Skip to main content
Log in

Identification of QTLs associated with p-coumaric acid and ferulic acid in barley

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Phenolic acids in plants is receiving more attention because of their nutritive function and essential roles in plant growth. However, the genetics of phenolic acids in barley is still unclear. In this study, two main phenolic acids, i.e. ferulic acid (FA) and p-coumaric acid (p-CA), were analyzed in the grains of a double haploid population derived from XZ153 (Tibetan wild barley) × Hua30 (cultivated cultivar) grown in three locations. A wide variation in the content of phenolic acids was observed among the DH population. Quantitative trait locus (QTL) analysis of phenolic acid content in barley grains from three locations totally identified 4 QTLs associated with p-CA content and 4 QTLs with FA content. Based on the mean phenolic acids content over the three locations, two significant QTLs (M_3261686 for p-CA and M_4184755 for FA), belonging to cytochrome P450 family (HvCYPs) were identified, with the LOD value of 5.33 and 7.01 respectively. These two QTLs could account for 14% of phenotypic variation for FA and 18% for p-CA. Collinearity analysis revealed that HvCYPPA (QTL for p-CA) has duplication events in barley genome. Furthermore, there was no synteny block found for these two genes in barley genome. The current results provide a new knowledge about genetic controlling of phenolic acids synthesis in barley grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Boudet AM (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68(22–24):2722–2735

    Article  CAS  Google Scholar 

  • Cai S, Han Z, Huang Y, Chen ZH, Zhang G, Dai F (2015) Genetic diversity of individual phenolic acids in barley and their correlation with barley malt quality. J Agric Food Chem 63(31):7051–7057

    Article  CAS  Google Scholar 

  • Cai S, Han Z, Huang Y, Hu H, Dai F, Zhang G (2016) Identification of quantitative trait loci for the phenolic acid contents and their association with agronomic traits in Tibetan wild barley. J Agric Food Chem 64(4):980–987

    Article  CAS  Google Scholar 

  • Chen F, Srinivasa Reddy MS, Temple S, Jackson L, Shadle G, Dixon RA (2006) Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). Plant J 48:113–124

    Article  CAS  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  Google Scholar 

  • Deng Y, Lu S (2017) Biosynthesis and regulation of phenylpropanoids in plants. Crit Rev Plant Sci 36(4):257–290

    Article  Google Scholar 

  • Gao J, Wang S, Zhou Z, Wang S, Dong C, Mu C, Song Y, Ma P, Li C, Wang Z, He K, Han C, Chen J, Yu H, Wu J (2019) Linkage mapping and GWAS reveal candidate genes conferring thermotolerance of seed-set in maize. J Exp Bot 70(18):4849–4864

    Article  Google Scholar 

  • Hamberger B, Bak S (2013) Plant P450 s as versatile drivers for evolution of species-specific chemical diversity. Philos Trans R Soc Lond B Biol Sci 368(1612):20120426

    Article  Google Scholar 

  • Han Z, Cai S, Zhang X, Qian Q, Huang Y, Dai F, Zhang G (2017) Development of predictive models for total phenolics and free p-coumaric acid contents in barley grain by near-infrared spectroscopy. Food Chem 227:342–348

    Article  CAS  Google Scholar 

  • Han Z, Zhang J, Cai S, Chen X, Quan X, Zhang G (2018) Association mapping for total polyphenol content, total flavonoid content and antioxidant activity in barley. BMC Genom 19(1):81

    Article  Google Scholar 

  • Hofer R, Dong L, Andre F, Ginglinger JF, Lugan R, Gavira C, Grec S, Lang G, Memelink J, Van der Krol S, Bouwmeester H, Werck-Reichhart D (2013) Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco)iridoid pathway. Metab Eng 20:221–232

    Article  CAS  Google Scholar 

  • Houston K, Burton RA, Sznajder B, Rafalski AJ, Dhugga KS, Mather DE, Taylor J, Steffenson BJ, Waugh R, Fincher GB (2015) A genome-wide association study for culm cellulose content in barley reveals candidate genes co-expressed with members of the CELLULOSE SYNTHASE A gene family. PLoS ONE 10(7):e0130890

    Article  Google Scholar 

  • Kim YB, Thwe AA, Kim YJ, Li X, Kim HH, Park PB, Suzuki T, Kim SJ, Park SU (2013) Characterization of genes for a putative hydroxycinnamoyl-coenzyme A quinate transferase and p-coumarate 3′-hydroxylase and chlorogenic acid accumulation in tartary buckwheat. J Agric Food Chem 61(17):4120–4126

    Article  CAS  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645

    Article  CAS  Google Scholar 

  • Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang XQ, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Simkova H, Stankova H, Vrana J, Chan S, Munoz-Amatriain M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Dolezel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544(7651):427–433

    Article  CAS  Google Scholar 

  • Mathew S, Abraham TE (2004) Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit Rev Biotechnol 24(2–3):59–83

    Article  CAS  Google Scholar 

  • Nair RB, Xia Q, Kartha CJ, Kurylo E, Hirji RN, Datla R, Selvaraj G (2002) Arabidopsis CYP98A3 mediating aromatic 3-hydroxylation. Developmental regulation of the gene, and expression in yeast. Plant Physiol 130(1):210–220

    Article  CAS  Google Scholar 

  • Reddy MS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA (2005) Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci U S A 102(46):16573–16578

    Article  CAS  Google Scholar 

  • Shao Y, Bao J (2015) Polyphenols in whole rice grain: genetic diversity and health benefits. Food Chem 180:86–97

    Article  CAS  Google Scholar 

  • Shimizu B (2014) 2-Oxoglutarate-dependent dioxygenases in the biosynthesis of simple coumarins. Front Plant Sci 5:549

    Article  Google Scholar 

  • Shuab R, Lone R, Koul KK (2016) Cinnamate and cinnamate derivatives in plants. Acta Physiol Plant 38(3):64

    Article  Google Scholar 

  • Sonah H, O’Donoughue L, Cober E, Rajcan I, Belzile F (2015) Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnol J 13(2):211–221

    Article  CAS  Google Scholar 

  • Taofiq O, Gonzalez-Paramas AM, Barreiro MF, Ferreira IC (2017) Hydroxycinnamic acids and their derivatives: cosmeceutical significance, challenges and future perspectives, a review. Molecules 22(2):281

    Article  Google Scholar 

  • Tohge T, de Souza LP, Fernie AR (2017) Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J Exp Bot 68(15):4013–4028

    Article  CAS  Google Scholar 

  • Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol (Stuttgart) 7(6):581–591

    Article  CAS  Google Scholar 

  • Uchida M, Ono M (1996) Improvement for oxidative flavor stability of beer—role of OH-radical in beer oxidation. J Am Soc Brew Chem 54(4):198–204

    CAS  Google Scholar 

  • Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W (2012) Metabolic engineering of novel lignin in biomass crops. New Phytol 196(4):978–1000

    Article  CAS  Google Scholar 

  • Vatansever R, Koc I, Ozyigit II, Sen U, Uras ME, Anjum NA, Pereira E, Filiz E (2016) Genome-wide identification and expression analysis of sulfate transporter (SULTR) genes in potato (Solanum tuberosum L.). Planta 244(6):1167–1183

    Article  CAS  Google Scholar 

  • Wang J, Yang J, Zhang Q, Zhu J, Jia Q, Hua W, Shang Y, Li C, Zhou M (2015) Mapping a major QTL for malt extract of barley from a cross between TX9425× Naso Nijo. Theor Appl Genet 128(5):943–952

    Article  Google Scholar 

  • Wei K, Chen H (2018) Global identification, structural analysis and expression characterization of cytochrome P450 monooxygenase superfamily in rice. BMC Genom 19(1):35

    Article  Google Scholar 

  • Widhalm JR, Dudareva N (2015) A familiar ring to it: biosynthesis of plant benzoic acids. Mol Plant 8:83–97

    Article  CAS  Google Scholar 

  • Xie T, Chen C, Li C, Liu J, Liu C, He Y (2018) Genome-wide investigation of WRKY gene family in pineapple: evolution and expression profiles during development and stress. BMC Genom 19(1):490

    Article  Google Scholar 

  • Ye L, Huang Y, Hu H, Dai F, Zhang G (2015) Identification of QTLs associated with haze active proteins in barley. Euphytica 205(3):799–807

    Article  CAS  Google Scholar 

  • Zhang X, Fan Y, Shabala S, Koutoulis A, Shabala L, Johnson P, Hu H, Zhou M (2017) A new major-effect QTL for waterlogging tolerance in wild barley (H. spontaneum). Theor Appl Genet 130(8):1559–1568

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank China Agriculture Research System (CARS-05) and Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP) for experimental implementation, sampling and data analysis. We also thank Jingqun Yuan, the technician of 985-Institute of Agrobiology and Environmental Sciences of Zhejiang University, for the assistance in HPLC analysis.

Funding

This study was supported by Natural Science Foundation of China (31620103912), China Agriculture Research System (CARS-05) and Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Gao, H., Ye, L. et al. Identification of QTLs associated with p-coumaric acid and ferulic acid in barley. Euphytica 215, 198 (2019). https://doi.org/10.1007/s10681-019-2526-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-019-2526-y

Keywords

Navigation