Skip to main content
Log in

Postharvest cold tolerance in summer squash and its association with reduced cold-induced ethylene production

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Tolerance to postharvest chilling injury (PCI) is becoming an ever more essential trait for export-oriented vegetables requiring refrigerated transport and/or storage. Summer squash, Cucurbita pepo, is highly subject to PCI. We screened a collection consisting of 80 long-fruited accessions of morphotypes zucchini, cocozelle, and vegetable marrow for cold tolerance. Of these, we selected the most cold tolerant and some of the least cold tolerant for further scrutiny. Fruits from each accession were stored for 7 and 14 days at 4 °C before evaluating PCI, weight loss (WL) and ethylene production. Several accessions, including CpCAL003, CpCAL053 and CpCAL051, showed tolerance to PCI, with a lower percentage of the fruit surface suffering injury and WL at 4 °C. The mode of inheritance of tolerance to PCI index and WL was investigated by crossing the tolerant accession designated CpCAL003 with the susceptible CpCAL112, and observing their filial- and backcross-generation progenies. The results indicate that cold tolerance is not conferred by a single gene, but rather is quantitatively inherited trait. Cold-induced ethylene production co-segregated with PCI susceptibility. Thus, ethylene production under cold storage can be used as physiological indicator in selecting for PCI tolerance in summer squash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali A, Bang SW, Yang EM, Chung Staub JE (2014) Putative paternal factors controlling chilling tolerance in Korean market-type cucumber (Cucumis sativus L.). Sci Hortic 167:145–148

    Article  Google Scholar 

  • Alves RE, Filgueiras HAC, Almeida AS, Machado FLC, Bastos MSR, Lima MAC, Terao D, Silva EO, Santos EC, Pereira MEC, Miranda MRA (2005) Postharvest use of 1-MCP to extend storage life of melon in Brazil—current research status. Acta Hortic 682:2233–2238

    Article  CAS  Google Scholar 

  • Balandran-Quintana RR, Mendoza-Wilson AM, Gardea-Bejar AA, Vargas-Arispuro I, Martínez-Tellez MA (2003) Irreversibility of chilling injury in zucchini squash (Cucurbita pepo L.) could be a programmed event long before the visible symptoms are evident. Biochem Biophys Res Commun 307:553–557

    Article  CAS  PubMed  Google Scholar 

  • Cabrera RM, Saltveit ME, Owens K (1992) Cucumber cultivars differ in their response to chilling temperatures. J Am Soc Hortic Sci 117:802–807

    Google Scholar 

  • Cantín CM, Crisosto CH, Ogundiwin EA, Gradziel T, Torrents J, Moreno MA, Gogorcena Y (2010) Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Batsch] progeny. Postharvest Biol Technol 58:79–87

    Article  Google Scholar 

  • Carvajal F, Martinez C, Jamilena M, Garrido D (2011) Differential response of zucchini varieties to low storage temperature. Sci Hortic 130:90–96

    Article  CAS  Google Scholar 

  • Carvajal F, Palma F, Jamilena M, Garrido D (2015) Preconditioning treatment induces chilling tolerance in zucchini fruit improving different physiological mechanisms against cold injury. Ann Appl Biol 166:340–354

    Article  CAS  Google Scholar 

  • Chen J, Zhao Y, Chen X, Peng Y, Hurr BM, Mao L (2014) The role of ethylene and calcium in programmed cell death of cold-stored cucumber fruit. J Food Biochem 38:337–344

    Article  CAS  Google Scholar 

  • Chung S-, Staub JE, Fazio G (2003) Inheritance of chilling injury: a maternally inherited trait in cucumber. J Am Soc Hortic Sci 128:526–530

    CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  CAS  PubMed  Google Scholar 

  • dos Reis SP, Lima AM, de Souza CRB (2012) Recent molecular advances on downstream plant responses to abiotic stress. Int J Mol Sci 13:8628–8647

    Article  PubMed  PubMed Central  Google Scholar 

  • Formisano G, Roig C, Esteras C, Ercolano MR, Nuez F, Monforte AJ, Picó MB (2012) Genetic diversity of Spanish Cucurbita pepo landraces: an unexploited resource for summer squash breeding. Genet Resour Crop Evol 59:1169–1184

    Article  Google Scholar 

  • Gordon VS, Staub JE (2011) Comparative analysis of chilling response in cucumber through plastidic and nuclear genetic effects component analysis. J Am Soc Hortic Sci 136:256–264

    Google Scholar 

  • Gordon VS, Staub JE (2014) Backcross introgression of plastomic factors controlling chilling tolerance into elite cucumber (Cucumis sativus L.) germplasm: early generation recovery of recurrent parent phenotype. Euphytica 195:217–234

    Article  Google Scholar 

  • Gualanduzzi S, Baraldi E, Braschi I, Carnevali F, Gessa CE, De Santis A (2009) Respiration, hydrogen peroxide levels and antioxidant enzyme activities during cold storage of zucchini squash fruit. Postharvest Biol Technol 52:16–23

    Article  CAS  Google Scholar 

  • Janowiak F, Dorffling K (1995) Chilling-induced changes in the contents of 1-aminocyclopropane-1-carboxylic acid (ACC) and its N-malonyl conjugate (MACC) in seedlings of two maize inbreds differing in chilling tolerance. J Plant Physiol 147:257–262

    Article  CAS  Google Scholar 

  • Klay I, Pirrello J, Riahi L, Bernadac A, Cherif A, Bouzayen M, Bouzid S (2014) Ethylene response factor Sl-ERF.B.3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato. Sci J 2014:167681

    Google Scholar 

  • Kosová K, Vítámvás P, Urban MO, Klíma M, Roy A, Tom Prášil I (2015) Biological networks underlying abiotic stress tolerance in temperate crops-a proteomic perspective. Int J Mol Sci 16:20913–20942

    Article  PubMed  PubMed Central  Google Scholar 

  • Lado J, Rodrigo MJ, Cronje P, Zacarías L (2015) Involvement of lycopene in the induction of tolerance to chilling injury in grapefruit. Postharvest Biol Technol 100:176–186

    Article  CAS  Google Scholar 

  • Martínez C, Manzano S, Megías Z, Garrido D, Pico B, Jamilena M (2014) Sources of parthenocarpy for Zucchini breeding: relationship with ethylene production and sensitivity. Euphytica 200:349–362

    Article  Google Scholar 

  • Martínez-Téllez MA, Ramos-Clamont MG, Gardea AA, Vargas-Arispuro I (2002) Effect of infiltrated polyamines on polygalacturonase activity and chilling injury responses in zucchini squash (Cucurbita pepo L.). Biochem Biophys Res Commun 295:98–101

    Article  PubMed  Google Scholar 

  • Massolo JF, Concellón A, Chaves AR, Vicente AR (2013) Use of 1-methylcyclopropene to complement refrigeration and ameliorate chilling injury symptoms in summer squash. CYTA J Food 11:19–26

    Article  CAS  Google Scholar 

  • Megías Z, Martinez C, Manzano S, Barrera A, Rosales R, Luis Valenzuela J, Garrido D, Jamilena M (2014) Cold-induced ethylene in relation to chilling injury and chilling sensitivity in the non-climacteric fruit of zucchini (Cucurbita pepo L.). LWT Food Sci Technol 57:194–199

    Article  Google Scholar 

  • Megías Z, Martínez C, Manzano S, García A, Del Mar Rebolloso-Fuentes M, Garrido D, Valenzuela JL, Jamilena M (2015) Individual shrink wrapping of zucchini fruit improves postharvest chilling tolerance associated with a reduction in ethylene production and oxidative stress metabolites. PLoS ONE 10(7):e0133058

    Article  PubMed  PubMed Central  Google Scholar 

  • Megías Z, Martínez C, Manzano S, García A, del Mar Rebolloso-Fuentes M, Valenzuela JL, Garrido D, Jamilena M (2016) Ethylene biosynthesis and signaling elements involved in chilling injury and other postharvest quality traits in the non-climacteric fruit of zucchini (Cucurbita pepo). Postharvest Biol Technol 113:48–57

    Article  Google Scholar 

  • Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14:5312–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nee M (1990) The domestication of Cucurbita. Econ Bot 44(3 suppl):56–68

    Article  Google Scholar 

  • Palma F, Carvajal F, Jamilena M, Garrido D (2014) Contribution of polyamines and other related metabolites to the maintenance of zucchini fruit quality during cold storage. Plant Physiol Biochem 82:161–171

    Article  CAS  PubMed  Google Scholar 

  • Palma F, Carvajal F, Ramos JM, Jamilena M, Garrido D (2015) Effect of putrescine application on maintenance of zucchini fruit quality during cold storage: contribution of GABA shunt and other related nitrogen metabolites. Postharvest Biol Technol 99:131–140

    Article  CAS  Google Scholar 

  • Pareek S, Benkeblia N, Janick J, Cao S, Yahia EM (2014) Postharvest physiology and technology of loquat (Eriobotrya japonica Lindl.) fruit. J Sci Food Agric 94:1495–1504

    Article  CAS  PubMed  Google Scholar 

  • Paris H (1986) A proposed subspecific classification for Cucurbita pepo. Phytologia 61:133–138

    Google Scholar 

  • Pech JC, Latché A (2013) Contribution of genomics to postharvest biology. Stewart Postharvest Rev 9(4):1–6

    Article  Google Scholar 

  • Pérez-Clemente RM, Vives V, Zandalinas SI, López-Climent MF, Muñoz V, Gómez-Cadenas A (2013) Biotechnological approaches to study plant responses to stress. BioMed Res Int 2013:654120

    Article  PubMed  Google Scholar 

  • Pons C, Martí C, Forment J, Crisosto CH, Dandekar AM, Granell A (2014) A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response. PLoS ONE 9(3):e90706

    Article  PubMed  PubMed Central  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    CAS  PubMed  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano M, Pretel MT, Martinez-Madrid MC, Romojaro F, Riquelme F (1998) CO2 treatment of zucchini squash reduces chilling-induced physiological changes. J Agric Food Chem 46:2465–2468

    Article  CAS  Google Scholar 

  • Sevillano L, Sanchez-Ballesta MT, Romojaro F, Flores FB (2009) Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. J Sci Food Agric 89(4):555–573

    Article  CAS  Google Scholar 

  • Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24:2578–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow MF (2001) So what’s new in the field of plant cold acclimation? Lots! Plant Physiol 125:89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J 5:361–380

    Article  CAS  PubMed  Google Scholar 

  • Wang CY (1994) Combined treatment of heat shock and low temperature conditioning reduces chilling injury in zucchini squash. Postharvest Biol Technol 4:65–73

    Article  CAS  Google Scholar 

  • Wang CY (1995) Effect of temperature preconditioning on catalase, peroxidase, and superoxide-dismutase in chilled zucchini squash. Postharvest Biol Technol 5:67–76

    Article  Google Scholar 

  • Wang CY, Ji ZL (1989) Effect of low-oxygen storage on chilling injury and polyamines in zucchini squash. Sci Hortic 39:1–7

    Article  CAS  Google Scholar 

  • Yun Z, Jin S, Ding Y, Wang Z, Gao H, Pan Z, Xu J, Cheng Y, Deng X (2012) Comparative transcriptomic and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during length post-harvest storage. J Exp Bot 63(8):2873–2893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Huang R (2010) Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol 73:241–249

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Liu W, Xia X, Wang T, Zhang W- (2014) Cold acclimation-induced freezing tolerance of Medicago truncatula seedlings is negatively regulated by ethylene. Physiol Plant 152:115–129

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Fung RWM, Wang SY, Wang CY (2008) Transcript levels of antioxidative genes and oxygen radical scavenging enzyme activities in chilled zucchini squash in response to superatmospheric oxygen. Postharvest Biol Technol 47:151–158

    Article  CAS  Google Scholar 

  • Zou Y, Zhang L, Rao S, Zhu X, Ye L, Chen W, Li X (2014) The relationship between the expression of ethylene-related genes and papaya fruit ripening disorder caused by chilling injury. PLoS ONE 9:e116002

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants AGL2011-30568-C02/ALI and AGL2014-54598-C2-1-R from the Spanish Ministry of Science and Innovation, and P12-AGR-1423 from Junta de Andalucía, Spain. Z.M. acknowledges FPU program scholarships from MEC, Spain. S.M. is funded by Grant PTA2011-479-I from the Spanish Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Jamilena.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megías, Z., Manzano, S., Martínez, C. et al. Postharvest cold tolerance in summer squash and its association with reduced cold-induced ethylene production. Euphytica 213, 9 (2017). https://doi.org/10.1007/s10681-016-1805-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-016-1805-0

Keywords

Navigation