Google Scholar 

  • Spiridonov VA, Neretina TV, Schepetov D (2014) Morphological characterization and molecular phylogeny of Portunoidea Rafinesque, 1815 (Crustacea Brachyura): Implications for understanding evolution of swimming capacity and revision of the family-level classification. Zool Anz 253(5):404–429

    Google Scholar 

  • Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Proc Natl Acad Sci 277(1682):661–671

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teske PR, Papadopoulos I, Mmonwa KL, Matumba TG, McQuaid CD, Barker NP, Beheregaray LB (2011) Climate-driven genetic divergence of limpets with different life histories across a southeast African marine biogeographic disjunction: different processes, same outcome. Mol Ecol 20(23):5025–5041

    PubMed  Google Scholar 

  • Toms JA, Compton JS, Smale M, von der Heyden S (2014) Variation in palaeo-shorelines explains contemporary population genetic patterns of rocky shore species. Biol Lett 10(6):20140330

    PubMed  PubMed Central  Google Scholar 

  • Trovant B, Basso NG, Orensanz JM, Lessa EP, Dincao F, Ruzzante DE (2016) Scorched mussels (Brachidontes spp Bivalvia: Mytilidae) from the tropical and warm-temperate southwestern Atlantic: the role of the Amazon River in their speciation. Ecol Evol 6(6):1778–1798

    PubMed  PubMed Central  Google Scholar 

  • Waples RS (1991) Pacific salmon Oncorhynchus spp., and the definition of "species" under the Endangered Species Act. Mar Fish Rev 53(3):11–22

    Google Scholar 

  • Weersing K, Toonen RJ (2009) Population genetics, larval dispersal, and connectivity in marine systems. Mar Ecol Prog Ser 393:1–12

    Google Scholar 

  • Williams AB (1974) The swimming crabs of the genus Callinectes. Fish Bull 72(3):685–798

    Google Scholar 

Download references

Acknowledgements

This research is resulted from the PhD project of Pedro A. Peres supported by São Paulo Research Foundation—FAPESP by a scholarship (2017/12376-6). All financial support was provided by grants from FAPESP (Temático Biota 2010/50188-8 and Biota INTERCRUSTA 2018/13685-5; Coleções Científicas 2009/54931-0; PROTAX 2016/50376-5), Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (301359/2007-5; 473050/2007-2; 302748/2010-5; 471011/2011-8; PQ 302253/2019-0), and Coordenação de Aperfeiçoamento de Pessoal—CAPES—Código de Financiamento 001 (Ciências do Mar II—2005/2014–23038.004308/201414) granted to FLM. We are grateful to Gustav Paulay and John Slapcinsky (FLMNH), Cleverson Santos (MPEG) and all the colleagues of the Laboratory of Bioecology and Crustacean Systematics (LBSC) for their help with sampling, donation and lending specimens used herein. We are also grateful to Dr. Heather Bracken-Grissom for suggested improvements to the manuscript, to anonymous reviewers and editors for their suggestions and corrections that improved the manuscript during review process. The collections of species conducted in this study complied with current applicable state and federal laws of Brazil (permanent license to FLM for collection of Zoological Material No. 11777-1 MMA/IBAMA/SISBIO). The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Contributions

PAP: Conceptualization, Methodology, Formal analysis and Investigation, Writing – original draft, Writing – review and editing. FLM: Conceptualization, Writing – review and editing, Funding acquisition, Resources, Supervision.

Corresponding author

Correspondence to Pedro A. Peres.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2022 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peres, P.A., Mantelatto, F.L. Salinity tolerance explains the contrasting phylogeographic patterns of two swimming crabs species along the tropical western Atlantic. Evol Ecol 34, 589–609 (2020). https://doi.org/10.1007/s10682-020-10057-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-020-10057-x

Keywords

Navigation