Skip to main content
Log in

Advances in research on tortuous traits of plants

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Tortuous-stem plants have extremely high ornamental value due to the zigzag shape or natural twisting of the branches. At present, the research about tortuous-stem plants focuses mainly on the morphological characteristics, anatomic structure and genetic characteristics, but few studies have been conducted on the genetic mechanism of tortuous stem traits. In recent years, numerous tortuous-stem mutants have been screened from Arabidopsis thaliana, Zea mays, Glycine max, Lycopersicon esculentum, Prunus and Populus indicating that tortuous traits may be closely related to the abnormal geotropic growth, uneven distribution of hormones and asymmetric development of vascular bundles. In this paper, advances in morphological characteristics, environmental regulation, genetic patterns, molecular mechanism and application prospects of tortuous-stem plants were summarized, aiming at providing the basis for revealing the molecular mechanism of tortuous stem traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe H, Funada R, Ohtani J, Fukazawa K (1995) Changes in the arrangement of microtubules and microfibrils in differentiating conifer tracheids during the expansion of cells. Ann Bot Lond 75:305–310

    Google Scholar 

  • Abel S, Nguyen MD, Chow W, Theologis A (1995) ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana. Structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin [corrected]. J Biol Chem 270:19093–19099

    CAS  PubMed  Google Scholar 

  • Ambrose C, Ruan Y, Gardiner J, Tamblyn LM, Catching A, Kirik V, Marc J, Overall R, Wasteneys GO (2013) CLASP interacts with sorting nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana. Dev Cell 24:649

    CAS  PubMed  Google Scholar 

  • Andreeva Z, Barton D, Armour WJ, Li MY, Liao LF, McKellar HL, Pethybridge KA, Marc J (2010) Inhibition of phospholipase C disrupts cytoskeletal organization and gravitropic growth in Arabidopsis roots. Planta 232:1263–1279

    CAS  PubMed  Google Scholar 

  • Baba K, Adachi K, Take T, Yokoyama T, Itoh T, Nakamura T (1995) Induction of tension wood in GA3-treated branches of the weeping type of Japanese cherry, Prunus spachiana. Plant Cell Physiol 36:983–988

    CAS  Google Scholar 

  • Bao C, Wang J, Zhang R, Zhang B, Zhang H, Zhou Y, Huang S (2012) Arabidopsis VILLIN2 and VILLIN3 act redundantly in sclerenchyma development via bundling of actin filaments. Plant J 71:962–975

    CAS  PubMed  Google Scholar 

  • Blakeslee JJ, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Biol 8:494–500

    CAS  PubMed  Google Scholar 

  • Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature 416:847–850

    CAS  PubMed  Google Scholar 

  • Buschmann H, Fabri CO, Hauptmann M, Hutzler P, Laux T, Lloyd CW, Schäffner AR (2004) Helical growth of the Arabidopsis mutant tortifolia1 reveals a plant-specific microtubule-associated protein. Curr Biol 14:1515–1521

    CAS  PubMed  Google Scholar 

  • Buschmann H, Hauptmann M, Niessing D, Lloyd CW, Schäffner AR (2009) Helical growth of the Arabidopsis mutant tortifolia2 does not depend on cell division patterns but involves handed twisting of isolated cells. Plant Cell 21:2090–2106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bushart TJ, Cannon A, Clark G, Roux SJ (2014) Structure and function of CrACA1, the major PM-type Ca2+-ATPase, expressed at the peak of the gravity-directed trans-cell calcium current in spores of the fern Ceratopteris richardii. Plant Biol 16:151–157

    PubMed  Google Scholar 

  • Carland FM, McHale NA (1996) LOP1: a gene involved in auxin transport and vascular patterning in Arabidopsis. Development 122:1811–1819

    CAS  PubMed  Google Scholar 

  • Chao KX, Li HZ, Fu ZJ, Chan LI, Zhang LL (2010) Embryo development and abnormal phenomena in two accessions of mulberry. Seed 29:23–27

    Google Scholar 

  • Chen Y (1981) A preliminary study of the inheritance of tortuousness in the “dragon mulberry”(Morus alba var.tortuosa hort.). Acta Hortic Sin 8:61–64

    Google Scholar 

  • Chen Y, Zhang J (1990) The second study of the inheritance of tortuousness in dragon mulberry (Morus alba var. tortuosa Hort.). J Beijing For Univ 12:103–106

    Google Scholar 

  • Cheng FS, Roose ML (1995) Origin and inheritance of dwarfing by the Citrus rootstock Poncirus trifoliata ‘flying dragon’. J Am Soc Hortic Sci 120:286–291

    Google Scholar 

  • Choe S, Noguchi T, Fujioka S, Takatsuto S, Tissier CP, Gregory BD, Ross AS, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999) The Arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 11:207–221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collins C, Dewitte W, Murray JA (2012) D-type cyclins control cell division and developmental rate during Arabidopsis seed development. J Exp Bot 63:3571–3586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collins C, Maruthi NM, Jahn CE (2015) CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis. J Exp Bot 66:4595–4606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui KM, Little CHA (1993) The effects of exogenous IAA and GAs on phloem and xylem production in Pinus sylvestris and Picea abies. Chin J Bot 5:145–153

    Google Scholar 

  • Delannoy E, Stanley WA, Bond CS, Small ID (2007) Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles. Biochem Soc Trans 35:1643–1647

    CAS  PubMed  Google Scholar 

  • Denhard B, Feucht W (1971) Zur Reaktionsholzbildung bei Prunus avium. Holzforschung Int J Biol Chem Phys Technol Wood 25:169–174

    Google Scholar 

  • Egierszdorff S (1981) The role of auxin stored in scots pine trunk during spring activation of cambial activity. Biol Plant 23:110–115

    CAS  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    CAS  PubMed  Google Scholar 

  • Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788

    CAS  PubMed  Google Scholar 

  • Fasano JM, Swanson SJ, Blancaflor EB, Dowd PE, Kao TH, Gilroy S (2001) Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell 13:907–921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujihira K, Kurata T, Watahiki MK, Karahara I, Yamamoto KT (2000) An agravitropic mutant of Arabidopsis, endodermal-amyloplast less 1, that lacks amyloplasts in hypocotyl endodermal cell layer. Plant Cell Physiol 41:1193–1199

    CAS  PubMed  Google Scholar 

  • Fukaki H, Fujisawa H, Tasaka M (1996) SGR1, SGR2, SGR3: novel genetic loci involved in shoot gravitropism in Arabidopsis thaliana. Plant Physiol 110:945–955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaur PM, Gour VK, Srinivasan S (2008) An induced brachytic mutant of chickpea and its possible use in ideotype breeding. Euphytica 159:35–41

    Google Scholar 

  • Hashiguchi Y, Niihama M, Takahashi T, Saito C, Nakano A, Tasaka M, Morita MT (2010) Loss-of-function mutations of retromer large subunit genes suppress the phenotype of an Arabidopsis zig mutant that lacks Qb-SNARE VTI11. Plant Cell 22:159–172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong D, Zhu X (1987) Cytotaxonomical studies on liliaceae (S.L.) (1) report on karyotypes of 10 species of 6 genera. Acta Phytotaxon Sin 25:245–253

    Google Scholar 

  • Hu G, Fan J, Xian Z, Huang W, Lin D, Li Z (2014) Overexpression of SlREV alters the development of the flower pedicel abscission zone and fruit formation in tomato. Plant Sci 229:86–95

    CAS  PubMed  Google Scholar 

  • Hwang I, Paudyal DP, Kim SK, Cheong H (2007) Influence of the SMT2 knock-out on hypocotyl elongation in Arabidopsis thaliana. Biotechnol Bioprocess Eng 12:157–164

    CAS  Google Scholar 

  • Ishida T, Kaneko Y, Iwano M, Hashimoto T (2007) Helical microtubule arrays in a collection of twisting tubulin mutants of Arabidopsis thaliana. P Natl Acad Sci USA 104:8544

    CAS  Google Scholar 

  • Israelsson M, Sundberg B, Moritz T (2005) Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. Plant J 44:494–504

    CAS  PubMed  Google Scholar 

  • Kato T, Morita MT, Fukaki H, Yamauchi Y, Uehara M, Niihama M, Tasaka M (2002) SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14:33–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman PB, Song I (1987) Hormones and the orientation of growth. Plant Horm 110:375–392

    Google Scholar 

  • Kauschmann A, Jessop A, Koncz C, Szekeres M, Willmitzer L, Altmann T (1996) Genetic evidence for an essential role of brassinosteroids in plant development. Plant J 9:701–713

    CAS  Google Scholar 

  • Klahre U, Friederich E, Kost B, Louvard D, Chua NH (2000) Villin-like actin-binding proteins are expressed ubiquitously in Arabidopsis. Plant Physiol 122:35–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klee HJ, Horsch RB, Hinchee MA, Hein MB, Hoffmann NL (1987) The effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenic petunia plants. Gene Dev 1:86–96

    CAS  Google Scholar 

  • Kleinevehn J, Leitner J, Zwiewka M, Sauer M, Abas L, Luschnig C, Friml J (2008) Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. P Natl Acad Sci USA 105:17812–17817

    CAS  Google Scholar 

  • Klynstra FB, Lycklama JC, Siebers AM, Burggraaf PD (1964) On the anatomy of the woody stem of the twisted hazel, Corylus avellana L. ‘Contorta’. Plant Biol 13:189–208

    Google Scholar 

  • Kong J (2012) Gene mapping, expression profile and candidate gene analyses of zigzag stem in soybean. Nanjing Agricultural University, Nanjing

    Google Scholar 

  • Koorneef M, Elgersma A, Hanhart CJ, Van Loenen Martinet EP, Van Rijn L, Zeevaart JAD (2010) A gibberellin insensitive mutant of Arabidopsis thaliana. Physiol Plant 65:33–39

    Google Scholar 

  • Kordyum EL (2003) Calcium signaling in plant cells in altered gravity. Adv Space Res 32:1621–1630

    CAS  PubMed  Google Scholar 

  • Leclercq A, Riboux A, Jourez B (2001) Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv ‘ghoy’). Iawa J 22:133–157

    Google Scholar 

  • Leyser O (2005a) Auxin distribution and plant pattern formation: how many angels can dance on the point of PIN? Cell 121:819–822

    CAS  PubMed  Google Scholar 

  • Leyser O (2005b) The fall and rise of apical dominance. Curr Opin Genet Dev 15:468–471

    CAS  PubMed  Google Scholar 

  • Leyser O (2006) Dynamic integration of auxin transport and signalling. Curr Biol 16:R424–R433

    CAS  PubMed  Google Scholar 

  • Li H, Wang Y, Li X, Gao Y, Wang Z, Zhao Y, Wang M (2011) A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1. Mol Biol Rep 38:191

    CAS  PubMed  Google Scholar 

  • Li G, Liang W, Zhang X, Ren H, Hu J, Bennett MJ, Zhang D (2014) Rice actin-binding protein RMD is a key link in the auxin-actin regulatory loop that controls cell growth. Proc Natl Acad Sci USA 111:10377–10382

    CAS  PubMed  Google Scholar 

  • Lin J, Gunter LE, Harding SA, Kopp RF, Mccord RP, Tsai CJ, Tuskan GA, Smart LB (2007) Development of AFLP and RAPD markers linked to a locus associated with twisted growth in corkscrew willow (Salix matsudana ‘Tortuosa’). Tree Physiol 27:1575–1583

    CAS  PubMed  Google Scholar 

  • Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2:1071–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu DX, Zhou RK (1989) Investigation and classification of mei flower (Prunus mume Sieb. et Zucc.) cultivars in Wuxi. Acta Hortic Sin 3:220–226

    Google Scholar 

  • Liu MH, Zhu FM, Liu Z, Zhang HY (2012) Phylogenetic relationship among Salix species based on ITS sequences. Guizhou For Sci Technol 40:30–35

    Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474

    CAS  PubMed  Google Scholar 

  • Lorences EP (2004) Cell wall xyloglucan incorporation by xyloglucan endotransglucosylase/hydrolase in pine hypocotyls. Plant Sci 166:1269–1274

    CAS  Google Scholar 

  • Ma Z, Jia Y, Wang Y, Li X, Liu Z (2006) Initial observation of tortuous branch mutant peach germ plasm in Prunus Persica obtained from Co ~ (60)-γ ray. J Hebei Agric Sci 10:40–42

    Google Scholar 

  • Machii H, Koyama A, Yamanouchi H (2001) A list of morphological and agronomical traits of mulberry genetic resources. Misc Publ Natl Inst Seric Entomol Sci 18:442–443

    Google Scholar 

  • Martinezalcantara B, RodriguezGamir J, Martinezcuenca MR, Iglesias DJ, Primomillo E, Fornerginer MA (2013) Relationship between hydraulic conductance and citrus dwarfing by the; Flying Dragon rootstock (Poncirus trifoliata L. Raft var. monstruosa). Trees 27:629–638

    Google Scholar 

  • Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Václavíkov K, Miyawaki K, Kakimoto T (2008) Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci USA 105:20027–20031

    CAS  PubMed  Google Scholar 

  • Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in the woody dicot stem. Springer, Dordrecht

    Google Scholar 

  • Monshausen GB, Miller ND, Murphy AS, Gilroy S (2011) Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J 65:309–318

    CAS  PubMed  Google Scholar 

  • Nadhzimov UK, Jupe SC, Jones MG, Scott IM (1988) Growth and gibberellin relations of the extreme dwarf dx tomato mutant. Physiol Plant 73:252–256

    CAS  Google Scholar 

  • Nakajima K, Hashimoto T (2004) SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell 16:1178–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura T, Saotome M, Ishiguro Y, Itoh R, Higurashi S, Hosono M, Ishii Y (1994) The effects of GA3 on weeping of growing shoots of the Japanese cherry, Prunus spachiana. Plant Cell Physiol 35:523–527

    CAS  Google Scholar 

  • Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, Tahtiharju S, Elo A, Decourteix M, Ljung K, Bhalerao R, Keinonen K, Albert VA, Helariutta Y (2008) Cytokinin signaling regulates cambial development in poplar. Proc Natl Acad Sci USA 105:20032–20037

    CAS  PubMed  Google Scholar 

  • Niihama M, Uemura T, Saito C, Nakano A, Sato MH, Tasaka M, Morita MT (2005) Conversion of functional specificity in Qb-SNARE VTI1 homologues of Arabidopsis. Curr Biol 15:555

    CAS  PubMed  Google Scholar 

  • Peng J, Shu H, Peng S (2002) To address the problem of infraspecific classification of Ziziphus jujuba Mill. using RAPD data. Acta Phytotaxon Sin 40:89–94

    Google Scholar 

  • Perbal G, Driss-Eecole D (2003) Mechanotransduction in gravisensing cells. Trends Plant Sci 8:498–504

    CAS  PubMed  Google Scholar 

  • Perera IY, Hung CY, Brady S, Muday GK, Boss WF (2006) A universal role for inositol 1,4,5-trisphosphate-mediated signaling in plant gravitropism. Plant Physiol 140:746–760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perrin RM, Wang Y, Yuen CYL, Will J, Masson PH (2007) WVD2 is a novel microtubule-associated protein in Arabidopsis thaliana. Plant J Cell Mol Biol 49:961–971

    CAS  Google Scholar 

  • Pilu R, Cassani E, Villa D, Curiale S, Panzeri D, Badone FC, Landoni M (2007) Isolation and characterization of a new mutant allele of brachytic 2 maize gene. Mol Breed 20:83–91

    CAS  Google Scholar 

  • Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979–1989

    CAS  PubMed  Google Scholar 

  • Prakash AP, Kumar PP (2002) PkMADS1 is a novel MADS box gene regulating adventitious shoot induction and vegetative shoot development in Paulownia kawakamii. Plant J Cell Mol Biol 29:141–151

    CAS  Google Scholar 

  • Ram Rao DM, Reddy TP (1997) Genetic analysis of semidwarf mutants induced in indica rice (Oryza sativa L.). Euphytica 95:45–48

    Google Scholar 

  • Rioukhamlichi C, Menges M, Healy JM, Murray JA (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol Cell Biol 20:4513–4521

    CAS  Google Scholar 

  • Robischon M, Du J, Miura E, Groover A (2011) The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems. Plant Physiol 155:1214–1225

    CAS  PubMed  Google Scholar 

  • Romano CP, Hein MB, Klee HJ (1991) Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi. Gene Dev 5:438

    CAS  PubMed  Google Scholar 

  • Ross JJ, O’Neill DP, Smith JJ, Kerckhoffs LHJ, Elliott RC (2000) Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J 21:547–552

    CAS  PubMed  Google Scholar 

  • Sachs T (1991) Cell polarity and tissue patterning in plants. Development 91:83–93

    Google Scholar 

  • Sack FD (1991) Plant gravity sensing. Int Rev Cytol 127:193–252

    CAS  PubMed  Google Scholar 

  • Salmi ML, Porterfield DM (2011) Changes in gravity rapidly alter the magnitude and direction of a cellular calcium current. Planta 233:911–920

    CAS  PubMed  Google Scholar 

  • Santner A, Calderonvillalobos LIA, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5:301–307

    CAS  PubMed  Google Scholar 

  • Saotome M, Ogiwara E, Omi T, Yokoyama T, Nakamura T (1995) The cellulose and lignin contents in gibberellin-treated branches of Prunus. J Jpn Womens Univ Fac Sci 3:69–72

    CAS  Google Scholar 

  • Scurfield G (1973) Reaction wood: its structure and function. Science 179:647–655

    CAS  PubMed  Google Scholar 

  • Sha J, Furukawa I, Honma T, Mori M, Nakamura T, Yamamoto F (1998) Effects of applied gibberellins and uniconazole-P on gravitropism and xylem formation in horizontally positioned Fraxinus mandshurica seedlings. J Wood Sci 44:385–391

    Google Scholar 

  • Shen X, Li YM, Kang L, Zou YM, Huai-Rui AS (2008) Relationship between morphology and hormones during weeping peach (Prunus persica var. pendula) shoot development. Acta Hortic Sin 35:395–402

    CAS  Google Scholar 

  • Smith DC, Mehlenbacher SA (1996) Inheritance of contorted growth in hazelnut. Euphytica 89:211–213

    Google Scholar 

  • Sopian T, Feng J, Hirata Y (2009) Characterization of mulberry mutant growth response to gibberellin and abscisic acid application and its molecular analysis. J Insect Biotechnol Sericol 78:23–32

    CAS  Google Scholar 

  • Stirnberg P, Chatfield SP, Leyser HMO (1999) AXR1 acts after lateral bud formation to inhibit lateral bud growth in Arabidopsis. Plant Physiol 121:839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Švegždienė D, Koryznienė D, Raklevičienė D (2011) Comparison study of gravity-dependent displacement of amyloplasts in statocytes of cress roots and hypocotyls. Microgravity Sci Technol 23:235–241

    Google Scholar 

  • Thitamadee S, Tuchihara K, Hashimoto T (2002) Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417:193–196

    CAS  PubMed  Google Scholar 

  • Tominaga R, Sakurai N, Kuraishi S (1994) Brassinolide-induced elongation of inner tissues of segments of squash (Cucurbita maxima duch.) hypocotyls. Plant Cell Physiol 35:1103–1106

    CAS  Google Scholar 

  • Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29:49–65

    CAS  PubMed  Google Scholar 

  • Urbina DC, Silva H, Meisel LA (2006) The Ca2+ pump inhibitor, thapsigargin, inhibits root gravitropism in Arabidopsis thaliana. Biol Res 39:289

    CAS  PubMed  Google Scholar 

  • van der Honing HS, Kieft H, Emons AM, Ketelaar T (2012) Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin filament bundles and for directional organ growth. Plant Physiol 158:1426–1438

    PubMed  Google Scholar 

  • Wada Y, Katsumi M (2005) Brassinolide as a modulator of the activities of cell wall loosening proteins. Plant Biotechnol Nar 22:33–38

    CAS  Google Scholar 

  • Walker DB, Boerma HR (1978) Morphological study of the mechanism causing brachytic stem in soybeans. Can J Plant Sci 58:993–998

    Google Scholar 

  • Wang F, Huo SN, Guo J, Zhang XS (2006) Wheat D-type cyclin Triae;CYCD2;1 regulate development of transgenic Arabidopsis plants. Planta 224:1129–1140

    CAS  PubMed  Google Scholar 

  • Wang Y, Lin WH, Chen X, Xue HW (2009) The role of Arabidopsis 5PTase13 in root gravitropism through modulation of vesicle trafficking. Cell Res 19:1191–1204

    CAS  PubMed  Google Scholar 

  • Wang FT, Yang WR, Hao RJ, Wang T, Zhang QX (2014) Studies on the cell separation of the secondary xylem of pendulous characteristics of Prunus mume. Guihaia 34:303–304

    Google Scholar 

  • Wang W, Yang H, Dongye LU, Zhang L, Lijun HE (2016) The PCR identification and stem, hypocotyl structure changes of Arabidopsis mutant pny. J Inner Mong Agric Univ 37:40–46

    Google Scholar 

  • Williams M, Lowndes L, Regan S, Beardmore T (2015) Overexpression of CYCD1;2 in activation-tagged Populus tremula × Populus alba results in decreased cell size and altered leaf morphology. Tree Genet Genomes 11:1–12

    Google Scholar 

  • Wolbang CM, Ross JJ (2001) Auxin promotes gibberellin biosynthesis in decapitated tobacco plants. Planta 214:153–157

    CAS  PubMed  Google Scholar 

  • Wolbang CM, Chandler PM, Smith JJ, Ross JJ (2004) Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiol 134:769–776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf S, Hématy K, Höfte H (2011) Growth control and cell wall signaling in plants. Annu Rev Plant Biol 63:381–407

    Google Scholar 

  • Wolters H, Jurgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305–317

    CAS  PubMed  Google Scholar 

  • Wu S, Xie Y, Zhang J, Ren Y, Zhang X, Wang J, Guo X, Wu F, Sheng P, Wang J, Wu C, Wang H, Huang S, Wan J (2015) VLN2 regulates plant architecture by affecting microfilament dynamics and polar auxin transport in rice. Plant Cell 27:2829–2845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Purugganan MM, Polisensky DH, Antosiewicz DM, Fry SC, Braam J (1995) Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7:1555–1567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi Y, Fukaki H, Fujisawa H, Tasaka M (1997) Mutations in the SGR4, SGR5 and SGR6 loci of Arabidopsis thaliana alter the shoot gravitropism. Plant Cell Physiol 38:530–535

    CAS  PubMed  Google Scholar 

  • Yan HF, Zeng BS, Fan CJ, Liu Y, Qiu ZF, Li XY (2016) Adventitious root induction, shoot height and cellular structure of basal stem by exogenous application of brassinosteriod in Eucalyptus grandis. Guihaia 36:763–767

    Google Scholar 

  • Yang W, Ren S, Zhang X, Gao M, Ye S, Qi Y, Zheng Y, Wang J, Zeng L, Li Q (2011) BENT UPPERMOST INTERNODE1 encodes the Class II formin FH5 crucial for actin organization and rice development. Plant Cell 23:661–680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoder TL, Zheng H, Todd P, Staehelin LA (2001) Amyloplast sedimentation dynamics in Maize columella cells support a new model for the gravity-sensing apparatus of roots. Plant Physiol 125:1045–1060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida M, Yamamoto H, Okuyama T, Nakamura T (1999) Negative gravitropism and growth stress in GA3-treated branches of Prunus spachiana Kitamura f. spachiana cv. Plenarosea. J Wood Sci 45:368–372

    Google Scholar 

  • Zehrmann A, Verbitskiy D, Hã Rtel B, Brennicke A, Takenaka M (2011) PPR proteins network as site-specific RNA editing factors in plant organelles. RNA Biol 8:67–70

    CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang Y, Tan H, Wang Y, Li G, Liang W, Yuan Z, Hu J, Ren H, Zhang D (2011) RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. Plant Cell 23:681–700

    PubMed  PubMed Central  Google Scholar 

  • Zhao T, Gai J, Qiu J, Ji D, Ren Z (1997) The performance and inheritance of brachytic stem in soybean. Chin Oil 1:12–15

    Google Scholar 

  • Zheng H, von Mollard GF, Kovaleva V, Stevens TH, Raikhel NV (1999) The plant vesicle-associated SNARE AtVTI1a likely mediates vesicle transport from the trans-Golgi network to the prevacuolar compartment. Mol Biol Cell 10:2251–2264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong TL, Zhu TP, Lai SF (2006) Correlation between the natural curve of Osmanthus fragrans ‘Jiulonggui’ with air temperatures. J Zhejiang For Coll 1:109–111

    Google Scholar 

  • Zhu Y, Song D, Sun J, Wang X, Li L (2013) PtrHB7, a class III HD-Zip gene, plays a critical role in regulation of vascular cambium differentiation in Populus. Mol Plant 6:1331–1343

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by the Fundamental Research Funds for the Central Universities (Nos. BLX2016-07, 2016ZCQ02), and Special Fund for Beijing Common Construction Project.

Author information

Authors and Affiliations

Authors

Contributions

Authors contribution

TZ and LL conceived and drafted the manuscript. QZ contributed to the conception of the study and finalized the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qixiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that this research is carried on the absence of any financial or commercial relationships that could be interpreted to a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, T., Li, L. & Zhang, Q. Advances in research on tortuous traits of plants. Euphytica 214, 224 (2018). https://doi.org/10.1007/s10681-018-2306-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2306-0

Keywords

Navigation